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PARAMETER UNIFORM NUMERICAL METHOD

FOR SINGULARLY PERTURBED PARABOLIC

DIFFERENTIAL DIFFERENCE EQUATIONS

MESFIN M. WOLDAREGAY AND GEMECHIS F. DURESSA1

ABSTRACT. In this paper, a numerical study is made for
solving singularly perturbed differential difference equations
with small advance and delay parameters. To approximate
the advance and delay terms a Taylor series expansion has
been used. The resulting singularly perturbed parabolic PDE
is solved by using non-standard finite difference method on
uniform mesh in x-direction and implicit Runge-Kutta method
is used for the resulting system of IVPs in t-direction. The
method is shown to be accurate of order one. A convergence
analysis has been carried out to show ε− uniform convergence of
the proposed scheme. Two numerical examples are considered
to investigate parameter uniform convergence of the proposed
method.
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1. INTRODUCTION

The differential difference equations (DDEs) with delay/advance
term plays an important role in modeling many real life phenom-
ena in Control Theory, Bioscience, Economics and Engineering [7].
Some applications are the mathematical modeling of population
dynamics and epidemiology [12], physiological kinetics [2], blood
cell production [17] and so on. A special class of differential differ-
ence equations with at least one delay/advance term, in which the
highest order derivative of the problem is multiplied by small (arbi-
trary) parameter is known as the singularly perturbed differential
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difference equations (SPDDEs) with delay and advance parameters.
SPDDEs relate an unknown function to its derivatives evaluated at
the same instance. But, singularly perturbed delay( and/or ad-
vance) partial differential equations model physical problems for
which the evaluation does not only depend on the present state of
the system but also on the past history. In general, when the per-
turbation parameter tends to zero in such case the smoothness of
the solution of the SPDDEs deteriorates and it forms a boundary
layers [20]. Such type of SPDDEs have variety of applications in
the study of variational problems of control theory [9], in modeling
of neuronal variability [27]. In [30, 29], we can find a lot of mathe-
matical models for the determination of the behavior of a neuron to
random synaptic inputs. Musila and Lansky in [19] generalized the
Stein’s model and come with the following mathematical model in
terms of singularly perturbed parabolic differential difference equa-
tions (SPPDDEs) to consider the time evolution trajectories of the
membrane potential:

∂u

∂t
=
σ2

2

∂2u

∂x2
+ (µD −

x

τ
)
∂u

∂x
+ λsu(x+ as, t) + ωsu(x+ is, t)

− (λs + ωs)u(x, t)

(1)

where the first derivative term is due to the exponential decay be-
tween two consecutive jumps caused by the input processes. The
membrane potential decays exponentially to the resting level with
a membrane time constant τ . µD and σ are diffusion moments of
Wiener process characterizing the influence of dendritic synapses on
the cell excitability. The excitatory input contributes to the mem-
brane potential by an amplitude as with intensity λs and similarly
the inhibitory input contributes by an amplitude is with intensity
ωs. This model makes available time evolution of the trajectories of
the membrane potential. The model (1) is a differential difference
equation, one can hardly derive its exact solution. In order to find
a solution to such problem, one has to apply suitable numerical
methods.
In the last few years, different researchers have worked on numer-
ical treatment of solution of SPPDDEs. In papers [3, 4, 5], [13],
[20], [21], [22] researchers, considered different numerical methods
to study a classes of SPPDDEs and discussed the effect of delay
and advance parameters on the solution behavior.
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2. STATEMENT OF THE PROBLEM

A singularly perturbed 1D spatial delay and advance parabolic par-
tial differential equation of convection diffusion type having reaction
term with a delay as well as advance argument on the domain D
with smooth boundary ∂D = D̄/D is given by:

∂u

∂t
− ε2∂

2u

∂x2
+ a(x)

∂u

∂x
+ α(x)u(x− δ, t) + β(x)u(x, t)

+ ω(x)u(x+ η, t) = f(x, t)
(2)

(x, t) ∈ D = Ω× Λ = (0, 1)×(0, T ] with some fixed positive number
T, subject to the initial and interval conditions given as:

u(x, 0) = u0(x), x ∈ D0 = {(x, 0) : x ∈ Ω̄}
u(x, t) = φ(x, t), (x, t) ∈ DL = {(x, t) : −δ ≤ x ≤ 0, t ∈ Λ}
u(x, t) = ψ(x, t), (x, t) ∈ DR = {(x, t) : 1 ≤ x ≤ 1 + η, t ∈ Λ}

(3)

Here, ε is a singular perturbation parameter with the condition
0 < ε � 1 and δ and η are small delay and advance parameters
respectively, assumed to be sufficiently small as order of o(ε).
We assume the functions a(x), α(x), β(x), ω(x), f(x, t), u0(x), φ(x, t)
and ψ(x, t) are sufficiently smooth, bounded and independent of ε.
The coefficients of reaction term β, delay term α and advance term
ω are assumed to satisfy the condition:

α(x) + β(x) + ω(x) ≥ θ > 0, ∀x ∈ Ω̄

for some positive constant θ. This condition ensure that the solu-
tion of (2)-(3) form a boundary layer in the neighborhood of DL =
{(x, t) : −δ ≤ x ≤ 0, t ∈ Λ} or DR = {(x, t) : 1 ≤ x ≤ 1 + η, t ∈ Λ}
depending on whether a(x)− δβ(x) + ηω(x) < 0 or > 0 on x ∈ Ω̄.
When the shift parameters δ, η are zero the equation in (2) changed
to a singularly perturbed parabolic PDEs, which with small ε form-
ing boundary layers depending upon the sign of the convective term
coefficient a(x) . When a(x) < 0 a regular boundary layer appears
in the neighborhood of DL (left boundary layer) and a(x) > 0 cor-
responds to existence of a boundary layer near DR (right boundary
layer), in addition to that if a(x) change sign then interior layer (or
shock layer) will appear on the solution of the problem [10]. The
layer is maintained for δ, η 6= 0 but sufficiently small. Note that the
problem in (2)-(3) reduces to the classical case of singularly per-
turbed parabolic PDEs when δ, η = 0. When the shift parameters
δ and η are smaller than perturbation parameter ε, the use of Tay-
lor’s series expansion for the terms containing shifts is valid [28].
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We use Taylor’s series expansion to tackle the terms containing the
shifts.
The presence of the singular perturbation parameter ε, leads to
occurrences of oscillations or divergence in the computed solutions
while using classical numerical methods [13]. To overcome these os-
cillations or divergence, a large number of mesh points are required
when ε is very small. This is difficult and sometimes impossible
to handle such cases. Therefore, to handle this drawback associ-
ated with classical numerical methods, we need to derive a method
based on method of line (MOL) using non-standard finite difference
in spatial direction together with implicit Runge-Kutta method for
temporal direction, which treat the problem without creating an
oscillation.
The main contribution of this paper is, to develop parameter uni-
form numerical scheme without any restriction on the mesh gen-
eration for the original singularly perturbed differential difference
problem containing small delay and advance parameters in the
space variable. A new class of parameter uniform numerical scheme
is proposed by the procedure of MOL, which consist of non-standard
finite difference method on x(spatial) direction and implicit Runge-
Kutta order two and three in t(temporal) direction. In the proposed
method, it is not required to have any adaptive property on the
mesh generation. Proposed numerical scheme works well for small
values of shift parameters.
This paper is organized as follows. In section 1 a brief introduction
about the problem is given, in section 2 definition of the problem
and the behavior of its analytical solution is given. In section 3,
discretizing the spatial domain and techniques of non-standard fi-
nite difference is discussed, and the parameter uniform convergence
of the semi-discrete problem is proved. Next, Runge-Kutta method
used for the system of IVPs resulted from spatial discretization and
discuss the convergence of the discrete scheme. In section 4, nu-
merical results and discussion are given to validate the theoretical
analysis and finally in section 5, the conclusions of the work done
are presented.
Notations: Through out this paper N,M denoted for the number
of mesh points in x and t direction respectively. C is denoted for
positive constant independent of perturbation parameter and N .
The norm ‖.‖, ‖.‖ΩN×Λ and ‖.‖ΩN×ΛM is used to denote maximum
norm, semi-discrete maximum norm and discrete maximum norm
respectively.
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Estimate for the delay and advance parameters
Since δ, η < ε, by using Taylor series expansion for u(x − δ, t) and
u(x+ η, t) we obtain:

u(x− δ, t) ≈ u(x, t)− δ∂u
∂x

(x, t) +
δ2

2

∂2u

∂x2
(x, t) +O(δ3)

u(x+ η, t) ≈ u(x, t) + η
∂u

∂x
(x, t) +

η2

2

∂2u

∂x2
(x, t) +O(η3)

(4)

Substituting these approximations into (2)-(3), we obtain:

∂u

∂t
− cε(x)

∂2u

∂x2
+ p(x)

∂u

∂x
+ q(x)u(x, t) = f(x, t) (5)

where cε(x) = ε2− δ
2

2
α(x)− η

2

2
ω(x), p(x) = a(x)−δα(x)+ηω(x),

q(x) = α(x) + β(x) + ω(x) with initial and boundary conditions:

u(x, 0) = u0(x), x ∈ Ω̄

u(0, t) = φ(0, t), t ∈ Λ̄

u(1, t) = ψ(1, t), t ∈ Λ̄

(6)

For small δ and η, Equations (2)-(3) and (5)-(6) are asymptoti-
cally equivalent, because the difference between the two equations
is O(δ3, η3). We assume again 0 < cε(x) ≤ ε2 − δ2G1 − η2G2 = cε
where 2G1 and 2G2 are the lower bounds for α(x) and ω(x) respec-
tively. It is also assumed that p(x) = a(x)−δα(x)+ηω(x) ≥ p∗ > 0,
which show the existence of boundary layer on the right side of the
domain D. In case p(x) = a(x) − δα(x) + ηω(x) ≤ p∗ < 0, shows
the existence of the boundary layer on the left side of the domain
D and we can treat it in similar manner.
We set the compatibility conditions:

u0(0) = φ(0, 0)

u0(1) = ψ(1, 0)
(7)

and

∂φ(0, 0)

∂t
− cε

∂2u0(0)

∂x2
+ p(0)

∂u0(0)

∂x
+ q(0)u0(0) = f(0, 0)

∂ψ(1, 0)

∂t
− cε

∂2u0(1)

∂x2
+ p(1)

∂u0(1)

∂x
+ q(1)u0(1) = f(1, 0)

(8)

so that, the data matches at the two corner points (0, 0) and (1, 0).
In the considered case, boundary layer occurs near the right side of
the rectangular domain D and hence using compatibility conditions
in (7) and (8), we can have the following conditions that guarantee
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the existence of a constant C independent of cε such that for all
(x, t) ∈ D̄

|u(x, t)− u(x, 0)| = |u(x, t)− u0(x)| ≤ Ct and

|u(x, t)− u(0, t)| = |u(x, t)− φ(0, t)| ≤ C(1− x)

for the detail of this see [23] page 105 or [8].

Remark: We have to note that there does not exist a constant C
independent of cε such that |u(x, t)− u(1, t)| = |u(x, t)−ψ(1, t)| ≤
Cx because a boundary layer will occur near the right side of the
rectangular domain D. The reduced problem by setting cε = 0 in
(5) is given by:

∂u0

∂t
+ p(x)

∂u0

∂x
+ q(x)u0(x, t) = f(x, t), ∀(x, t) ∈ D (9)

u0(x, 0) = u0(x), x ∈ Ω̄

u0(0, t) = φ0(t), 0 ≤ t ≤ T

This is a first order hyperbolic equation with initial data specified
along two sides t = 0 and x = 0 of the domain D̄. For small values
of cε the solution u(x, t) of the problem in (5)-(6) will be very close
to u0(x, t). In order to obtain error bounds on the solution of the
difference scheme, it is assumed that the solution of the reduced
problem in (9) is sufficiently smooth.

Properties of continuous solution
In order to show on the bounds of the solutions u(x, t) of (5), we
assume, without loss of generality the initial condition to be zero
[8]. Since u0(x) is sufficiently smooth and using the property of
norm, we can prove the following lemma.

Lemma 1: The bound on the solution u(x, t) of the continuous
problem (5)-(6) is given by:

|u(x, t)| ≤ C, ∀(x, t) ∈ D̄

Proof: From the inequality |u(x, t)− u(x, 0)| =|u(x, t)− u0(x)| ≤
Ct, we have

|u(x, t)|−|u0(x)| ≤|u(x, t)− u0(x)| ≤ Ct

⇒ |u(x, t)| ≤ Ct+|u0(x)|, ∀(x, t) ∈ D̄
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since t ∈ [0, T ] and u0(x) is bounded it implies |u(x, t)| ≤ C

Lemma 2: Continuous maximum principle:
Let z be a sufficiently smooth function defined on D which satisfies
z(x, t) ≥ 0, ∀(x, t) ∈ ∂D. Then Lz(x, t) > 0, ∀(x, t) ∈ D implies
that z(x, t) ≥ 0, ∀(x, t) ∈ D̄. where Lz = zt−cεzxx+p(x)zx+q(x)z
Proof: Let (x∗, t∗) be such that z(x∗, t∗) = min(x,t)∈D̄ z(x, t), and
suppose that z(x∗, t∗) < 0. It is clear that z(x∗, t∗) /∈ ∂D. So we
have

Lz(x∗, t∗) = zt(x
∗, t∗)− cεzxx(x∗, t∗) + p(x)zx(x

∗, t∗) + q(x)z(x∗, t∗)

Since z(x∗, t∗) = min(x,t)∈D̄ z(x, t) which implies zx(x
∗, t∗) = 0,

zt(x
∗, t∗) = 0 and zxx(x

∗, t∗) ≥ 0 and implies that Lz(x∗, t∗) < 0
which contradict the assumption made above Lz(x∗, t∗) > 0, ∀(x, t) ∈
D.
Therefore

z(x, t) ≥ 0, ∀(x, t) ∈ D̄

Lemma 3: Stability Estimate: Let u(x, t) be the solution of the
continuous problem in (5)-(6). Then we have the bound

u ≤ q−1||f ||+ max{u0(x),max{φ(x, t), ψ(x, t)}}

Proof: We define two barrier functions ϑ± as

ϑ±(x, t) = q−1||f ||+ max{u0(x),max{φ(x, t), ψ(x, t)}} ± u(x, t)

At the initial stage we have

ϑ±(x, 0) = q−1||f ||+ max{u0(x),max{φ(x, t), ψ(x, t)}} ± u(x, 0)

= q−1||f ||+ max{u0(x),max{φ(x, t), ψ(x, t)}} ± u0(x)

≥ 0.

at the boundaries we obtain:

ϑ±(0, t) = q−1||f ||+ max{u0(0),max{φ(0, t), ψ(0, t)}} ± u(0, t)

= q−1||f ||+ max{u0(0),max{φ(0, t), ψ(0, t)}} ± u0(0)

≥ 0.

ϑ±(1, t) = q−1||f ||+ max{u0(1),max{φ(1, t), ψ(1, t)}} ± u(1, t)

= q−1||f ||+ max{u0(1),max{φ(1, t), ψ(1, t)}} ± u0(1)

≥ 0. and
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Lϑ±(x, t) = ϑ±t (x, t)− cεϑ±xx(x, t) + p(x)ϑ±x (x, t) + q(x)ϑ±(x, t)

= (max{φt(x, t), ψt(x, t)} ± ut(x, t))− cε(max{φxx(x, t),
u0xx(x), ψxx(x, t)} ± uxx(x, t))+
p(x)

(
max{u0x(x, t),max{φx(x, t), ψx(x, t)}} ± ux(x, t)

)
+

q(x)
(
q−1||f ||+ max{u0(x),max{φ(x, t), ψ(x, t)}} ± u(x, t)

)
≥ 0

since cε ≥ 0, p(x) ≥ p∗ > 0 and q(x) ≥ q > 0. which implies that

Lϑ±(x, t) ≥ 0

Hence by maximum principle we obtain:

ϑ±(x, t) ≥ 0, ∀(x, t) ∈ D̄

which gives the required stability estimate

u(x, t) ≤ q−1||f ||+ max{u0(x),max{φ(x, t), ψ(x, t)}}

Lemma 4: The bound on the derivative of the solution u(x, t) of
the problem in (5)-(6) with respect to x is given by:∣∣∣∣∂iu(x, t)

∂xi

∣∣∣∣ ≤ C
(
1 + c−iε e

−p∗(1−x)/cε
)
, ∀(x, t) ∈ D̄, i = 0, 1, 2, 3, 4.

Proof: See on [11].

3. FORMULATION OF NUMERICAL SCHEME

3.1. SPATIAL DISCRETIZATION. The theoretical basis of non-
standard discrete modeling method is based on the concept of ‘ex-
act’ and ‘best’ finite difference schemes. In [18], Mickens pre-
sented techniques for constructing non-standard finite difference
methods. According to Mickens’s rules, to construct a discrete
scheme, denominator function for the discrete derivatives must be
expressed in terms of more complicated functions of step sizes than
those used in the standard or classical procedure. These com-
plicated denominator functions constitutes a general property of
these schemes, which is useful for constructing the reliable scheme
for such problems. On the spatial domain [0, 1], we introduce the
equidistant meshes with uniform mesh length ∆x = h such that
ΩN
x = {xi = x0 + ih, i = 0, 1, ..., N, x0 = 0, xN = 1, h = 1/N}

where N is the number of mesh points in spatial direction. For the
problem in (5), we consider the sub-equation which is influenced by
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the spatial derivative i.e.

−cε
d2u(x)

dx2
+ p(x)

du(x)

dx
= 0 (10)

Then using the finite difference scheme as

−cε
Ui+1 − 2Ui + Ui−1

γ2
i

+ p(xi)
Ui − Ui−1

h
= 0 (11)

we calculate for the denominator function γ2
i using the following

procedures. First we rewrite the equation (10) equivalently as a
system of two first order coupled differential equations as

du

dx
= y, (12)

dy

dx
=
p(x)

cε
y (13)

which implies y = exp
(p(x)
cε
x
)
, so we have yi = exp

(p(xi)
cε
xi
)
.

By applying first order difference scheme for (12) as:

yi =
Ui+1 − Ui

h
(14)

then solving for γ2
i from (11) we obtain:

γ2
i =

hcε
p(xi)

(
exp

(hp(xi)
cε

)
− 1
)

By using the denominator function γ2
i in to the main scheme, we

obtain the difference scheme as:

Ut(xi, t)−cε
Ui+1(t)− 2Ui(t) + Ui−1(t)

γ2
i

+ p(xi)
Ui(t)− Ui−1(t)

h
+ q(xi)Ui(t) = f(xi, t)

where γ2
i is defined above and it is a function of cε, p(xi) and h. At

this stage the problem in (5)-(6) reduces to semi discrete form as

LhUi(t) ≡
dUi(t)

dt
− cε

Ui+1(t)− 2Ui(t) + Ui−1(t)

γ2
i

+ p(xi)
Ui(t)− Ui−1(t)

h
+ q(xi)Ui(t) = fi(t)

(15)

together with the semi-discrete boundary conditions and initial con-
dition:

U0(t) = φ(0, t), UN(t) = ψ(1, t) and Ui(0) = u0(xi) (16)
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The above system of equations of initial value problems in (15)-(16)
can be written in compact form as:

dUi(t)

dt
+ AUi(t) = Fi(t) (17)

Here A is a tridiagonal matrix of N −1×N −1 and Ui(t) and Fi(t)
are N − 1 column vectors. The entries of A and F are given as:

Aii =
2cε
γ2
i

+
p(xi)

h
+ q(xi), i = 1, 2, ..., N − 1

Aii+1 = − cε
γ2
i

, i = 1, 2, ..., N − 2

Aii−1 = − cε
γ2
i

− p(xi)

h
, i = 2, ..., N − 1

and

F1(t) = f1(t) +

(
cε
γ2

1

+
p(x1)

h

)
φ(0, t),

Fi(t) = fi(t), i = 2, 3, ..., N − 2

FN−1(t) = fN−1(t) +

(
cε

γ2
N−1

)
ψ(1, t)

respectively.
Now we need to show the semi-discrete operator Lh also satisfies
the maximum principle and the uniform stability estimate.

Theorem 3.1: The operator defined by the discrete scheme in (17)
satisfies a semi-discrete maximum principle.i.e. Suppose U0(t) ≥
0, UN(t) ≥ 0. Then LhUi(t) ≥ 0,∀i = 1, 2, ..., N − 1 implies that
Ui(t) ≥ 0,∀i = 0, 1, ..., N.

Proof: Suppose there exist p ∈ {0, 1, ..., N} such that Up(t) =
min0≤i≤N Ui(t). Suppose that Up(t) < 0 which implies p 6= 0, N .
Also we have Up+1 − Up > 0 and Up − Up−1 < 0. Now we have

LhUp(t) =
dUp(t)

dt
− cε

Up+1(t)− Up(t)− (Up(t)− Up−1(t))

γ2
p

+ pp
Up(t)− Up−1(t)

h
+ qpUp(t) < 0

using the assumption, we obtain LhUi(t) < 0 for i = 1, 2, ..., N − 1.
Thus the supposition Ui(t) < 0, i = 0, 1, ..., N is wrong.
Hence Ui(t) ≥ 0,∀i = 0, 1, ..., N
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Lemma 5: The solution Ui(t) of the semi-discrete problem in (17)
satisfy the following bound.

|Ui(t)| ≤ q−1 max|LhUi(t)|+ max{|u0(xi)|,max{φ(xi, t), ψ(xi, t)}}

Proof: Let p = q−1 max|LhUi(t)| + max{|u0(xi)|, max{φ(xi, t),
ψ(xi, t)}} and define the barrier function ϑ±i (t) by

ϑ±i (t) = p± Ui(t) (18)

At the boundary points we have

ϑ±0 (t) = p± U0(t) = p± φ(0, t) ≥ 0

ϑ±N(t) = p± UN(t) = p± ψ(1, t) ≥ 0

On the discretized domain 0 < i < N , we have

Lhϑ±i (t) =
d
(
p± Ui(t)

)
dt

− cε
(p± Ui+1(t)− 2(p± Ui(t)) + p± Ui−1(t)

γ2

)
+ pi

(p± Ui(t)− p± Ui−1(t)

h

)
+ qi(p± Ui(t))

= qip± LhUi(t)

= qi
(
q−1 max|LhUi(t)|+max{|u0(xi)|,max{φ(xi, t), ψ(xi, t)}}

)
± fi(t) ≥ 0, since qi ≥ q.

From theorem (3.1), we obtain ϑ±i (t) ≥ 0, ∀(xi, t) ∈ Ω̄N × Λ.
The proof is completed.

3.2. ERROR ESTIMATE FOR SEMI-DISCRETE SCHEME.

Let u(xi, t) and Ui(t) are denoted for the exact and the spatial
direction approximate semi-discrete solution respectively.
Next let us analyze these spatial discretization for convergence. we
proved above the semi-discrete operator Lh satisfy the maximum
principle and the uniform stability estimate.
Let define the forward and backward finite differences in space as:

D+v(xi, t) =
v(xi+1, t)− v(xi, t)

h
, D−v(xi, t) =

v(xi, t)− v(xi−1, t)

h

respectively and the second order finite difference operator as:

δ2v(xi, t) = D+D−v(xi, t) =
D+v(xi, t)−D−v(xi, t)

h

Theorem 3.2: Let the coefficients functions p(x), q(x) and f(x, t)
in (5) be sufficiently smooth functions so that u(x, t) ∈ C4[0, 1] ×
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[0, T ]. Then the semi-discrete solution Ui(t) of the problem (5) -
(6) satisfies

|Lh
(
u(xi, t)− Ui(t)

)
| ≤ Ch

(
1 + sup

0≤i≤N

exp
(
− p∗(1− xi)/cε

)
c3
ε

)
(19)

Proof: We consider first∣∣Lh(u(xi, t)− Ui(t))∣∣ = ∣∣Lhu(xi, t)− LhUi(t)∣∣
≤ C

∣∣∣∣− cε(uxx(xi, t)− D+
xD
−
x h

2

γ2
i

u(xi, t)
)

+ pi
(
ux(xi, t)−D−x u(xi, t)

)∣∣∣∣
≤ Ccε

∣∣∣∣uxx(xi, t)−D+
xD
−
x u(xi, t)

∣∣∣∣
+ Ccε

∣∣∣∣(h2

γ2
i

− 1
)
D+
xD
−
x u(xi, t)

∣∣∣∣+ Ch
∣∣uxx(xi, t)∣∣

≤ Ccεh2
∣∣uxxxx(xi, t)∣∣+ Ch

∣∣uxx(xi, t)∣∣
Above used estimate cε

∣∣h2
γ2i
−1
∣∣ ≤ Ch is based on the non-standard

denominator function behavior used in [3].
Let define ρ = pih/cε, ρ ∈ (0,∞). Then

cε

∣∣∣∣h2

γ2
i

− 1

∣∣∣∣ = pih

∣∣∣∣ 1

exp(ρ)− 1
− 1

ρ

∣∣∣∣ =: pihQ(ρ).

then we have

Q(ρ) =
exp(ρ)− 1− ρ
ρ(exp(ρ)− 1)

and from this we have

lim
ρ→0

Q(ρ) =
1

2
, lim

ρ→∞
Q(ρ) = 0.

Therefore

Q(ρ) ≤ C, ρ ∈ (0,∞)

So, the error estimate becomes

|Lh
(
u(xi, t)− Ui(t)

)
| ≤ Ccεh

2|uxxxx(xi, t)|+ Ch|uxx(xi, t)| (20)
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From (20) and boundedness of derivatives of solution in lemma (4),
we obtain:∣∣Lh(u(xi, t)− Ui(t)

)∣∣ ≤ Ccεh
2

∣∣∣∣1 + c−4
ε exp

(−p∗(1− xi)
cε

)∣∣∣∣
+ Ch

∣∣∣∣1 + c−2
ε exp

(−p∗(1− xi)
cε

)∣∣∣∣
≤ Ch

(
1 + sup

x∈(0,1)

exp
(−p∗(1−x)

cε

)
c3
ε

)
,

since c−2
ε ≤ c−3

ε

Lemma 6: For a fixed mesh and for ε→ 0, it holds

lim
cε→0

max
1≤j≤N−1

exp
(−α(1−xj)

cε

)
cmε

= 0, m = 1, 2, 3, ... (21)

where xj = jh, h = 1/N,∀j = 1, 2, ..., N − 1

Proof: Consider the partition [0, 1] := {0 = x0 < x1 < ... <
xn−1 < xn = 1} for the interior grid points, we have

max
1≤j≤n−1

exp(−αxj/cε)
cmε

≤ exp(−αx1/cε)

cmε
=

exp(−αh/cε)
cmε

and

max
1≤j≤n−1

exp(−α(1− xj)/cε)
cmε

≤ exp(−α(1− xn−1)/cε)

cmε

=
exp(−αh/cε)

cmε
,

since x1 = h, 1 − xn−1 = h then application of L’Hospital’s rule
gives

lim
cε→0

exp(−αh/cε)
cmε

= lim
p=1/cε→∞

pm

exp(αhp)

= lim
p=1/cε→∞

m!

(αh)m exp(αhp)
= 0

this shows the proof is completed.

Theorem 3.3: Under the hypothesis of boundedness of semi-
discrete solution, lemma 6 and theorem 3.2 above, the semi-discrete
solution satisfy the following bound.

sup
0<cε�1

‖u(xi, t)− Ui(t)‖ΩN×Λ≤ CN−1 (22)
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Proof: Immediate result from boundedness of solution, lemma (6)
and theorem (3.2) will give the required estimates.

3.3. DISCRITIZATION IN TEMPORAL DIRECTION.

On the time domain [0, T ], we introduce the discretization with
time step ∆tj = tj+1 − tj, j = 0, 1, 2, ...,M such that ΛM = ΩM

t

where M denotes the number of mesh in time direction. Let Ui,j
is denoted for the approximate solution of the problem. At this
stage we use low order numerical method to discretize the system
of initial value problems in (17) using special type of Runge-Kutta
method developed by Bogacki and Shampine in 1989 with order
two and three implicit given in [24],[25]. First rewrite (17) as the
form:

dUi(t)

dt
= f

(
t, Ui(t)

)
with the initial condition U(xi, 0) = u0(xi), i = 0, 1, 2, ..., N , here
f
(
t, Ui(t)

)
= −AUi(t)+Fi(t) so for each j = 1, 2, ...,M we construct

the scheme as:

k1 = f(tj, Ui,j),

k2 = f(tj +
1

2
∆tj, Ui,j +

1

2
∆tjk1),

k3 = f(tj +
3

4
∆tj, Ui,j +

3

4
∆tjk2),

U∗i,j+1 = Ui,j +
2

9
∆tjk1 +

1

3
∆tjk2 +

4

9
∆tjk3,

k4 = f(tj + ∆tj, U
∗
i,j+1),

Ui,j+1 = Ui,j +
7

24
∆tjk1 +

1

4
∆tjk2 +

1

3
∆tjk3 +

1

8
∆tjk4,

for i = 1, 2, ..., N − 1.
The difference between U∗i,j+1 and Ui,j+1 can be used to adapt the
step size. It is stated in [14],[25] that, for j = 1, 2, ...,M the local
approximation Ui,j+1 to Ui(tj+1) has third order ( i.e. O(∆tj)

3) ac-
curacy.
Let ∆t = max0≤j≤M ∆tj then, we have the following lemma.

Lemma 7: From the above approximation method in temporal
direction, the global error estimates in this direction are given by

‖Ej+1‖∞ = ‖Ui(tj+1)− Ui,j+1‖ΩN×ΛM≤ C(∆t)2
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where Ej+1 is the global error in the temporal direction at (j+ 1)th

time level.
Proof: Using the local error estimate upto jth time step, we obtain
the global error estimate at (j + 1)th time step.

‖Ej+1‖∞ =

j∑
l=1

‖el‖∞, j ≤M,

≤ ‖e1‖∞+‖e2‖∞+...+ ‖ej‖∞, ‖el‖∞= Cl(∆tj)
3

≤ C1(j∆t)(∆t)2

≤ C1T (∆t)2, sincej∆t ≤ T

≤ C(∆t)2

Assume that C(∆t)2 ≤ N−1 for comparable number of mesh points,
then using the boundedness of the solution and lemma (3.3) implies

sup
0<cε�1

‖Ui(tj+1)− Ui,j+1‖ΩN×ΛM≤ CN−1 (23)

this shows that the discretization in temporal direction is consistent
and global error is bounded.
Now we use (23) to prove the parameter uniform convergence of
the fully discrete scheme as:

sup
0<cε�1

‖u(xi, tj)− Ui,j‖ΩN×ΛM ≤ sup
0<cε�1

‖u(xi, tj)− Ui(tj)‖ΩN×ΛM

+ sup
0<cε�1

‖Ui(tj)− Ui,j‖ΩN×ΛM

(24)

Using boundedness of the solution, theorem 3.3, lemma 7 and equa-
tion (23) we obtain:

sup
0<cε�1

‖u(xi, tj)− Ui,j‖ΩN×ΛM≤ CN−1 (25)

Remark: The inequality in (25) shows the parameter uniform con-
vergence of the proposed scheme with order O(h), for h = N−1.

4. NUMERICAL RESULTS AND DISCUSSION

To confirm the established theoretical results in this study, we
perform some experiments using the proposed numerical scheme
on the problem of the form given in (2) - (3).

Example 1: In this example, we take the functions a(x) = 2 −
x2, α(x) = 2, β(x) = x− 3, ω(x) = 1, f(x, t) = 10t2 exp(t)x(1−
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Table 1. Example 1’s maximum absolute error for
the proposed method and results in [20] and [13] for
δ = 0.6ε, and η = 0.5ε.

ε N=32 N=64 N=128 N=256 N=512
↓ M=60 M=120 M=240 M=480 M=960

Our
Scheme
2−6 9.7515e-03 4.8801e-03 2.4414e-03 1.2211e-03 6.1064e-04
2−8 9.7071e-03 4.8578e-03 2.4303e-03 1.2155e-03 6.0785e-04
2−10 9.6961e-03 4.8523e-03 2.4275e-03 1.2141e-03 6.0716e-04
2−12 9.6933e-03 4.8509e-03 2.4268e-03 1.2138e-03 6.0698e-04
2−14 9.6927e-03 4.8506e-03 2.4266e-03 1.2137e-03 6.0694e-04
2−16 9.6925e-03 4.8505e-03 2.4266e-03 1.2137e-03 6.0693e-04
2−18 9.6924e-03 4.8505e-03 2.4266e-03 1.2137e-03 6.0693e-04
2−20 9.6924e-03 4.8505e-03 2.4266e-03 1.2137e-03 6.0693e-04
Result
in[20]
2−6 1.0012e-02 6.0741e-03 3.5186e-03 1.9947e-03 1.1196e-03
2−8 9.9898e-03 6.0284e-03 3.4715e-03 1.9503e-03 1.0808e-03
2−10 9.9962e-03 6.0278e-03 3.4695e-03 1.9481e-03 1.0781e-03
2−12 9.9986e-03 6.0283e-03 3.4697e-03 1.9481e-03 1.0781e-03
2−14 9.9992e-03 6.0284e-03 3.4698e-03 1.9482e-03 1.0781e-03
2−16 9.9993e-03 6.0285e-03 3.4698e-03 1.9482e-03 1.0781e-03
2−18 9.9994e-03 6.0285e-03 3.4698e-03 1.9482e-03 1.0781e-03
2−20 1.0000e-02 6.0282e-03 3.4696e-03 1.9483e-03 1.0781e-03
Result
in [13]
2−6 7.3811e-03 4.3778e-03 2.1211e-03 1.0929e-03 5.5057e-04
2−8 7.4985e-03 4.4456e-03 2.3806e-03 1.2446e-03 5.7770e-04
2−10 7.5020e-03 4.4954e-03 2.4363e-03 1.2530e-03 6.2975e-04
2−12 7.4982e-03 4.4966e-03 2.4448e-03 1.2716e-03 6.4618e-04
2−14 7.4970e-03 4.4961e-03 2.4450e-03 1.2728e-03 6.4893e-04
2−16 7.4966e-03 4.4959e-03 2.4450e-03 1.2728e-03 6.4909e-04
2−18 7.4966e-03 4.4958e-03 2.4449e-03 1.2728e-03 6.4909e-04
2−20 7.4965e-03 4.4958e-03 2.4449e-03 1.2728e-03 6.4909e-04

x), u0(x) = 0, φ(x) = ψ(x) = 0 and T = 3.

Example 2: In this example, we take the functions a(x) = 2 −
x2, α(x) = 1 + x, β(x) = x2 + 1 + cos(πx), ω(x) = 3, f(x, t) =
sin(πx), u0(x) = 0, φ(x) = ψ(x) = 0 and T = 3.

Exact solution is not available for these two problems, so the max-
imum point-wise errors are calculated by using the double mesh
principle given by:

EN,M
ε,δ,η = max

1≤i≤N−1,1≤j≤M−1

∣∣UN,M
i,j − U2N,2M

i,j

∣∣
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Table 2. Comparison of results for Example 1’s
maximum absolute error and rate of convergence.

Scheme N=64 N=128 N=256 N=512
↓ M=120 M=240 M=480 M=960
Our Scheme
EN,M 4.8801e-03 2.4414e-03 1.2211e-03 6.1064e-04
rN,M 0.9992 0.9995 0.9998 0.9999
Result in[20]
by upwind
EN,M 9.2021e-03 4.9863e-03 2.6885e-03 1.4245e-03
rM,N 0.8840 0.8912 0.9163 0.9178
Result in[20]
by Midpt.
EN,M 6.5942e-03 3.8199e-03 2.1180e-03 1.1399e-03
rN,M 0.7877 0.8508 0.8938 0.9107
Result in[13]
by B-spline
EN,M 4.4966e-03 2.4450e-03 1.2728e-03 6.4609e-04
rN,M 0.8791 0.9418 0.9715 0.9859

Table 3. Example 2’s maximum absolute error for
the proposed method and result in [13] for δ = 0.6ε,
and η = 0.5ε.

ε N=16 N=32 N=64 N=128 N=256
↓ M=30 M=60 M=120 M=240 M=480

Our
Scheme
2−6 9.2896e-03 5.7917e-03 3.1887e-03 1.6682e-03 8.5261e-04
2−8 9.3200e-03 5.8078e-03 3.1969e-03 1.6723e-03 8.5467e-04
2−10 9.3277e-03 5.8119e-03 3.1990e-03 1.6733e-03 8.5519e-04
2−12 9.3296e-03 5.8129e-03 3.1995e-03 1.6736e-03 8.5532e-04
2−14 9.3300e-03 5.8132e-03 3.1996e-03 1.6737e-03 8.5535e-04
2−16 9.3302e-03 5.8132e-03 3.1996e-03 1.6737e-03 8.5536e-04
2−18 9.3302e-03 5.8132e-03 3.1997e-03 1.6737e-03 8.5536e-04
2−20 9.3302e-03 5.8132e-03 3.1997e-03 1.6737e-03 8.5536e-04
Result
in [13]
2−6 1.5094e-02 7.5604e-03 3.8074e-03 1.9127e-03 9.5839e-04
2−8 1.5222e-02 7.6300e-03 3.8341e-03 1.9259e-03 9.6541e-04
2−10 1.5237e-02 7.6373e-03 3.8377e-03 1.9274e-03 9.6613e-04
2−12 1.5240e-02 7.6385e-03 3.8382e-03 1.9277e-03 9.6624e-04
2−14 1.5240e-02 7.6387e-03 3.8383e-03 1.9277e-03 9.6627e-04
2−16 1.5241e-02 7.6388e-03 3.8384e-03 1.9277e-03 9.6627e-04
2−18 1.5241e-02 7.6388e-03 3.8384e-03 1.9277e-03 9.6627e-04
2−20 1.5241e-02 7.6388e-03 3.8384e-03 1.9277e-03 9.6627e-04
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Table 4. Example 2’s maximum absolute error and
rate of convergence by our scheme and result in [13].

ε N=16 N=32 N=64 N=128 N=256
↓ M=30 M=60 M=120 M=240 M=480

Our
Scheme
EN,M 9.3302e-03 5.8132e-03 3.1997e-03 1.6737e-03 8.5536e-04
rN,M 0.6826 0.8614 0.9349 0.9685 0.9844
Result
in[13]
EN,M 1.5241e-02 7.6388e-03 3.8384e-03 1.9277e-03 9.6627e-04
rN,M 0.9924 0.9925 0.9925 0.9964 0.9981

where N and M are the number of mesh points in x and t direction
respectively. UN,M

i are the computed solution of the problem using

N,M mesh numbers and U2N,2M
2i,2j are computed solution on double

number of mesh points 2N, 2M by adding the mid points xi+1/2 =
xi+1+xi

2
and tj+1/2 =

tj+1+tj
2

into the mesh points . For any value of
the mesh pointN andM the ε-uniform error estimate are calculated
using the formula

EN,M = max
ε,δ,η
|EN,M

ε,δ,η |

The rate of convergence of the method is calculated using the for-
mula given by

rN,Mε,δ,η = log2

(
EN,M
ε,δ,η /E

2N,2M
ε,δ,η

)
=

log
(
EN,M
ε,δ,η

)
− log

(
E2N,2M
ε,δ,η

)
log 2

and the ε− uniform rate of convergence is calculated using the
formula given by

rN,M = log2

(
EN,M/E2N,2M

)
=

log
(
EN,M

)
− log

(
E2N,2M

)
log 2

The solution of Examples 1 and 2 above has a boundary layer at
the right side of the x-domain (see figures in 1, 2 and 3). The com-
puted solutions Ui,j for different values of perturbation parameters
are also shown in figures 2 and 3, and the effect of delay and ad-
vance parameters is shown in figures 4 by using different values
for delay and advance parameters to our test problems. The nu-
merical results displayed in tables 1 and 4 clearly indicate that the
proposed method based on MOL by using a non-standard finite dif-
ference method in x direction with implicit Runge-Kutta method
in t direction is parameter-uniformly convergent. From the results
in tables 1 and 2, we observe that the maximum point-wise error
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Figure 1. Numerical solution at different time step
on left hand side Example 1 and Example 2 on right
hand side, when ε = 2−4, δ = 0.6ε, η = 0.5ε.

Figure 2. The numerical solution of Example 1
when ε = 2−2, on left hand side and when ε = 2−20,
on right hand side for δ = 0.6ε, η = 0.5ε resp. ex-
hibiting a layer on the right side of the domain.

EN,M
ε,δ,η decreases as N increases for each value of ε. We see that

the maximum point-wise error is stable as ε → 0 for each N,M .
Using these two examples we confirm that the proposed numerical
method is more accurate, stable and ε− uniform convergent with
rate of convergence almost one.
Numerical results shows the parameter-uniformness of the proposed
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Figure 3. The numerical solution of Example 2
when ε = 2−2, on left hand side and when ε = 2−20,
on right hand side for δ = 0.6ε, η = 0.5ε resp. ex-
hibiting a layer on the right side of the domain.

Figure 4. On the left hand side, numerical solution
of Example 1 for ε = 2−1 and for different δ = η =
0, 0.4ε, 0.6ε in increasing order and on the right hand
side Example 2’s numerical solution for ε = 2−1 and
for different δ = η = 0, 0.4ε, 0.6ε in increasing order
on the figures.

scheme on uniform mesh. The results by this method is better than
that obtained in [13], [20] (see table 1− 4 ).

5. CONCLUSIONS

A numerical method is developed to solve a singularly perturbed
parabolic differential-difference equation with both delay and ad-
vance parameters that the solution exhibit a boundary layer. This
method is based on method of line that constitute the non-standard
finite difference for the spatial discretization and the Runge-Kutta
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order 2 and 3 implicit method in the temporal direction for the
system of initial value problem resulting from the spatial discretiza-
tion. Stability and convergence analysis of the proposed scheme is
proved. The applicability of the proposed scheme is investigated
by taking two examples. The effect of the perturbation parameter,
the delay and advance parameters on the solution of the problem
are shown by using figures. The method is shown to be uniformly
convergent i.e., independent of perturbation parameter with order
of convergence one. The performance of the proposed scheme is in-
vestigated by comparing the results with prior studies. It has been
found that the proposed method gives more accurate and stable
numerical results.
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