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ON THE DERIVATION OF A NEW FIFTH-ORDER

IMPLICIT RUNGE-KUTTA SCHEME FOR STIFF

PROBLEMS IN ORDINARY DIFFERENTIAL EQUATION

M.E. EHIEMUA1 AND G.U. AGBEBOH

ABSTRACT. We present here, a new approach to the Radau
method of solving stiff problems in Ordinary Differential Equa-
tion (ODE). This new implicit Runge-Kutta Scheme is derived
for order 5, and the formular so derived was implemented, using
Maple-18 package, and the results were compared with existing
Radau Method. The performance of the method has improved
results over those of Radau, on comparison for consistency con-
vergence and stability.
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1. INTRODUCTION

According to Butcher [1], initial value problems for ordinary dif-
ferential equation occur very frequently in a variety of real life
problems such as Control theory, Chemical engineering, Biology,
Electrical and Civil engineering. Several numerical methods have
been designed to solve the problems arising from the above areas
of human endeavour. The ordinary differential equation:

y
′
(x) = f (x, y(x)) ; (η) = y0; a ≤ x ≤ b (1)

has often been used to profile solution, when the need arises. Such
a solution given as y(x) can be a vector-valued function, going from
R−→Rm,where m is the dimension of the differential equation as-
sociated with the problem. Sometime y/(x) does not depend on
x, except as a parameter of y(x). In such cases (1), which is non-
autonomous can be made autonomous as shown below;

y
′
(x) = f (y(x)) ; (η) = y0; a ≤ x ≤ b (2)
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Lambert [2] acknowledged that problem of this nature, consists of
a first order system of Ordinary Differntial Equation, together with
a set of conditions which are all specified at the same initial point.
The evaluation of accurate numerical methods for solving initial-
value problems in terms of the rate at which the error approaches
zero, when the step size h approaches zero have been developed.

Butcher [3], however revealed that this characterization of accu-
racy is not always informative enough, because it neglects the fact
that the local truncation error of any one-step or multistep method
also depends on higher-order derivative of the solution. In some
cases, these derivatives can be quite large in magnitude, even when
the solution itself is relatively small, which requires that h be made
particularly small in order to achieve a reasonable accuracy. The
nature of the ordinary differential equation is very important in the
determination of the method of solution. For instance if the matrix
is strictly lower triangular (i.e., the internal stages can be calcu-
lated without depending on the later stages), then the method is
called an explicit method, if the internal stages depend not only on
the previous stages but on the current stage and later stages, the
method is called an implicit method.

Varah [4] acknowledged that the importance of the implicit method
is seen in the fact that they can produce high orders of accuracy
which are superior to those of explicit methods. This makes it more
suitable for solving stiff problems. Butcher and Hojjati [5] observed
that there is no agreed formal definition of what stiffness is, but
stiff problem can best be recognized from the behaviour they can
display when approximated by standard numerical methods. How-
ever, according to Ababneh, Ahmad and Ismail [6], stiff equations
have proven to be so important to be ignored and too expensive
to overpower. They are too important because they occur rather
frequently in physical problems, and so expensive to overpower be-
cause of their sizes and difficulty they present to classical methods,
no matter how great an improvement in computing capability be-
comes available.

In all computational methods, the use of a scheme for numerical
solution of the initial value problem will generate errors at some
stages of the computation due to the inaccuracy inherent in the
formular and the arithmetic operations adopted during computer
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implementation. The magnitude of the error determines the degree
of accuracy and stability of the solution, thus, it is important that
numerical solution approximates the exact solution and the numer-
ical solution tends to the exact solution as the step size tends to
zero as observed by Jain and Iyengar [7].

Shepley [8] iterates that if the step length used is too small, exces-
sive computation time and round-off error results. He also observed
that it is reasonable to consider the opposite case and ask whether
there is any upper bound on step length. Often there is such and it
is reached when the method becomes numerically unstable; i.e., the
numerical solution produced, no longer corresponds quantitatively
with the exact solution. According to Lambert [9], the traditional
criterion for ensuring that a method is stable is called ’Absolute Sta-
bility’, and this analysis is carried out by subjecting the method to
a linear test equation;

y
′
= λy λεC; Re(λ) < 0 (3)

Furthermore, Dekker and Verwer [10] emphasized that applying a
Runge-Kutta method to Dahlquist’s test equation y

′
=λ y reduces

to an approximation y1=R(λh)y0. where R(λh) is a polynomial
in the case of explicit one-step methods, and a rational function in
general. However in this paper, we construct a new implicit scheme
in the Radau family of order 5 that can be used to solve stiff initial
value problem as will be seen in the next section.

2. DERIVATION OF METHOD

The general R-stage implicit Runge-Kutta method is defined by:

yn+1 − yn = hφ(xn, yn, h) (4)

hφ(xn, yn, h) =
R∑
r

brkr (5)

kr = f

(
xn + hcr, yn +

R∑
j=1

arjkj

)
i = 1, 2, 3..R (6)

cr =
R∑

j=1

arj, i = 2, 3..R (7)

From (6), it can be seen that kr is not defined explicitly but by a set
of R implicit equations. As a result, the derivation of such method
is rather complicated, but can be taken care of by a procedure
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designed by Butcher. Since we are deriving a three stage method
in the Radau’s family, we set r=3 , and the order is s=(2r-1). For
convenience, we shall be focusing on the derivatives of y alone, and
the necessary Taylor series expansion is given as;

φT (x, y, h) = f+
h

2
ffy+

h2

6
(f 2fyy+ff

2
y )+

h3

24
(f 3fyyy+4f 2fyfyy+ff

3
y )

+
h4

120
(f 4fyyyy + 7f 3fyfyyy + 11f 2f 2

y fyy + 4f 3f 2
yy + ff 4

y ) (8)

From (6), and with r=3 , we obtain:

kr = (x+ hcr, y + h(ar1k1 + ar2k2 + ar3k3)) (9)

Expanding (9) as a Taylor series about (y(x)), i.e., retaining all
components of y derivatives only, we have:

kr = f+h((ar1k1 +ar2k2 +ar3k3)fy +
h2

2
(ar1k1 +ar2k2 +ar3k3)

2fyy

+
h3

6
(ar1k1+ar2k2+ar3k3)

3fyyy+
h4

24
(ar1k1+ar2k2+ar3k3)

4fyyyy

(10)
Now, since (9) and (10) are implicit, we cannot proceed by succes-
sive substitution as in the case of the derivation of explicit methods.
In this situation, we assume, according to Butcher, that the solution
for k1,k2 and K3 may be expressed in the form:

kr = Ar + hBr + h2Cr + h3Dr + h4Er (11)

Substituting for kr by (12) in (11), we obtain:

Ar+hBr+h2Cr+h3Dr+h4Er = f+(h(ar1(A1+hB1+h2C1+h3D1)

+ar2(A2 + hB2 + h2C2 + h3D2) + ar3(A3 + hB3 + h2C3

+ h3D3))fy +
h2

2
((ar1(A1 + hB1 + h2C1)

+ ar2(A2 + hB2 + h2C2 + ar3(A3 + hB3 + h2C3))
2fyy

+
h3

6
(ar1(A1 + hB1) + ar2(A2 + hB2) + ar3(A3 + hB3))

3fyyy

+
h3

6
(ar1A1 + ar2A2 + ar3A3)

4fyyyy (12)

On expanding (12) and equating power h , we obtain:

Ar = f

Br = (A1ar1 + A2ar2 + A3ar3)fy
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Cr = (B1ar1 +B2ar2 +B3ar3)fy +
1

2
(A1ar1 + A2ar2 + A3ar3)

2fyy

Dr = (C1ar1 + C2ar2 + C3ar3)fy + (A1ar1 + A2ar2 + A3ar3)

(B1ar1 +B2ar2 +B3ar3)fyy +
1

6
(A1ar1 + A2ar2 + A3ar3)

3fyyy

Er = (D1ar1 +D2ar2 +D3ar3)fy +
1

2
(2(A1ar1 + A2ar2 + A3ar3)

(C1ar1 + C2ar2 + C3ar3) + (B1ar1 +B2ar2 +B3ar3)
2)fyy

+
1

2
(A1ar1 + A2ar2 + A3ar3)

2(B1ar1 +B2ar2 +B3ar3)
2fyyy

+
1

24
(A1ar1 + A2ar2 + A3ar3)

4fyyyy (13)

Now (13) is seen to be explicit and can be solved by successive
substitution. Then making use of (7), we have the following:

Ar = f

Br = crffy

Cr = (c1ar1 + c2ar2 + c3ar3)ff
2
y +

1

2
ar2f 2fyy

Dr = ((ar1(c1a11 + c2a12 + c3a13) + ar2(c1a21 + c2a22 + c3a23)

+ ar3(c1a31 + c2a32 + c3a33)))ff
3
y

+
1

2

(
(c21ar1 + c22ar2 + c23ar3) + 2cr(c1ar1 + c2ar2 + c3ar3)

)
f 2fyfyy

+
1

6
c3rf

3fyyy

Er = (c1a11 + c2a12 + c3a13)(a11ar1 + a21ar2 + a31ar3)

+(c1a21 + c2a22 + c3a23)(a12ar1 + a22ar2 + a32ar3)

+ (c1a31 + c2a32 + c3a33)(a13ar1 + a23ar2 + a33ar3))ff
4
y

+(ar1(c
2
1a11 + c22a12 + c23a13 + 2c1(c1a11 + c2a12 + c3a13))

+ar2(c
2
1a21 + c22a22 + c23a23 + 2c2(c1a21 + c2a22 + c3a23))

+ar3(c
2
1a31 + c22a32 + c23a33 + 2c3(c1a31 + c2a32 + c3a33))

+2cr(ar1(c1a11 + c2a12 + c3a13) + ar2(c1a21 + c2a22 + c3a23)

+ar3(c1a31 + c2a32 + c3a33) + (c1ar1 + c2ar2 + c3ar3)
2)f 2f 2

y fyy

+
1

6
(c31ar1 + c32ar2 + c33ar3 + 3c2r(c1ar1 + c2ar2 + c3ar3))f

3fyfyyy (14)

+
1

2
(cr(c

2
1ar1 + c22ar2 + c23ar3)f

3f 2
yy +

1

24
c4rf

4fyyyy
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Using (11), the expression φ(xn, yn, h) defined by (5) may be written
as:

φ(xn, yn, h) = (b1A1 + b2A2 + b3A3) + h(b1B1 + b2B2 + b3B3)

+h2(b1C1 + b2C2 + b3C3) + h3(b1D1 + b2D2 + b3D3)

+h4(b1E1 + b2E2 + b3E3) (15)

where the coefficientsAr, Br, Cr, Dr and Er for r=1,2,3 are given by
(14) However, comparing (15) with the Taylor series expansion (8),
we have the following equations:

b1 + b2 + b3 = 1

b1c1 + b2c2 + b3c3 =
1

2

b1c
2
1 + b2c

2
2 + b3c

2
3 =

1

3

b1c
3
1 + b2c

3
2 + b3c

3
3 =

1

4

b1c
4
1 + b2c

4
2 + b3c

4
3 =

1

5
(16)

With c3 = 1and using Maple-18 package to resolve (16), we ob-
tain these values:
b1 = (4

9
+
√
6

36
), b2 = (4

9
−
√
6

36
), b3 = 1

9
;

c1 = (2
5

+
√
6

10
), c2 = (2

5
−
√
6

10
), c3 = 1

The remaining equations with nine unknown constants were solved
with the same Maple-18 package which gives the following ;

a11 =
(

3
10
−
√
6

60

)
a12 =

(√
6
6

)
a13 =

(
1
10
−
√
6

20

)
a21 =

(
6

125
− 29

√
6

750

)
a22 =

(
27
50
− 43

√
6

300

)
a23 =

(
− 47

250
+ 41

√
6

500

)
a31 =

(
33
40
− 11

√
6

120

)
a32 =

(
−3

8
+ 7

√
6

24

)
; a33 =

(
11
20
−
√
6
5

)
which can be put in Butcher array as:
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2
10

+
√
6

10
3
10
−
√
6

60

√
6
6

1
10
−
√
6

20
2
10
−
√
6

10
6

125
− 29

√
6

750
27
50
− 43

√
6

300
− 47

250
+ 41

√
6

500

1 33
40
− 11

√
6

120
−3

8
+ 7

√
6

24
11
20
−
√
6
5

4
9

+
√
6

36
4
9
−
√
6

36
1
9

The Radau 11A quadrature has the formular as:

a11 =
(

11
45
− 7

√
6

360

)
a12 =

(
37
225
− 169

√
6

1800

)
a13 =

(
− 2

225
+
√
6

75

)
a21 =

(
37
225

+ 169
√
6

1800

)
a22 =

(
11
45

+ 7
√
6

360

)
a23 =

(
− 2

225
+
√
6

75

)
a31 =

(
4
9
−
√
6

36

)
a32 =

(
4
9

+
√
6

36

)
; a33 = 1

9

which can also be put in Butcher array as:

2
10
−
√
6

10
11
45
− 7

√
6

360
37
225
− 169

√
6

1800
− 2

225
+
√
6

75
2
10

+
√
6

10
37
225

+ 169
√
6

1800
11
45

+ 7
√
6

360
− 2

225
−
√
6

75

1 4
9
−
√
6

36
4
9

+
√
6

36
1
9

4
9
−
√
6

36
4
9

+
√
6

36
1
9

So the new formular becomes:

yn+1 − yn = h

((
4

9
+

√
6

36

)
k1 +

(
4

9
−
√

6

36

)
k2 +

(
1

9

)
k3

)

3. STABILITY ANALYSIS OF METHOD

The stability of the above method, through Cramer’s rule is a
rational polynomial:

R(z) =
det(I − zA+ zebT )

det(I − zA)
(17)

where b = (b1, b2, ...bs), A = (aij)
s
i,j=1 e = (1, 1, 1...1)

Simplifying (17), and substituting the values of our new method;
(aij)

s
i,j=1 for s = 3, we obtain,

after simplifying the resulting rational function:

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 (18)

We note at this point that the stability function of s-stage Radau
method, given by (s− 1, s),
is the Pade approximation to the exponential function ez . Hence
the stability region can also be constructed by using the rational
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function given by:

R(z) =
Pkz

Pmz
=

k∑
i=0

k!
(k−1)!

(m+k−1)!zi
(m+k)!i!

k∑
i=0

m!
(m−1)!

(m+k−1)!(−z)i
(m+k)!i!

(19)

where k = s− 1 and m = s ,in this case s = 3 i.e., the number of
stages for the Radau’s method is 3

R(z) =

(
1 + 2

5
z + 1

20
z2

1− 3
5
z + 3

20
z2 − 1

60
z3

)
(20)

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 +

1

120
z5 (21)

And with the help of MATLAB, the region of Absolute Stability
(RAS) is given in figure 1. However,in figure 2, when the roots of

Fig. 1. Stability region of method.

(18) are plotted on Figure 1, we observed that the five roots of our
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Fig. 2. Absolute stability of method.

method are within the region of absolute stability: The above is a
clear indication that the method is Absolutely Stable.

4. IMPLEMENTATION OF METHOD

In order to ascertain the suitability of our method, the solution of
some stiff initial value problems were determined by the method,
in comparison with other existing Radau implicit method, of the
same order.

Problem 1: y
′

= −30y; y(0) = 1; 0 ≤ x ≤ 1; with theo-
retical solution e−30x

Problem 2. y
′

= −8y + 8x + 1; y(0) = 2; 0 ≤ x ≤ 1; with
theoretical solution x+ 2e−8x
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TABLE 1: y
′

= −30y; y(0) = 1; 0 ≤ x ≤ 1 Agam and Yahaya (2014)

NEW NEW RADAU RADAU

XN TSOL YN ERROR YN ERROR

0.01 0.74081822 0.74081823 4.538053*10−9 0.74081829 7.154157*10−8

0.02 0.54881164 0.54881164 6.723745*10−9 0.54881174 1.059986*10−7

0.03 0.40656966 0.40656967 7.471609*10−9 0.40656978 1.177885*10−7

0.04 0.30119421 0.30119422 7.380139*10−9 0.30119433 1.163465*10−7

0.05 0.22313016 0.22313017 6.834177*10−9 0.22313027 1.077395*10−7

0.06 0.16529889 0.16529889 6.075459*10−9 0.16529898 9.577852*10−8

0.07 0.12245643 0.12245643 5.250946*10−9 0.12245651 8.278022*10−8

0.08 0.09071795 0.09071796 4.445710*10−9 0.09071802 7.008582*10−8

0.09 0.06720551 0.06720552 3.705146*10−9 0.06720557 5.841096*10−8

0.1 0.04978707 0.04978707 3.049822*10−9 0.04978712 4.807990*10−8

TABLE 2: y
′

= −8y + 8x + 1; y(0) = 2; 0 ≤ x ≤ 1 Agam and Yahaya
(2014)

NEW NEW RADAU RADAU

XN TSOL YN ERROR YN ERROR

0.1 0.9986579 0.9986588 8.298383*10−7 0.9986873 2.938244*10−5

0.2 0.6037930 0.6037938 7.457411*10−7 0.6038194 2.640519*10−5

0.3 0.4814359 0.4814364 5.026248*10−7 0.4814537 1.779722*10−5

0.4 0.4815244 0.4815247 3.011253*10−7 0.4815351 1.066258*10−5

0.5 0.5366313 0.5366314 1.691305*10−7 0.5366373 5.988856*10−6

0.6 0.6164595 0.6164596 9.119432*10−8 0.6164627 3.229212*10−6

0.7 0.7073957 0.7073958 4.780565*10−8 0.7073974 1.692836*10−6

0.8 0.8033231 0.8033231 2.454911*10−8 0.8033240 8.693174*10−7

0.9 0.9014932 0.9014932 1.240946*10−8 0.9014936 4.394429*10−7

1.0 1.0006709 1.0006709 6.195481*10−9 1.0006711 2.193974*10−7

5. ERROR ANALYSIS OF METHOD

Fig. 3. Error analysis of Problem 1.
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Fig. 4. Error analysis of Problem 2.

DISCUSSION

In deriving the above method, we decided to assume an autonomous
situation where only the derivatives of ’y’ were considered. This im-
plies that instead of having the 17 order conditions to be satisfied, it
was reduced to 12 conditions, which made the derivative less costly.
These 12 conditions were eventually compared with the coefficients of
the expanded Taylor series for order 5, to arrive at the new method.
We also observed that from Tables 1 and 2 above, the results from the
new method proved to be better than that in literature. The plots 1
and 2, showing error values against the x-values for the two problems,
revealed that the errors involved in Radau 11A method are higher, when
compared with the new method. However, this new method is very ef-
fective in solving linear initial value problems, whether stiff or non-stiff
in nature with good results that are improvement over those of Radau
II. This is a clear indication that the new method is reliable, consistent
and stable.

CONCLUSION

Through the approach presented in this paper, the new method can be
extended to solve higher order differential equations. The method re-
quires less work with little cost and possesses a gain in efficiency with no
overlapping of results. We can also say that a stiff differential equation
is numerically unstable when the step size is extremely small. Moreover,
stiff differential equations are characterized as those whose exact solu-
tion has a term of the form e−z where ‘z’is a large positive constant.
From tables 1 and 2, it can be seen that the new method outperformed
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over the existing implicit formulas in terms of accuracy and convergence,
as evident by the decrease in error.
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