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A NEW APPROACH FOR FINDING CLOSED FORM

SOLUTION OF NTH ORDER INITIAL VALUE PROBLEMS

S. O. AKINDEINDE

ABSTRACT. This article proposes a new technique for finding
exact solution of N-th order, linear, nonlinear and stiff initial
value problems. By recasting the problem as a system of con-
stant coefficient polynomial ordinary differential equation, the
coefficients of the power series solution is computed iteratively.
The closed form solution is obtained from the truncated series
solution by applying Padé and Laplace-Padé post-processing.
The application of the method to various problems considered
elucidated the simplicity and high accuracy of the proposed ap-
proach.
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1. INTRODUCTION

Initial Value Problems (IVPs) continue to receive research atten-
tions in the literature due to their numerous relevance in modeling
real life problems emanating from physics, engineering and biology.
Quite often, these IVPs do not possess the desired closed form solu-
tion. In the past years, research efforts have been devoted to finding
closed form or semi-analytical or series solution of IVPs. Famous
existing methods to compute power series or semi-analytic solution
of IVP in the literature include Adomian Decomposition Method
(ADM) [2], Variational Iteration Method (VIM) [10], Homotopy
Perturbation Method (HPM) [9] and their various modifications.
These methods have been successfully applied to find series solution
of differential equations in general, see e.g. [8, 11, 18]. However,
their application can be a bit technical and often demands a bit of
extra work to be successfully applied. For instance, computation of
Lagrange multiplier is a convergence criterion for VIM. Likewise,
appropriate choice of initial approximation satisfying the initial or
boundary conditions is a requirement in order to successfully ap-
ply both the ADM and HPM. In addition, like other perturbation
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methods, HPM is not applicable to problems with no small param-
eters. In particular, this turns out to be a serious limitation as
most IVP modeling real life problems do not possess small param-
eters. Moreover the aforementioned methods require a fairly good
computing capability for efficient application.
In view of the aforementioned challenges with existing methods,

there is need to device other methods of computing series solution
of IVP especially in settings where the luxury of computing capa-
bility does not exist. In this article, we propose a new, easier to
implement and efficient method to compute exact solution of N -th
order nonlinear initial value problem (IVP) of the form

y(N)(t) = f(t, y(t), y′(t), y′′(t), . . . , y(N−1)(t)), t ≥ t0, (1)

subject to initial conditions

y(t0) = y0, y
′(t0) = y′0, . . . , y

(N−1)(t0) = y
(N−1)
0 .

We assume that the function f and all its partial derivatives are
continuous on some open interval containing the initial values
y0, y

′
0, . . . , y

N−1
0 so that problem (1) possess a unique solution over

an open interval containing t0.
A blend of power series methods and appropriate convergence

accelerator remain an important recipe for solving IVPs. Therefore,
following [16], the series solution of (1) is computed through simple
recursion and using basic elementary operations. Thereafter, by
subjecting the truncated series solution to Padé or Laplace-Padé
post processing operation, the closed form solution of the IVP is
obtained. We emphasize again that the proposed method, though
simple and straightforward, is devoid of the challenges of the older
existing methods. In terms of accuracy, the method competes well
with famous methods in the literature.

2. SOLUTION METHODOLOGY

The first step in the proposed approach is to recast (1) as a system
of constant coefficient polynomial ordinary differential equation (ODE).
This is achieved by adopting the variable substitutions

y1(t) = y(t), yi(t) = y(i−1)(t), i = 2, . . . , N − 1,

which reduces (1) to a system of first order equations of the form

y′ = F (t,y), y(t0) = y0. (2)

If function F is not already a constant-coefficient polynomial function
at this stage, skillful choice of further variable substitutions reduces F
to a constant-coefficient polynomial function F (y), see Section 3 below.
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We assume without loss of generality that t0 = 0. Note that this choice
is not a restriction on the applicability of the method as the scaling
t → t− t0 can always bring problems with t0 �= 0 to this case.

In the next step we assume power series expansion for all the depen-
dent variables in (2), that is,

y(t) =
N∑
i=0

yit
i; (3)

y′(t) =
N∑
i=0

y′
it
i. (4)

We shall adopt the modified Picard iteration of [16] to compute the
coefficients yi. Therefore, differentiating (3) and appropriately shifting
indexes, we obtained

y′(t) =
d

dt

(
N∑
i=0

yit
i

)
=

N∑
i=0

iyit
i−1 =

N∑
i=0

(i+ 1)yi+1t
i.

Hence comparing the above with (4) it holds
∑N

i=0 y
′
it
i =

∑N
i=0(i +

1)yi+1t
i, which in turn yields a recurrence relation for the coefficients

yi+1 =
y′
i

i+ 1
=

F (yi)

i+ 1
, i = 0, 1, 2, · · · (5)

with y0 = y(0). Finally, using the above coefficients in (3), the truncated
series solution

y(t) = y0 +

N∑
i=1

F (yi−1)

i
ti (6)

is obtained.
For nonlinear problems, based on the explicit form of F (y) in (5),

one often have to perform basic arithmetic operations on power series
in order to successfully apply the above procedure. For operations of
addition, subtraction, multiplication and division, the results are sum-
marized below, see e.g. [5] and [14].

Proposition 1: If f, g, h : t ∈ R �→ R are functions of class Cn and
denoting by hj the jth power series coefficient of h(t) =

∑
j≥0 hjt

j, we
have

i. if h(t) = f(t)± g(t) then

hj = fj ± gj ;

ii. if h(t) = f(t) · g(t) then

hj =

j∑
i=0

fj−igi;
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iii. if h(t) = f(t)
g(t) then for g0 �= 0

hj =
1

g0

(
fj −

j∑
i=1

hj−igi

)
;

iv. if h(t) = f(t)α then h0 = (f0)
α and for j > 0

hj =
1

jf0

j−1∑
i=0

(
jα− i(α+ 1)

)
fj−ihi.

For cases where division by zero arise, by appropriately ‘shifting’ the
series until the first non-zero g0(t) or f0(t), the problem is circumvented,
see [19].

2.1. PADÉ AND LAPLACE-PADÉ POST PROCESSING
It is well known that series solution of nonlinear differential equations
often have finite radius and short interval of convergence [3]. This is
the situation where series solution to a problem fails to converge in the
entire domain of the problem. For instance, the series approximation
1 + x+ x2 + · · ·+ xn + · · · =∑∞

i=0 x
i to the rational function 1/(1− x)

has radius of convergence R = 1, see e.g [1][Theorem 17]. Consequently,
the series approximation has interval of convergence (−1, 1), in which
the series approximation is valid. Therefore, the truncated series solu-
tion obtained through the simple iteration described in Section 2 above,
though may be accurate, might still have a short interval of convergence
to be able to capture some nice properties of the solution e.g. transition
phase in stiff problems. The need to improve the convergence inter-
val of the truncated series therefore becomes limpid. Known applicable
methods to improve convergence of series solution include the Padé ap-
proximant [13], Continuous Analytic Continuation [4] and Wynn-epsilon
convergence [21]. In some cases, a combination of these methods are re-
quired to obtain the closed form solution or to extend the validity of
the truncated series solution. In this article, we apply the Padé approxi-
mant (see [3, 13]), and where the need arises, we follow the idea of [7] to
combine the Laplace transform approach with the Padé approximation
to obtain exact solution to (1). The latter approach is described below.

Suppose that the power series solution yP (t) of (1) has been com-
puted following the discussion of Section 2, the exact solution y(t) can
be obtained by applying Laplace-Padé post processing to yP (t) via the
following steps:

(1) Apply t-Laplace transform to yP (t),
(2) Replace s by 1

t ,
(3) Apply t-Padé approximation to the resulting series,
(4) Replace t by 1

s ,
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(5) Finally, apply inverse Laplace transform to obtain a closed form
solution (if it exists), otherwise a better approximation than
yP (t) is obtained.

The above procedure can easily be automated in a few lines of code in
any symbolic computation platform.

3. NUMERICAL EXAMPLES

Example 1: We consider a first order non-homogeneous, nonlinear
problem [12]

y′(x)− y(x)2 = 1, 0 ≤ x ≤ π

4
, y(0) = 0

with closed form solution y(x) = tanx.
In line with the discussion of Section 2,

y(x) =
∑
i≥0

yix
i,

and taking F (y) = y2, we obtain the recursion

yi+1 =
(y2)i
i+ 1

, i = 1, 2, . . . ; y0 = 0, y1 = 1 + y20.

By choosing f = g = y in Proposition (ii.), the derived variable (y2)i can

be written as (y2)i =
∑i

j=0 yjyi−j. Thus the coefficients yi are obtained
iteratively through the difference scheme

yi+1 =

∑i
j=0 yjyi−j

i+ 1
, i = 1, 2, . . . ; y0 = 0, y1 = 1 + y20

as

y0 = y2 = y4 = y6 = · · · = 0, y1 = 1, y3 =
1

3
, y5 =

2

15
, y7 =

17

315
, . . .

Hence,

y(x) =
∑
i≥0

yix
i = x+

x3

3
+

2

15
x5 +

17

315
x7 +

62

2835
x9 + . . . (7)

=
∑
i≥0

B2n
−22n(1− 22n)

(2n)!
x2n−1 (8)

= tan x, (9)

which is the exact solution. In the above, the constants Bk denote the
Bernoulli numbers.

Example 2: We consider a variable-coefficient first order nonlinear
problem [12]

y′(x) + (2x− 1)y(x)2 = 0, 0 ≤ x ≤ 1, y(0) = 1,

with known closed form solution y(x) = (x2 − x+ 1)−1.
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If we let v = (2x− 1)y(x), then the problem becomes

y′ = −yv, v′ = −v2 + 2y.

Thus, the coefficients yi in the assumed series solution

y(x) =
∑
i≥0

yix
i (10)

are obtained iteratively through the recursions

yi+1 = −
∑i

j=0 yjvi−j

i+ 1
; vi+1 =

−∑i
j=0 vjvi−j + 2yi

i+ 1
(11)

subject to initial conditions y0 = 1, v0 = −1. The first few solutions to
(11) are(

y1
v1

)
=

(
1
1

)
,

(
y2
v2

)
=

(
0
2

)
,

(
y3
v3

)
=

(−1
1

)
,

(
y4
v4

)
=

(−1
−1

)
,(

y5
v5

)
=

(
0
−2

)
,

(
y6
v6

)
=

(
1
−1

)
, . . .

Hence, substituting the values of yi in (10), we obtain the series solution

y(x) = 1 + x− x3 − x4 + x6 + x7 − x9 − x10 + . . .

Let yP (x) = 1+ x− x3 − x4 + x6 + x7 − x9 − x10. The [L/M] x−Padé
approximation applied to yP (x) for L ≥ 1,M > 1 yields the exact
solution 1/(x2 − x+ 1).

Example 3: We consider the periodic or oscillatory linear initial
value problem [17]

y′′(t) = −100y(t) + 99 sin t, 0 < t < 1000, y(0) = 1, y′(0) = 11

with closed form solution y(t) = cos 10t+ sin 10t+ sin t.
Through the variable substitutions u = y, v = y′, w = sin t, z = cos t

the above problem is transformed to a system of first order constant-
coefficient equation

u′ = v; v′ = −100u+ 99w; w′ = z; z′ = −w. (12)

As before, we assume series solution for all the variables

y(t) = u(t) =
∑
i≥0

uit
i, v(t) =

∑
i≥0

vit
i, w(t) =

∑
i≥0

wit
i, z(t) =

∑
i≥0

zit
i,

(13)
then the coefficients ui, vi, wi, zi are obtained from the recursions

ui+1 =
vi

i+ 1
, vi+1 =

−100ui + 99wi

i+ 1
, (14)

wi+1 =
zi

i+ 1
, zi+1 =

−wi

i+ 1
, (15)

with initial conditions u0 = 1, v0 = 11, w0 = 0, z0 = 1.
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The first few coefficients are computed as⎛
⎜⎜⎝
u1
v1
w1

z1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

11
−100
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
u2
v2
w2

z2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−50
−1001/2

0
−1/2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
u3
v3
w3

z3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−1001/6
5000/3
−1/6
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
u4
v4
w4

z4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1250/3
100001/24

0
1/24

⎞
⎟⎟⎠ , . . .

Substituting the obtained coefficients in (13) we obtain in particular the
series

u(t) = 1 + 11 t− 50 t2 − 1001

6
t3 +

1250

3
t4 +

100001

120
t5 − 12500

9
t6

(16)

− 10000001

5040
t7 +

156250

63
t8 +

142857143

51840
t9 − 1562500

567
t10 + . . .

Observe that (16) is already an accurate approximation to the solu-
tion y(t). However, the exact solution can be obtained by applying the
Laplace-Padé post processing procedure of Section 2.1.

Consider the truncated series

uP (t) = 1 + 11 t− 50 t2 − 1001

6
t3 +

1250

3
t4 +

100001

120
t5 − 12500

9
t6

(17)

− 10000001

5040
t7 +

156250

63
t8 +

142857143

51840
t9 − 1562500

567
t10.

Applying Laplace transform to (17) gives

L[uP (t)] = 1

s
+

11

s2
− 100

s3
− 1001

s4
+

10000

s5
+

100001

s6
− 1000000

s7
(18)

− 10000001

s8
+

100000000

s9
+

1000000001

s10
− 10000000000

s11
.

(19)

Substituting s = 1/t in the above, we obtain

L[uP (t)] = t+ 11 t2 − 100 t3 − 1001 t4 + 10000 t5 + 100001 t6

− 1000000 t7 − 10000001 t8 + 100000000 t9

+ 1000000001 t10 − 10000000000 t11

Next, all [L/M] t−Padé approximation with L,M ≥ 4 and L+M ≤ 11
applied to L[uP (t)] yield

[L/M ]uP
=

110t4 + t3 + 11t2 + t

1 + 101t2 + 100t4
.
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Now replacing t by 1/s in the above to obtain

[L/M ]uP
=

110 + s+ 11s2 + s3

s4 + 101s2 + 100
.

Finally,

y(t) = u(t) = L−1

(
110 + s+ 11s2 + s3

s4 + 101s2 + 100

)
= cos (10 t)+sin (10 t)+sin (t)

the exact solution.

Example 4: We consider the nonlinear Vanderpole Oscillator prob-
lem [6]

y′′(t) + y′(t) + y(t) + y(t)2y′(t) = 2 cos t− cos3 t, y(0) = 0, y′(0) = 1

with exact solution y(t) = sin t.
Setting v = y′, w = cos t, z = sin t reduces the problem to the first

order constant-coefficient ODE system

y′ = v; v′ = 2w − w3 − v − y − y2v; w′ = −z; z′ = w.

The above system then yields the recursions

yi+1 =
vi

i+ 1
, y0 = 0 (20)

vi+1 =
2wi − (w3)i − vi − yi − (y2v)i

i+ 1
, v0 = 1 (21)

wi+1 = − zi
i+ 1

, w0 = 1 (22)

zi+1 =
wi

i+ 1
, z0 = 0 (23)

where the quantities (w3)i and (y2v)i are computed by repeated use of
Proposition 1. (ii) or (iv). Solving these difference equations give⎛

⎜⎜⎝
y1
v1
w1

z1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1
0
0
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
y2
v2
w2

z2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
−1/2
−1/2
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
y3
v3
w3

z3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−1/6
0
0

−1/6

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
y4
v4
w4

z4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1/24
1/24
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
y5
v5
w5

z5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1/120

0
0

1/120

⎞
⎟⎟⎠ , . . .

Using the coefficients yi above, we obtain the series solution

y(t) =
∑
i≥0

yit
i = t− 1

6
t3 +

1

120
t5 + . . .

To compute the closed form solution, let yP (t) = t − 1
6t

3 + 1
120 t

5.
Applying Laplace transform on yP (t) and subsequently substituting t =
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1/s, we obtain

L[yP (t)] = t2 − t4 + t6.

Applying [L/M] t- Padé approximant with L,M ≥ 2 yields

[L/M ]yP =
t2

1 + t2

which on replacing t by 1/s gives

1

s2 + 1
.

Lastly the closed form solution is obtained as

y(t) = L−1

(
1

s2 + 1

)
= sin t.

Example 5: We consider the nonlinear stiff system of IVPs [20]

u′(t) = −1002u(t) + 1000v(t)2, u(0) = 1, (24)

v′(t) = u(t)− v(t)(1 + v(t)), v(0) = 1 (25)

whose closed form solution is known to be u(t) = e−2t, v(t) = e−t.
In line with our proposed method, to obtain power series solution of

the form

u(t) =
∑
i≥0

uit
i, v(t) =

∑
i≥0

vit
i, (26)

we set up an iterative scheme

ui+1 =
−1002ui + 1000(v2)i

i+ 1
, u0 = 1, (27)

vi+1 =
ui − vi − (v2)i

i+ 1
, v0 = 1. (28)

From the above recursions the coefficients ui and vi are computed as(
u1
v1

)
=

(−2
−1

)
,

(
u2
v2

)
=

(
2
1/2

)
,

(
u3
v3

)
=

(−4/3
−1/6

)
,

(
u4
v4

)
=

(
2/3
1/24

)
,(

u5
v5

)
=

( −4/15
−1/120

)
, . . .

Using the above coefficients in (26), we obtain the series solution

u(t) = 1− 2t+ 2t2 − 4

3
t3 +

2

3
t4 − 4

15
t5 + . . . , (29)

v(t) = 1− t+
1

2
t2 − 1

6
t3 +

1

24
t4 − 1

120
t5 + . . . (30)

The Laplace-Padé post processing procedure are now applied to the
equations (29)-(30). Let uP (t) = 1−2t+2t2− 4

3 t
3+ 2

3 t
4− 4

15 t
5; vP (t) =
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1 − t + 1
2t

2 − 1
6t

3 + 1
24 t

4 − 1
120 t

5. Applying Laplace transform on uP (t)
gives

L[uP (t)] = 1

s
− 2

s2
+

4

s3
− 16

s5
− 32

s6

which on substituting s = 1/t implies

L[uP (t)] = t− 2t2 + 4t3 − 8t4 + 16t5 − 32t6.

On the next step [L/M] t−Padé approximation applied to the obtained
series L[uP (t)] gives (for all L,M ≥ 1 and L+M ≤ 6)

[L/M ]uP
=

t

1 + 2t
.

On substituting t = 1/s we obtained

[L/M ]uP
=

1

s+ 2
.

Finally, the exact solution u(t) is obtained by taking the inverse Laplace
transform

u(t) = L−1

(
1

s+ 2

)
= e−2t.

In a similar manner, the Laplace-Padé post processing procedure applied
to vP (t) yields

v(t) = L−1

(
1

s+ 1

)
= e−t.

Example 6: Consider the third order IVP

y′′′ = 3 sinx, y(0) = 1, y′(0) = 0, y′′(0) = −2

with closed form solution y(x) = 3 cos x+ x2

2 − 2.
With variable substitutions v = y′, w = y′′, t = sinx, z = cos x, the

problem is recast as a first order system

y′ = v; v′ = w; t′ = z; z′ = −t

which in line with our proposed method leads to the recursions

yi+1 =
vi

i+ 1
; vi+1 =

wi

i+ 1
; ti+1 =

zi
i+ 1

; zi+1 = − ti
i+ 1
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subject to initial conditions y0 = 1, v0 = 0, w0 = −2, t0 = 0, z0 = 1.
The first few iterates to the above recursions are obtained as⎛

⎜⎜⎜⎜⎝
y1
v1
w1

t1
z1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
−2
0
1
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝
y2
v2
w2

t2
z2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−1
0
3/2
0

−1/2

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝
y3
v3
w3

t3
z3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
1/2
0

−1/6
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝
y4
v4
w4

t4
z4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1/8
0

−1/8
0

1/24

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

y5
v5
w5

t5
z5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
−1/40

0
1/120

0

⎞
⎟⎟⎟⎟⎠ , . . .

Hence, the power series solution is obtained using the computed coeffi-
cients yi as

y(x) =
∑
i≥0

yix
i = 1−x2 +

1

8
x4 − 1

240
x6 +

1

13440
x8 − 1

1209600
x10 + . . .

Let yP (x) = 1−x2+ 1
8 x

4− 1
240 x

6+ 1
13440 x

8− 1
1209600 x

10.We now apply
the Laplace-Padé post processing on yP (x). Laplace transform applied
to yP (x) yields

L[yP (x)] = 1

s
− 2

s3
+

3

s5
− 3

s7
+

3

s9
− 3

s11
. (31)

Substituting s = 1/x in the above, we obtain

L[yP (x)] = x− 2x3 + 3x5 − 3x7 + 3x9 − 3x11. (32)

Applying [L/M] x−Padé approximation with L,M ≥ 5 to (32) yields

[L/M ]u =
x5 − x3 + x

1 + x2

and on replacing x by 1/s, we get

[L/M ]u =
1− s2 + s4

s3(s2 + 1)
.

Lastly, the closed form solution is obtained as

y(x) = L−1

(
1− s2 + s4

s3(s2 + 1)

)
= 3cos x+

x2

2
− 2.

Example 7: We consider the fourth order IVP

yiv = − sinx+ cos x, y(0) = 0, y′(0) = y′′(0) = −1, y′′′(0) = 7

with closed form solution y(x) = − sinx+ cos x+ x3 − 1.
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The above problem reduces to a system of first order equations by
letting v = y′, w = y′′, t = y′′′, p = sinx, q = cos x from which the
recursions

yi+1 =
vi

i+ 1
; vi+1 =

wi

i+ 1
; wi+1 =

ti
i+ 1

; ti+1 =
−pi + qi
i+ 1

;

pi+1 =
qi

i+ 1
; qi+1 =

−pi
i+ 1

follow, subject to initial conditions y0 = 0; v0 = −1;w0 = −1; t0 =
7; p0 = 0; q0 = 1. The unknowns are computed as⎛

⎜⎜⎜⎜⎜⎜⎝

y1
v1
w1

t1
p1
q1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1
7
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

y2
v2
w2

t2
p2
q2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1/2
7/2
1/2
−1/2
0
1/2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

y3
v3
w3

t3
p3
q3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

7/6
1/6
−1/6
−1/6
−1/6
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

y4
v4
w4

t4
p4
q4

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1/24
−1/24
−1/24
1/24
0

1/24

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

y5
v5
w5

t5
p5
q5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1/120
−1/120
1/120
1/120
1/120

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, . . .

Hence, using the coefficients yi, we form an approximate series solution

y(x) =
∑
i≥0

yix
i = −x− 1

2
x2 +

7

6
x3 +

1

24
x4 − 1

120
x5 − 1

720
x6 +

1

5040
x7

+
1

40320
x8 − 1

362880
x9 + . . .

Finally to obtain a closed form solution, we truncate the above series
solution, set

yP (x) =
∑
i≥0

yix
i = −x− 1

2
x2 +

7

6
x3 +

1

24
x4 − 1

120
x5 − 1

720
x6 +

1

5040
x7

+
1

40320
x8 − 1

362880
x9

and apply the post processing procedure. Applying Laplace transform
to yP (x), and subsequently replacing s by 1/x to obtain

L[yP (x)] = −x2 − x3 + 7x4 + x5 − x6 − x7 + x8 + x9 − x10 − x11.

Next, [6/5] x− Padé approximation applied to L[yP (x)] above yields

L[yP (x)] = 6x6 + 6x4 − x3 − x2

1 + x2
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which on replacing x = 1/s implies

L[yP (x)] = −−6− 6s2 + s3 + s4

s4(s2 + 1)
.

Hence,

y(x) = L−1

(
−−6− 6s2 + s3 + s4

s4(s2 + 1)

)
= − sinx+ cos x+ x3 − 1.

4. CONCLUDING REMARKS

In this article, we have proposed a new, simple and yet highly accurate
procedure for finding closed form solution of initial value problems. The
method has been applied to linear, nonlinear, stiff and system of stiff
initial value problems. In all cases, the procedure yielded the closed
form solution of the problems considered.
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