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ABSTRACT. A new deterministic model is designed and used
to assess the population-level impact of Pap cytology screening
on the transmission dynamics of human papillomavirus (HPV),
and associated dysplasia, in a community. In the absence of Pap
screening, the disease-free equilibrium (DFE) of the resulting
model is shown to be globally-asymptotically stable whenever
the associated reproduction number (R0) is less than unity. Fur-
thermore, the model has a unique endemic equilibrium, which
is locally- and globally- asymptotically stable for special cases.
The disease-free equilibrium of the Pap screening model is also
shown to be globally-asymptotically stable when its reproduc-
tion number (R0s) is less than unity. The effect of uncertainties
in the estimates of the parameter values used in the numerical
simulations of the Pap screening model is accounted for via un-
certainty and sensitivity analysis. Numerical simulations of the
Pap screening model show that HPV transmission models that
do not incorporate disease transmission by individuals in the
pre-cancerous stages may under-estimate the burden of HPV
(and associated dysplasia) in the community. Although Pap
screening significantly reduces the incidence of cervical cancer
(for instance, detecting 50% of sexually-active females with cer-
vical intraepithelial neoplasia resulted in 95% reduction of cer-
vical cancer cases over 10 years), its singular use is insufficient
to lead to the effective control of the spread of HPV in the com-
munity.

Keywords and phrases: HPV, cervical cancer, equilibria, stabil-
ity, reproduction number.

1. Introduction

Human papillomavirus (HPV), a major sexually-transmitted dis-
ease, is known to be the causative agent of cervical cancer [1, 13]
(in addition to causing many other cancers in both females and
males [6, 13, 49, 50]). Each year, about 500,000 women develop
cervical cancer (with more than half of those women dying of the
disease) globally [4, 49]. In the year 2011, for instance, about
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12,000 cervical cancer cases were recorded in the USA (with about
4,000 fatalities) [4]. HPV targets epithelial basal cells, and HPV-
associated diseases are transmitted via skin-to-skin contact [29]. It
is known that 70%− 90% of HPV cases clear their infections natu-
rally within two years [1, 13, 15]. In women who do not clear their
HPV infection (typically those infected with high-risk HPV types
[6, 13, 61]), pre-cancerous lesions (cervical intraepithelial neoplasia
(CIN)) may persist for many years (and, consequently, progress to
cervical cancer [13, 45, 49, 50]). Furthermore, high-risk HPV types
cause pre-cancerous intraepithelial neoplasia in males (INM), re-
sulting in various cancers (such as anal and penile cancers) [5, 19].
Pap screening has played an essential role in the early detection of
CIN and, consequently, reduce cervical cancer incidence and mor-
tality [45, 50] (for instance, it is known that regular Pap screening
decreases the incidence of cervical cancer by 70% over the last five
decades [28, 43]). Pap screening detects abnormal cervical cells,
including pre-cancerous cervical lesions and early cervical cancers
[13, 17, 50]. Once detected, pre-cancerous lesions can be treated
successfully (using, for instance, loop electrosurgical excision pro-
cedure, which involves the removal of a cancerous tissue using a wire
loop, or using laser therapy [14, 50, 53]). Cervical cancer screen-
ing consists of two screening tests, namely cytology-based screening
(known as the Pap test (or Pap smear or Pap cytology), and HPV
testing [50]. The major goal of the screening is to detect abnormal
cells that may develop into cancer if left untreated, while HPV test-
ing is used to check for the presence of DNA or RNA of high-risk
HPV types in cervical cells [36, 50]. It has recently been recom-
mended that women have their Pap test at the age of 21 [50] (and
such test should be administered every 3 years for women of age 21
through 29 [50]; women of age 30 through 65 can be screened every
5 years with Pap and HPV co-testing or every 3 years with a Pap
test alone [15, 50]). Pap screening is not administrated for males.

Although three anti-HPV vaccines, namely Cervarix R© (Glaxo-
SmithKline), Gardasil R© and Gardasil 9 R© (Merck Inc.), have been
approved for use to protect new sexually-active males and females
against some of the most common HPV types [37, 49, 51, 57, 60],
Pap screening remains a critically important preventive measure
against HPV infection (this is largely due to the low coverage, high
cost, and the side-effects associated with the use of the two anti-
HPV vaccines [7, 25, 31, 38, 49, 56]).
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Mathematical models, typically of the form of deterministic sys-
tem of non-linear differential equations, have been developed and
used to study the transmission dynamics of HPV and associated
dysplasia in a community [2, 3, 16, 19, 20, 21, 22, 35, 40, 44, 45, 48].
Myers et al. [48] modeled the natural history of HPV infection and
cervical carcinogenesis using a deterministic model. Models for as-
sessing the impact of vaccination on HPV dynamics were presented
in [2, 3, 10, 11, 16, 19, 21, 22, 40]. Malik et al. [45], Kulasingam
and Myers [40] and Bosch et al. [9] investigated the combined im-
pact of an anti-HPV vaccine and Pap screening on the dynamics of
HPV and associated dysplasia. The purpose of the current study is
to extend prior Pap screening models for HPV transmission in the
literature by developing, and rigorously analyzing, a more realistic
model for assessing the population-level impact of Pap screening.
Some of the notable features of the novel model to be designed in-
clude adding the dynamics of pre-cancerous and HPV-related can-
cers in males, HPV transmission by individuals in the pre-cancerous
stages and including the dynamics of exposed (asymptomatic) in-
dividuals (i.e., HPV-infected individuals with no clinical symptoms
of the disease). The paper is organized as follows. The new Pap
screening model is formulated in Section 2. The model in the ab-
sence of Pap screening is analyzed in section 3. The full model
is analyzed in Section 4. Uncertainty and sensitivity analyses, as
well as numerical simulations of the Pap screening model, are also
reported.

2. Mathematical Model

The new model for the transmission dynamics of HPV in a com-
munity, in the presence of the Pap cytology screening, is designed by
stratifying the total sexually-active female population at time t (de-
noted by Nf (t)) into twelve mutually-exclusive sub-populations of
susceptible females (Sf (t)), exposed (asymptomatic) females (Ef (t)),
symptomatic (infected with clinical symptoms of HPV) females
(If (t)), females with persistent HPV infection (Pf (t)), females with
undetected low-grade CIN (Lfu(t)), females with detected low-grade
CIN (Lfd(t)), females with undetected high-grade CIN (Hfu(t)),
females with detected high-grade CIN (Hfd(t)), females with unde-
tected cervical cancer (Cfu(t)), females with detected cervical can-
cer (Cfd(t)), females who recovered from cervical cancer (Rfc(t))
and females who recovered from HPV infection without developing
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cervical cancer (Rf (t)), so that

Nf (t) = Sf (t) + Ef (t) + If (t) + Pf (t) + Lfu(t) + Lfd(t)

+ Hfu(t) +Hfd(t) + Cfu(t) + Cfd(t) +Rfc(t)

+ Rf (t). (2.1)

Similarly, the total sexually-active male population at time t (de-
noted by Nm(t)) is sub-divided into nine mutually-exclusive sub-
populations of susceptible males (Sm(t)), exposed (asymptomatic)
males (Em(t)), symptomatic males (Im(t)), males with persistent
HPV infection (Pm(t)), males with low-grade INM (Lm(t)), males
with high-grade INM (Hm(t)), males with HPV-related cancer (Cm(t)),
males who recovered from HPV-related cancer (Rmc(t)) and males
who recovered from HPV infection without developing HPV-related
cancer (Rm(t)). Thus,

Nm(t) = Sm(t) + Em(t) + Im(t) + Pm(t) + Lm(t) +Hm(t)

+ Cm(t) +Rmc(t) +Rm(t). (2.2)

It follows from (2.1) and (2.2) that the total sexually-active (het-
erosexual) population, at time t, is given by N(t) = Nf (t) +Nm(t).
The model for the transmission dynamics of HPV (and associated
dysplasia) in a community, in the presence of Pap screening, is
given by the following deterministic system of non-linear differen-
tial equations (a flow diagram of the model is depicted in Figure
1; the associated state variables and parameters are tabulated in
Tables 1, 2 and 3):
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dSf

dt
= πf + ξfRf − (λm + µf )Sf ,

dEf

dt
= λmSf − (σf + µf )Ef ,

dIf

dt
= σfEf − (ψf + µf )If ,

dPf

dt
= (1− bf )ψf If + df2gfLfu + qf4zfHfu − (αf + µf )Pf ,

dLfu

dt
= (1− kf )αfPf + qf2zfHfu − (gf + µf )Lfu,

dLfd

dt
= df3gfLfu − (r1 + µf )Lfd,

dHfu

dt
= [1− (df1 + df2 + df3)]gfLfu + jf2γfCfu − (zf + µf )Hfu,

dHfd

dt
= qf3zfHfu − (r2 + µf )Hfd,

dCfu

dt
= [1− (qf1 + qf2 + qf3 + qf4)]zfHfu − (γf + µf + δfu)Cfu,

dCfd

dt
= jf1γfCfu − (r3 + µf + δfd)Cfd,

dRfc

dt
= [1− (jf1 + jf2)]γfCfu + r3Cfd − µfRfc,

dRf

dt
= bfψf If + kfαfPf + df1gfLfu + r1Lfd + qf1zfHfu + r2Hfd − (ξf + µf )Rf ,
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dSm

dt
= πm + ξmRm − (λf + µm)Sm,

dEm

dt
= λfSm − (σm + µm)Em,

dIm

dt
= σmEm − (ψm + µm)Im,

dPm

dt
= (1− bm)ψmIm + dm2gmLm + qm3zmHm − (αm + µm)Pm,

dLm

dt
= (1− km)αmPm + qm2zmHm − (gm + µm)Lm,

dHm

dt
= [1− (dm1 + dm2)]gmLm + jmγmCm − (zm + µm)Hm,

dCm

dt
= [1− (qm1 + qm2 + qm3)]zmHm − (γm + µm)Cm,

dRmc

dt
= (1− jm)γmCm − µmRmc,

dRm

dt
= bmψmIm + kmαmPm + dm1gmLm + qm1zmHm − (ξm + µm)Rm.

(2.3)
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The description of the derivation of the equations for the Pap
screening model (2.3) is given in Appendix A. The model (2.3)
is an extension of many HPV Pap screening models in the litera-
ture (such as those in [2, 3, 11, 20, 22, 45]) by, inter alia,

(i) incorporating the dynamics of exposed females (Ef ) and
males (Em), and allowing for HPV transmission by exposed
males and females (this is not included in the models devel-
oped in [11, 20, 22, 45]);

(ii) incorporating the dynamics of individuals (females and males)
in the pre-cancerous intraepithelial neoplasia stages (CIN
and INM), as well as the dynamics of HPV-related cancers
in males (which are not included in the models developed in
[3, 11, 20, 22, 45]; it should, however, be stated that three
CIN stages for females are included in the model developed
in [45]);

(iii) allowing for the loss of infection-acquired immunity by re-
covered individuals (this is not included in the models con-
sidered in [11, 20, 22, 45]);

(iv) incorporating the regression from cervical (for females) and
other HPV-related cancers (for males) to high-grade in-
traepithelial neoplasia stages and from low- and high-grade
intraepithelial neoplasia stages to persistent infection (this is
not included in the models considered in [3, 11, 20, 22, 45]);
it should, however, be stated that only regression from high-
grade intraepithelial neoplasia stage to persistent infection
is included in the model developed in [2]);

(v) allowing for HPV transmission by individuals (females and
males) in the various intraepithelial neoplasia stages (this is
not included in the models considered in [2, 3, 11, 20, 22,
45]).

2.1. Basic Properties. Since the Pap screening model (2.3) mon-
itors human populations, all its associated parameters and state
variables are non-negative for t ≥ 0.

Theorem 2.1. Let the initial data be Sf (0) > 0, Ef (0) ≥ 0,
If (0) ≥ 0, Pf (0) ≥ 0, Lfu(0) ≥ 0, Lfd(0) ≥ 0, Hfu(0) ≥ 0,
Hfd(0) ≥ 0, Cfu(0) ≥ 0, Cfd(0) ≥ 0, Rfc(0) ≥ 0, Rf (0) ≥ 0,
Sm(0) > 0, Em(0) ≥ 0, Im(0) ≥ 0, Pm(0) ≥ 0, Lm(0) ≥ 0,
Hm(0) ≥ 0, Cm(0) ≥ 0, Rmc(0) ≥ 0, Rm(0) ≥ 0. Then the so-
lutions (Sf (t), Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hfd(t),
Cfu(t), Cfd(t), Rfc(t), Rf (t), Sm(t), Em(t), Im(t), Pm(t), Lm(t),
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Hm(t), Cm(t), Rmc(t), Rm(t)) of the model (3.1), with positive initial
data, will remain positive for all time t > 0.

Proof. Let

t1 = sup { t > 0 : Sf (0) > 0, Ef (0) ≥ 0, If (0) ≥ 0, Pf (0) ≥ 0,

Lfu(0) ≥ 0, Lfd(0) ≥ 0, Hfu(0) ≥ 0, Hfd(0) ≥ 0, Cfu(0) ≥ 0,

Cfd(0) ≥ 0, Rfc(0) ≥ 0, Rf (0) ≥ 0, Sm(0) > 0, Em(0) ≥ 0,

Im(0) ≥ 0, Pm(0) ≥ 0, Lm(0) ≥ 0, Hm(0) ≥ 0, Cm(0) ≥ 0,

Rmc(0) ≥ 0, Rm(0) ≥ 0} > 0.

The first equation of the model (2.3) can be re-written as

d

dt

{
Sf (t) exp

[∫ t

0

λm(u)du

]}
≥ πm exp

[∫ t

0

λm(u)du+ µm(t)

]
,

so that,

Sf (t1) exp

[∫ t1

0

λm(u)du+ µf )t1

]
− Sf (0)

is equal to: ∫ t1

0

πf exp

[∫ z

0

λm(u)du+ µfz

]
dz.

Thus,

Sf (t1) ≥ Sf (0) exp

[
−
∫ t1

0

λm(u)du− µf t1
]

+ exp

[
−
∫ t1

0

λm(u)du− µf t1
]

×
∫ t1

0

πf exp

[∫ z

0

λm(u)du+ (ξ + µf )z

]
dz > 0.

Similarly, it can be shown that Ef (t) ≥ 0, If (t) ≥ 0, Pf (t) ≥ 0,
Lfu(t) ≥ 0, Lfd(t) ≥ 0, Hfu(t) ≥ 0, Hfd(t) ≥ 0, Cfu(t) ≥ 0,
Cfd(t) ≥ 0, Rfc(t) ≥ 0, Rf (t) ≥ 0, Sm(t) ≥ 0, Em(t) ≥ 0, Im(t) ≥ 0,
Pm(t) ≥ 0, Lm(t) ≥ 0, Hm(t) ≥ 0, Cm(t) ≥ 0, Rmc(t) ≥ 0 and
Rm(t) ≥ 0 for all time t > 0. Hence, all solutions of the Pap
screening model (2.3) remain positive for all non-negative initial
conditions. �
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Lemma 2.1. The closed set

Ds = Df ∪ Dm ⊂ R12
+ × R9

+,

with,

Df =
{

(Sf , Ef , If , Pf , Lfu, Lfd, Hfu, Hfd, Cfu, Cfd, Rfc, Rf ) ∈ R12
+

: Nf ≤
πf
µf

}
,

and,

Dm =

{
(Sm, Em, Im, Pm, Lm, Hm, Cm, Rmc, Rm) ∈ R9

+ : Nm ≤
πm
µm

}
,

is positively-invariant and attracting for the Pap screening model
(2.3).

Proof. Adding the first twelve equations of the model (3.1) gives

dNf

dt
= πf − µfNf − (δfuCfu + δfdCfd) ≤ πf − µfNf . (2.4)

It follows from (2.4) that
dNf

dt
< 0 if Nf (t) >

Πf
µf

. Further, it

follows, using Comparison Theorem [41], that

Nf (t) ≤ Nf (0)e−µf (t) +
πf
µf

[1− e−µf (t)].

In particular, Nf (t) ≤
πf
µf

if Nf (0) ≤ πf
µf

. Similarly, it follows from

the last nine equations of the model (3.1) that

Nm(t) ≤ Nm(0)e−µm(t) +
πm
µm

[1− e−µm(t)].

Thus, Nm(t) ≤ πm
µm

if Nm(0) ≤ πm
µm

. Therefore, the region Ds is

positively-invariant for the Pap screening model (2.3). Further-

more, if Nf (0) >
πf
µf

and Nm(0) >
πm
µm

, then either the solution

enters the region Ds in finite time, or Nf (t) approaches
πf
µf

and

Nm(t)→ πm
µm

asymptotically [45]. Hence, the region Ds attracts all

solutions in R21
+ . �
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Since the region Ds is positively-invariant, the usual existence,
uniqueness, continuation results hold for the system (hence, it is
sufficient to consider the dynamics of the flow generated by the
Pap screening model (2.3) in this region [30]).

Before analyzing the Pap screening model (2.3), it is instructive
to explore the dynamics of the model in the absence of Pap screen-
ing (since Pap screening is not generally implemented in resource-
poor countries [26] and older, as well as poor, women, who are at
the highest risk of developing cervical cancer, are less likely to be
screened [26, 27]), as below.

3. Analysis of Screening-free Model

In the absence of Pap screening, the model (2.3) can be re-written
as (denoted by screening-free (or basic) model):



ROLE OF PAP SCREENING ON HPV TRANSMISSION DYNAMICS. . . 589

F
em

al
es



dSf
dt

= πf − (λm + µf )Sf ,

dEf
dt

= λmSf − (σf + µf )Ef ,

dIf
dt

= σfEf − (rf1 + ψf + µf )If ,

dPf
dt

= ψfIf − (rf2 + αf + µf )Pf ,

dQf

dt
= αfPf − (rf3 + gf + µf )Qf ,

dCf
dt

= gfQf − (rf4 + µf + δf )Cf ,

dRfc

dt
= rf4Cf − µfRfc,

dRf

dt
= rf1If + rf2Pf + rf3Qf − µfRf ,

M
al

es
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dSm
dt

= πm − (λf + µm)Sm,

dEm
dt

= λfSm − (σm + µm)Em,

dIm
dt

= σmEm − (rm1 + ψm + µm)Im,

dPm
dt

= ψmIm − (rm2 + αm + µm)Pm,

dQm

dt
= αmPm − (rm3 + gm + µm)Qm,

dCm
dt

= gmQm − (rm4 + µm)Cm,

dRmc

dt
= rm4Cm − µmRmc,

dRm

dt
= rm1Im + rm2Pm + rm3Qm − µmRm,

(3.1)

where N(t) = Nf (t) +Nm(t), with Nf (t) = Sf (t) +Ef (t) + If (t) +
Pf (t)+Qf (t)+Cf (t)+Rfc(t)+Rf (t) and Nm(t) = Sm(t)+Em(t)+
Im(t)+Pm(t)+Qm(t)+Cm(t)+Rmc(t)+Rm(t). The variables and
parameters of the screening-free model (3.1) are described in Tables
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4 and 5, respectively. It is assumed, for mathematical convenience,
that, for the model (3.1), only infected individuals in the sympto-
matic (If and Im) and persistent infection (Pf and Pm) classes can
transmit the disease. Thus, the forces of infection, λm and λf , are
now re-written, respectively, as

λm =
βmcf (Im + θmPm)

Nm

and λf =
βfcf (If + θfPf )

Nm

. (3.2)

The result below can be established using the approach in Section
2.

Lemma 3.1. The closed set

D = Df ∪ Dm ⊂ R8
+ × R8

+,

with,

Df =

{
(Sf , Ef , If , Pf , Qf , Cf , Rfc, Rf ) ∈ R8

+ : Nf ≤
πf
µf

}
,

and,

Dm =

{
(Sm, Em, Im, Pm, Qm, Cm, Rmc, Rm) ∈ R8

+ : Nm ≤
πm
µm

}
,

is positively-invariant and attracting for the screening-free model
(3.1).

3.1. Asymptotic Stability of Disease-free Equilibrium (DFE).
The DFE of the screening-free model (3.1), obtained by setting the
right-hand sides of the equations of the model to zero, is given by,

E0 = (S∗f , E
∗
f , I
∗
f , P

∗
f , Q

∗
f , C

∗
f , R

∗
fc, R

∗
f , S

∗
m, E

∗
m, I

∗
m, P

∗
m, Q

∗
m, C

∗
m,

R∗mc, R
∗
m)

=

(
πf
µf
, 0, 0, 0, 0, 0, 0, 0,

πm
µm

, 0, 0, 0, 0, 0, 0, 0

)
.

The local asymptotic stability of the DFE (E0) can be established
using the next generation operator method [18, 58]. Using the
notation in [58], the non-negative matrix F (of new infection terms),
and the M -matrix V (of the transition terms) associated with the
model (3.1), evaluated at E0, are given, respectively, by:
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F =



0 0 0 0 0 0
βmcfS

∗
f

N∗m

βmcfS
∗
fθm

N∗m
0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 βfcf βfcfθf 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



,

and,

V =



h1 0 0 0 0 0 0 0 0 0

−σf h2 0 0 0 0 0 0 0 0

0 −ψf h3 0 0 0 0 0 0 0

0 0 −αf h4 0 0 0 0 0 0

0 0 0 −gf h5 0 0 0 0 0

0 0 0 0 0 h6 0 0 0 0

0 0 0 0 0 −σm h7 0 0 0

0 0 0 0 0 0 −ψm h8 0 0

0 0 0 0 0 0 0 −αm h9 0

0 0 0 0 0 0 0 0 −gm h10



,

with, h1 = σf + µf , h2 = rf1 + ψf + µf , h3 = rf2 + αf + µf , h4 =
rf3 +gf +µf , h5 = rf4 +µf +δf , h6 = σm+µm, h7 = rm1 +ψm+µm,
h8 = rm2 + αm + µm, h9 = rm3 + gm + µm and h10 = rm4 + µm.

It follows from [58] that the basic reproduction number of the
model (3.1) [30], denoted by R0, is given by (where ρ is the spectral
radius of the next generation matrix FV−1)

R0 = ρ(FV −1) =
√
RmRf , (3.3)

with,
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Rm =
πfµmβmcfσm
µfπmh6h7

(
1 +

θmψm
h8

)
and Rf =

βfcfσf
h1h2

(
1 +

θfψf
h3

)
.

The result below follows from Theorem 2 of [58].

Lemma 3.2. The DFE, E0, of the model (3.1) is locally-asymptotically
stable (LAS) if R0 < 1, and unstable if R0 > 1.

The epidemiological consequence of Lemma 3.2 is that HPV can be
effectively-controlled in the community (when R0 < 1) if the initial
sizes of the sub-populations of the model (3.1) are in the basin of
attraction of the DFE (E0). The threshold quantity, R0, represents
the average number of secondary HPV infections generated by one
infected male (female) in a completely-susceptible male (female)
population [30]. It is epidemiologically interpreted as follows.

Interpretation of the basic reproduction number. Consider the screening-
free model (3.1). Susceptible males acquire HPV infection, fol-
lowing effective contacts with symptomatic females (If ) or females
with persistent HPV infection (Pf ). The number of male infec-
tions generated by symptomatic females is the product of the infec-

tion rate of symptomatic females
(
βf cfS

∗
m

N∗m

)
, the probability that

an exposed female survives the exposed class and move to the

symptomatic stage
(

σf
σf+µf

=
σf
h1

)
and the average duration in the

symptomatic class
(

1
rf1+ψf+µf

= 1
h2

)
. Furthermore, the number of

male infections generated by females with persistent HPV infec-
tion is the product of the infection rate of females with persistent

HPV infection
(
βf cfθfS

∗
m

N∗m

)
, the probability that an exposed female

survives the exposed class and moves to the persistent infection

class
(

ψf
rf1+ψf+µf

=
ψf
h2

)
and the average duration in the persistent

infection class
(

1
rf2+αf+µf

= 1
h3

)
. Hence, the average number of

new male infections generated by infected females (symptomatic or
those with persistent HPV infection) is given by (it is worth noting
that N∗m = S∗m = πm

µm
)

(
µmβfcfσf
πmh1h2

+
µmβfcfσfθfψf
πmh1h2h3

)
S∗m =

βfcfσf
h1h2

(
1 +

θfψf
h3

)
. (3.4)
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The terms in the left-hand side of (3.4) represent the number of new
male infections generated by symptomatic females (If ) and females
with persistent HPV infection (Pf ).

Similarly, susceptible females acquire HPV infection, following
effective contacts with symptomatic males (Im) or males with per-
sistent HPV infection (Pm). The number of female infections gen-
erated by symptomatic males is the product of the infection rate

of symptomatic males
(
βmcfS

∗
m

N∗m

)
, the probability that an exposed

male survives the exposed class and move to the symptomatic

stage
(

σm
σm+µm

= σm
h6

)
and the average duration in the symptomatic

class
(

1
rm1+ψm+µm

= 1
h7

)
. Furthermore, the number of female in-

fections generated by males with persistent HPV infection is the
product of the infection rate of males with persistent HPV in-

fection
(
βmcfθmS

∗
f

N∗m

)
, the probability that an exposed male survives

the exposed class and moves to the persistent HPV infection class(
ψm

rm1+ψm+µm
= ψm

h7

)
and the average duration in the persistent in-

fection class
(

1
rm2+αm+µm

= 1
h8

)
. Thus, the average number of new

female infections generated by infected males (symptomatic or those
with persistent HPV infection) is given by (noting that S∗f =

πf
µf

)

(
µmβmcfσm
πmh6h8

+
µmβmcfσmθmψm

πmh6h7h8

)
S∗f =

πfµmβmcfσm
µfπmh6h7

(
1 +

θmψm
h8

)
.

(3.5)
The terms in the left-hand side of (3.5) represent the number of
new female infections generated by symptomatic males (Im) and
males with persistent HPV infection (Pm). Since two generations
are needed in the female-male-female HPV transmission cycle, the
geometric mean of (3.4) and (3.5) gives the basic reproduction num-
ber, R0, of the screening-free model (3.1).

Lemma 3.2 shows that the effective control of HPV in the com-
munity (when R0 < 1) is dependent on the initial sizes of the
sub-populations of the model. In order to show that such control
is independent of the initial sizes of the sub-populations, a global
asymptotic stability result should be established for the DFE (E0)
of the screening-free model (3.1). This is done below.

Theorem 3.1. The DFE, E0, of the screening-free model (3.1) is
GAS in D whenever R0 < 1.
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The proof of Theorem 3.1, based on using a comparison theorem, is
given in Appendix B. The epidemiological implication of Theorem
3.1 is that HPV will be eliminated from the community whenever
the associated basic reproduction threshold (R0) is less than unity
(in other words, the requirement R0 < 1 is necessary and sufficient
for the effective control or elimination of HPV from the commu-
nity). Figure 2 shows the solution profiles of the screening-free
model (3.1), generated by simulating the model using various ini-
tial conditions, showing convergence to the DFE (E0) for the case
when R0 < 1 (in line with Theorem 3.1).

3.2. Existence and Stability of Endemic Equilibrium Point:
Special Case. In this section, the existence and stability of en-
demic equilibria (i.e., equilibria where the infected components of
the screening-free model (3.1) are non-zero) will be explored. Let,

E1 = (S∗∗f , E
∗∗
f , I

∗∗
f , P

∗∗
f , Q

∗∗
f , C

∗∗
f , R

∗∗
fc, R

∗∗
f , S

∗∗
m , E

∗∗
m , I

∗∗
m , P

∗∗
m , Q

∗∗
m ,

C∗∗m , R
∗∗
mc, R

∗∗
m ),

represents an arbitrary EEP of the model (3.1). Furthermore, let

λ∗∗m =
βmcfµm (I∗∗m + θmP

∗∗
m )

πm
and λ∗∗f =

βfcfµm
(
I∗∗f + θfP

∗∗
f

)
πm

,

(3.6)
be the force of infection for males and females at endemic steady-
state, respectively (it should be mentioned that Nm(t) is now re-
placed by its limiting value N∗m = πm

µm
). Solving the equations of

the screening-free (3.1) at the endemic steady-state gives:

S∗∗f =
πf

λ∗∗m + µf
, E∗∗f =

λ∗∗mS
∗∗
f

h1

, I∗∗f =
σfE

∗∗
f

h2

, P ∗∗f =
ψfI

∗∗
f

h3

,

Q∗∗f =
αfP

∗∗
f

h4

, C∗∗f =
gfQ

∗∗
f

h5

, R∗∗fc =
rf4C

∗∗
f

µf
,

Rf =
rf1I

∗∗
f + rf2P

∗∗
f + rf3Q

∗∗
f

µf
S∗∗m =

πm
λ∗∗f + µm

, E∗∗m =
λ∗∗f S

∗∗
m

h6

,

I∗∗m =
σmE

∗∗
m

h7

, P ∗∗m =
ψmI

∗∗
m

h8

, Q∗∗m =
αmP

∗∗
m

h9

, (3.7)

C∗∗m =
gmQ

∗∗
m

h10

, R∗∗mc =
rm4C

∗∗
m

µm
, Rm =

rm1I
∗∗
m + rm2P

∗∗
m + rm3Q

∗∗
m

µm
.

Substituting the expressions in (3.7) into (3.6) gives

λ∗∗m =
βmcfµmσm(θmψm + h8)λ∗∗f

h6h7h8(λ∗∗f + µm)
, (3.8)
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λ∗∗f =
πfβfcfµmσf (θfψf + h3)λ∗∗m

πmh1h2h3(λ∗∗m + µf )
. (3.9)

Substituting (3.8) into (3.9), and simplifying, gives

λ∗∗f =
µm [(R0)2 − 1]

πmh1h2h3 [βmcfµm(ψmσmθm + σmh8) + µfh6h7h8]
. (3.10)

It follows from (3.10) that (since all the parameters of the model
(3.1) are positive) λ∗∗f is positive whenever R0 > 1 (so that the
screening-free model (3.1) has a unique EEP whenever R0 > 1).
The components of the unique EEP can then be obtained by sub-
stituting (3.10) into the steady-state expressions in (3.7). Further-
more, if R0 = 1, then λ∗∗f = 0 (which corresponds to the DFE, E0,
of the model (3.10)). For R0 < 1, λ∗∗f < 0 (which is biologically
meaningless). These results are summarized below.

Theorem 3.2. The screening-free model (3.1) has a unique en-
demic equilibrium (of the form E1) whenever R0 > 1, and no en-
demic equilibrium otherwise.

The local asymptotic stability property of the unique EEP (E1)
of the screening-free model (3.1) will now be explored, for a special
case with no disease-induced mortality for the females (i.e., δf = 0).
It is convenient to define ∆ = µfµm(D1D2 −D3), where,

D1 = αmgmλ
∗∗
f µmψmσm + αmgmλ

∗∗
f ψmrm4σm

+αmλ
∗∗
f µmψmσmh10 + αmλ

∗∗
f ψmrm3σmh10

+µmh6h7h8h9h10 + λ∗∗f µmh7h8h9h10 + λ∗∗f µmσmh8h9h10

+λ∗∗f rm1σmh8h9h10 + λ∗∗f µmψmσmh9h10

+λ∗∗f ψmrm2σmh9h10,

D2 = αfgfλ
∗∗
mµfψfσf + αfgfλ

∗∗
mψfrf4σf + αfh5λ

∗∗
mµfψfσf

+αfh5λ
∗∗
mψfrf3σf + µfh1h2h3h4h5 + λ∗∗mµfh2h3h4h5

+λ∗∗mµfσfh3h4h5 + λ∗∗mrf1σfh3h4h5 + λ∗∗mµfψfσfh4h5

+λ∗∗mψfrf2σfh4h5,

D3 =
1

(N∗m)2

(
S∗∗f S

∗∗
m µfµmσfσmβfβmcf

2h4h5h9h10

)
(ψmθm + h8)

(ψfθf + h3) ,
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with,

S∗∗f = N∗f − E∗∗f − I∗∗f − P ∗∗f −Q∗∗f − C∗∗f −R∗∗fc −R∗∗f ≥ 0,

S∗∗m = N∗m − E∗∗m − I∗∗m − P ∗∗m −Q∗∗m − C∗∗m −R∗∗mc −R∗∗m ≥ 0,

and,

λ∗∗m =
βmcf (I

∗∗
m + θmP

∗∗
m )

N∗m
, λ∗∗f =

βfcf (I
∗∗
f + θfP

∗∗
f )

N∗m
.

Theorem 3.3. The EEP (E1) of the model (3.1) is LAS if R0 > 1,
δf = 0 and ∆ 6= 0.

The proof of Theorem 3.3, based on using a Krasnoselskii argu-
ment [23, 24, 55], is given in Appendix C. The epidemiological
implication of Theorem 3.3 is that, for the screening-free (3.1) with
R0 > 1 and negligible cancer-induced mortality in females (δf = 0),
HPV will persist in the community whenever the initial sizes of the
sub-populations of the model (3.1) are in the basin of attraction
of the unique EEP (E1). The equilibrium (E1) is now shown to be
globally-asymptotically stable for a special case (below).

It is convenient to define R1 = R0|θm=θf=0 and the region (stable
manifold of the DFE of the screening-free model (3.1))

D0 = Df0 ∪ Dm0 ⊂ R8
+ × R8

+,

with,
Df0 =

{
(Sf , Ef , If , Pf , Qf , Cf , Rfc, Rf ) ∈ R8

+ :

Ef = If = Pf = Qf = Cf = 0} ,
Dm0 =

{
(Sm, Em, Im, Pm, Qm, Cm, Rmc, Rm) ∈ R8

+ :

Em = Im = Pm = Qm = Cm = 0} .

Theorem 3.4. The unique EEP (E1) of the screening-free model
(3.1), with θm = θf = 0, is GAS in D\D0 whenever R1 > 1,
Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t.

The proof of Theorem 3.4, based on using a nonlinear Lyapunov
function of Goh-Volterra type, is given in Appendix D. Theorem
3.4 shows that, for the case of the model (3.1) where individu-
als with persistent HPV infection do not transmit infection (i.e.,
θm = θf = 0), HPV will always persist in the population when-
ever the associated reproduction threshold (R1) exceeds unity, and
that Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all time t. Figure 3 depicts
solution profiles of the screening-free model, showing convergence
to the unique EEP (E1) for the case when R1 > 1 (in agreement
with Theorem 3.4). It is worth stating that although the conditions
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Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t are somewhat restrictive, ex-
tensive numerical simulations of the screening-free model (3.1) sug-
gest that the conditions always hold (all the extensive simulations
carried out support this claim).

The screening-free model (3.1) contains numerous parameters.
Hence, uncertainties can arise in the estimates of the values of these
parameters used in the numerical simulations of the model. To ac-
count for the effect of such uncertainties in the numerical simula-
tions of the screening-free model (3.1), a detailed uncertainty anal-
ysis (using Latin Hypercube Sampling (LHS) [8, 32, 33, 34, 46, 47])
is carried out. The implementation of the LHS technique entails
defining each parameter of the model as a distribution, and, subse-
quently, generating numerous LHS runs for a given output (which,
in this study, is the basic reproduction threshold, R0). Sensitiv-
ity analysis (using Partial Rank Correlation Coefficients (PRCC)
[32, 33, 34]) is also carried out to determine the key parameters of
the model that most influence the disease transmission dynamics
(i.e., parameters of the model (3.1) that most affect the value of the
basic reproduction threshold R0). Figure 4 depicts the box plots of
the basic reproduction number (R0), as a function of the 1000 LHS
runs carried out, using the baseline parameter values and ranges in
Table 5. For any given number of runs (NR), each box plot displays
the lower and upper quartile ranges of R0 (denoted by the lower
and upper horizontal lines on a box, respectively). The horizontal
line within a box denotes the median value (middle quartile) of R0.
The upper and lower whiskers denote the most extreme values for
R0 [47]. Values for R0 plotted beyond the whiskers are classified
as outliers. Figure 4 shows that the distribution of R0 lies in the
range R0 ∈ [3.55, 4.20], with a mean of R0 = 3.90 (which is in
line with the R0 values reported in [22, 45]). Furthermore, Table
6 shows the PRCC values of the parameters of the screening-free
model (3.1), from which it is clear that the most dominant parame-
ters are the average number of female sexual partners for males per
unit time (cf ), the average duration of sexual activity for females
and males (µf and µm), the infection probability for females and
males (βf and βm), the recruitment rate of new sexually-active indi-
viduals (πf and πm), modification parameter for the infectiousness
of individuals with persistent infection, relative to those in the cor-
responding symptomatic class (θf and θm) and the natural recovery
rate of infected females (rf1).
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In summery, the screening-free model (3.1) has the following dy-
namic features:

i) The disease-free equilibrium of the screening-free model (3.1)
is locally- and globally- asymptotically stable whenever the
associated reproduction number (R0) is less than unity. The
epidemiological implication of this result is that the community-
wide control (or elimination) of HPV (and related dyspla-
sia) is feasible if the basic reproduction number (R0) of the
screening-free model (3.1) can be reduced to (and main-
tained at) a value less than unity. This can be achieved
via the use of intervention strategies, such as Pap cytology
screening.

ii) The screening-free model (3.1) has a unique endemic equi-
librium point whenever the basic reproduction number (R0)
exceeds unity. This equilibrium is shown to be locally- and
globally- asymptotically stable for special cases.

iii) It is determined (based on the detailed uncertainty and sen-
sitivity analyses) that the most dominant parameters that
affect the disease transmission dynamics (as measured in
terms of increase in the value of the associated basic repro-
duction threshold, R0) are:
(a) the average number of female sexual partners for males

per unit time (cf );
(b) the average duration of sexual activity for females and

males (µf and µm);
(c) the infection probability for females and males (βf and

βm);
(d) the recruitment rate of new sexually-active individuals

for females and males (πf and πm);
(e) the modification parameters for the infectiousness of in-

dividuals with persistent infection (in relation to those
in the respective symptomatic class) (θf and θm);

(f) the natural recovery rate of infected females (rf1).

4. Analysis of Pap Screening Model

4.1. Asymptotic stability. The DFE of the Pap screening model
(2.3) is given by,
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E0s = (S∗f , E
∗
f , I
∗
f , P

∗
f , L

∗
fu, L

∗
fd, H

∗
fu, H

∗
fd, C

∗
fu, C

∗
fd, R

∗
fc, R

∗
f , S

∗
m,

E∗m, I
∗
m, P

∗
m, L

∗
m, H

∗
m, C

∗
m, R

∗
mc, R

∗
m)

=

(
πf
µf
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

πm
µm

, 0, 0, 0, 0, 0, 0, 0, 0

)
.

Using the next generation operator method (as in Section 3), it
follows that the associated next generation matrices, Fs and Vs,
are given, respectively, by:

Fs =

[
09×9 F1

F2 06×6

]
and Vs =

[
V1 06×6

010×10 V2

]
,

where (with 0n×n being the zero matrix of order n),

F1 =



βmcfS
∗
fηm

N∗m

βmcfS
∗
f

N∗m

βmcfS
∗
fθm

N∗m

βmcfS
∗
fθm

N∗m

βmcfS
∗
fθmθmh

N∗m
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

F2 =



βfcfηf βfcf βfcfθf 0 βfcf βfcfθfθfh 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

V1 =



h1 0 0 0 0 0 0 0 0

−σf h2 0 0 0 0 0 0 0

0 −(1− bf )ψf h3 −df2gf 0 −qf4zf 0 0 0
0 0 −(1− kf )αf h4 0 −qf2zf 0 0 0
0 0 0 −df3gf h5 0 0 0 0

0 0 0 −b1 0 h6 0 −jf2γf 0
0 0 0 0 0 −qf3zf h7 0 0

0 0 0 0 0 −b2 0 h8 0

0 0 0 0 0 0 0 −jf1γf h9


,
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V2 =



h10 0 0 0 0 0

−σm h11 0 0 0 0
0 −(1− bm)ψm h12 −dm2gm −qm3zm 0

0 0 −(1− km)αm h13 −qm2zm 0

0 0 0 −b3 h14 −jmγm
0 0 0 0 −b4 h15

,

with, b1 = [1− (df1 +df2 +df3)]gf , b2 = [1− (qf1 + qf2 + qf3 + qf4)],
b3 = [1−(dm1+dm2)]gm, b4 = [1−(qm1+qm2+qm3)]zm, h1 = σf+µf ,
h2 = ψf +µf , h3 = αf +µf , h4 = gf +µf , h5 = r1 +µf , h6 = zf +µf ,
h7 = r2 +µf , h8 = γf +µf + δfu, h9 = r3 +µf + δfd, h10 = σm+µm,
h11 = ψm +µm, h12 = αm +µm, h13 = gm +µm, h14 = zm +µm and
h15 = γm + µm.

It follows from [58] that the effective reproduction number (i.e.,
reproduction number in the presence of Pap screening) of the model
(2.3) is given by

R0s = ρ(FV −1) =
√
Rf Rm, (4.1)

where, Rf = ρ(F1V
−1

2 ) = A1

A2
and Rm = ρ(F2V

−1
1 ) = B1

B2
and,

A1 = βmcfπfµm(a3b3c10h15σmθm + a3b4c11h13σmθm

−a3h13h14h15σmθm + a4b3c9ηmh11h15 − a4b4c8c11ηmh11

+a4c8ηmh11h14h15 + b3c10ηmh11h12h15 + b4c11ηmh11h12h13

−ηmh11h12h13h14h15 + a4b3c9h15σm − a4b4c8c11σm

+a4c8h14h15σm + b3c10h12h15σm + b4c11h12h13σm

−h12h13h14h15σm),

A2 = µfπmh10h11(a4b3c9h15 − a4b4c8c11 + a4c8h14h15

+b3c10h12h15 + b4c11h12h13 − h12h13h14h15),

B1 = βfcf (a1b1c3h8σfθf + a1b2c5h4σfθf − a1h4h6h8σfθf

+a2b1c2ηfh2h8 − a2b2c1c5ηfh2 + a2c1ηfh2h6h8

+b1c3ηfh2h3h8 + b2c5ηfh2h3h4 − ηfh2h3h4h6h8

+a2b1c2h8σf − a2b2c1c5σf + a2c1h6h8σf + b1c3h3h8σf

+b2c5h3h4σf − h3h4h6h8σf ),

B2 = (a2b1c2h8 − a2b2c1c5 + a2c1h6h8 + b1c3h3h8

+b2c5h3h4 − h3h4h6h8)h1h2,

with a1 = (1− bf )ψf , a2 = (1− kf )αf , a3 = (1− bm)ψm, a4 =
(1− km)αm, c1 = df2gf , c2 = qf4zf , c3 = qf2zf , c4 = df3gf , c5 =
jf2γf , c6 = qf3zf , c7 = jf1γf , c8 = dm2gm, c9 = qm3zm, c10 =
qm2zm, c11 = jmγm. It can be shown that the quantities A1, A2, B1
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and B2 are positive (the calculations are lengthy, thus, not reported
here). Hence, the reproduction number, R0s, is positive. The result
below follows from Theorem 2 of [58].

Lemma 4.1. The DFE, E0s, of the Pap screening model (2.3) is
LAS if R0s < 1, and unstable if R0s > 1.

The associated threshold quantity,R0s, represents the average num-
ber of secondary HPV infections generated by one infected male
(female) in a susceptible male (female) population where a certain
fraction of susceptible females undergo routine Pap screening [30].
We claim the following result.

Theorem 4.1. The DFE, E0s, of the Pap screening model (2.3) is
GAS in Ds whenever R0s < 1.

Proof. The proof of Theorem 4.1 is given in Appendix E. �

The epidemiological implication of Theorem 4.1 is that HPV will
be eliminated from the community whenever the community-wide
implementation of the routine Pap screening program is effective
enough to bring (and maintain) the associated effective reproduc-
tion threshold (R0s) to a value less than unity. Figure 5 shows the
solution profiles of the model (2.3) converging to the DFE (E0s)
when R0s < 1 (in line with Theorem 4.1).

In summary, the analyses in Sections 3 and 4 show that the
screening-free model (3.1) and the Pap screening model (2.3) have
the same qualitative dynamics with respect to the asymptotic sta-
bility of the respective disease-free equilibrium (since the DFE of
each of the two models is GAS whenever its associated reproduc-
tion number is less than unity). Thus, this study shows that Pap
screening does not alter the asymptotic dynamics of the screening-
free model for HPV spread (with respect to the dynamics of the
disease-free equilibrium).

4.2. Simulations. Figure 6 depicts the box plots of the effective
reproduction number (R0s), as a function of the LHS runs car-
ried out, using the parameter values and ranges in Tables 2 and
3. This figure shows the distribution of R0s to be in the range
R0s∈ [1.45, 2.70] (which is in line with those reported in [16, 22, 45]).
Thus, although Pap screening reduces the range of the basic repro-
duction number (R0) of the screening-free HPV transmission model
(3.1) (from R0 ∈ [2.80, 4.95] to R0s ∈ [1.45, 2.70]), the community-
wide implementation of a routine Pap screening program for females
is insufficient (albeit it greatly reduces HPV burden) to lead to the
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effective control of HPV in the community (since the distribution of
R0s, depicted in Figure 6, exceed unity; and the disease will persist
in this case). Table 7 depicts the PRCC values of the parameters
of the Pap screening model (2.3), from which it is clear that the
most dominant parameters (that govern the dynamics of the Pap
screening model (2.3), with respect to the threshold quantity, R0s)
are the average number of female sexual partners for males per
unit time (cf ), the fraction of symptomatic females (males) who re-
covered naturally from HPV (bf (bm)), the infection probability for
individuals (βm and βf ), the recruitment rate of new sexually-active
individuals (πf and πm), the average duration of sexual activity (µf
and µm) and the transition rate out of the If (Im) class (ψf (ψm)).

The effect of the uncertainty in the estimates of the aforemen-
tioned eleven dominant (PRCC-ranked) parameters is further as-
sessed by simulating the Pap screening model (2.3) for the following
two scenarios:

(i) the baseline value of each of the top-eleven PRCC-ranked
parameters in Table 7 is increased by 10%;

(ii) the baseline value of each of the top-eleven PRCC-ranked
parameters in Table 7 is decreased by 10%.

It follows from Figure 7 that an increase (decrease) in the baseline
values of these top PRCC-ranked parameters lead to a correspond-
ing increase (decrease) in the numerical simulation results obtained
(cumulative number of HPV cases over a 10-year period), confirm-
ing the sensitivity of the simulation results on these parameters.
Figures 8 and 9 show similar sensitivities of these parameters on
the cumulative cervical cancer (for females) and HPV-related can-
cers (for males) cases, respectively.

The effect of the HPV transmission by individuals (sexually-
active females and males) in the pre-cancerous stages (both CIN
and INM) on the dynamics of HPV is assessed by simulating the
Pap screening model (2.3) in the presence, and absence, of such
transmission. Figure 10 shows that HPV transmission by individ-
uals with CIN and INM increases (in the long run) the cumulative
number of HPV cases. Thus, these simulations suggests that HPV
transmission models that do not incorporate HPV transmission by
individuals in the pre-cancerous (CIN and INM) stages may under-
estimate HPV (and, consequently, cancer) burden in the commu-
nity.

A contour plot of the effective reproduction number (R0s), as
a function of the fraction of symptomatic females who recovered
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naturally from HPV (bf ) and the fraction of symptomatic males
who recovered naturally from HPV (bm), is depicted in Figure 11.
As expected, the plot shows a decrease inR0s values with increasing
values of the fractions bf and bm. Furthermore, it shows that, based
on the parameter values in Tables 2 and 3 used in the simulations,
even if 100% of symptomatic females and males recover naturally
from HPV, the disease will still persist in the population (since such
recovery fails to reduce the effective reproduction number, R0s, to
a value less than unity; which is needed to eliminate the disease, in
line with Theorem 4.1).

Finally, the effect of Pap screening on the cumulative number
of cervical cancer cases is assessed by simulating the model (2.3)
with different values of the fraction of females with CIN detected.
Figure 12 confirms the effectiveness of Pap screening on minimizing
cervical cancer cases. For example, while detecting 25% of females
with CIN leads to about 65% reduction of cervical cancer cases in
the community over a 10-year period, detecting 50% of females with
CIN results in a 95% reduction of cervical cancer in the community
over the same time period.

Conclusions

A new deterministic model for the transmission dynamics of HPV
and related cancers in a community, where routine Pap cytology
screening is administrated for sexually-active females, is designed.
The model extends numerous other HPV transmission models in the
literature by incorporating more crucial aspects of HPV dynamics,
such as the dynamics of individuals (females and males) in the
pre-cancerous (CIN and INM) and cancerous stages. Furthermore,
the new model allows for the loss of infection-acquired immunity by
recovered individuals, and incorporates the regression from cervical
(for females) and other HPV-related cancers (for males) to high-
grade intraepithelial neoplasia stages (and from low- and high-grade
intraepithelial neoplasia stages to persistent infection). Some of the
main theoretical and numerical results obtained are summarized
below:

i) In the absence of Pap screening, the DFE of the result-
ing screening-free (basic) model is shown to be globally-
asymptotically stable whenever the associated reproduction
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number (R0) is less than unity. This model has a unique en-
demic equilibrium, which is shown to be locally- and globally-
asymptotically stable for special cases, whenever the asso-
ciated reproduction number (R0) exceeds unity.

ii) The disease-free equilibrium of the Pap screening model
(2.3) is locally- and globally-asymptotically stable when-
ever the associated reproduction number is less than unity.
Thus, the community-wide control or elimination of HPV
(and related dysplasia) is feasible if the community-wide
implementation of routine Pap screening could reduce (and
maintain) the associated reproduction number (R0s) to a
value less than unity.

iii) The parameters of the Pap screening model (2.3) that most
influence the disease transmission dynamics (with respect
to the effective reproduction threshold, R0s) are:
(a) the average number of female sexual partners for males

per unit time (cf );
(b) the fraction of symptomatic females (males) who recov-

ered naturally from HPV (bf (bm));
(c) the infection probability for females and males (βf and

βm);
(d) the recruitment rate of new sexually-active individuals

(πf and πm);
(e) the average duration of sexual activity (µf and µm);
(f) the average duration of sexual activity and the transi-

tion rate out of the If (Im) class (ψf (ψm)).
iv) Adding Pap screening to the screening-free model does not

alter the qualitative dynamics of the screening-free model
(with respect to the asymptotic stability of the disease-free
equilibrium).

v) Numerical simulations of the Pap screening model (3.1) sug-
gest that:
(a) HPV transmission by individuals with CIN and INM

increases (in the long run) the cumulative number of
new HPV cases;

(b) Pap screening is very effective in minimizing cervical
cancer cases. For instance, detecting 50% of females
with CIN results in a 95% reduction of cervical cancer
cases in the community over a 10-year period;
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(c) Pap screening alone is insufficient to lead to effective
control of HPV in the community (since it fails to re-
duce R0s to a value less than unity);

(d) HPV transmission models that do not include disease
transmission by individuals in the pre-cancerous stages
may underestimate HPV-associated burden in the com-
munity.
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APPENDICES

Appendix A. Description of the Pap Screening Model (2.3)

The derivation of the equations of the Pap screening model (2.3) is described below.

The population of susceptible females (Sf (t)) is generated by the recruitment of new

sexually-active females (at a rate πf ). This population is increased by the loss of infection-
acquired immunity by infected females who recovered from HPV-infection without developing

cervical cancer (at a rate ξf ). The population is decreased by the acquisition of HPV infec-

tion, following effective contact with infected males (i.e., males in the Em, Im, Pm, Lm and
Hm classes), at a rate λm, given by

λm =
βmcf (Nm, Nf ) [ηmEm + Im + θm(Pm + Lm + θmhHm)]

Nm
. (A.1)

In (A.1), βm is the probability of transmission of HPV infection from infected males to

susceptible females per contact, and cf (Nm, Nf ) is the average number of female partners
per male per unit time (hence, βmcf (Nm, Nf ) is the effective contact rate for male-to-female

transmission of HPV). Furthermore, 0 ≤ ηm < 1 is a modification parameter accounting for
the assumption that exposed males (in the Em class) are less infectious than symptomatically-

infected males, and θm > 0 models the assumed variability of the infectiousness of HPV-

infected males in the Pm, Lm and Hm classes in relation to HPV-infected males in the Em
and Im classes. Furthermore, θmh ≥ 1 accounts for the assumed increase of the infectiousness

of males with high-grade INM in comparison to infected males in the Pm and Lm classes.

The population of susceptible females is further diminished by natural death (at a rate µf ;
it is assumed that females in all epidemiological compartments suffer natural death at this

rate). Thus,
dSf

dt
= πf + ξfRf − (λm + µf )Sf . (A.2)

The population of females exposed to HPV (Ef (t)) is generated by the infection of susceptible

females (at the rate λm). Exposed females develop clinical symptoms of HPV (at a rate σf )
and suffer natural death. Thus,

dEf

dt
= λmSf − (σf + µf )Ef . (A.3)

The class of infected females with clinical symptoms of HPV (If (t)) is populated by the

development of clinical symptoms of HPV by exposed females (at the rate σf ). It is assumed
that a fraction, 0 ≤ bf ≤ 1, of members of this class recovers (at a rate bfψf ), while the

remaining fraction, 1 − bf , develops persistent HPV infection (at a rate (1 − bf )ψf ). This

population is further decreased by natural death. Thus,

dIf

dt
= σfEf − (ψf + µf )If . (A.4)

The population of females with persistent HPV infection (Pf (t)) is generated by the de-

velopment of persistent HPV infection by symptomatic females (at the rate (1 − bf )ψf ) as
well as by the reversion of individuals with low-grade and high-grade CIN (at a rate df2gf
and qf4zf , respectively; where the fractions df2 and qf4 are defined below). It is assumed

that detected individuals with CIN do not develop persistent HPV infection (since they are
expected to be effectively treated). Individuals move out of this class through recovery (at a

rate kfαf ; where kf is the fraction of females with persistent HPV infection that recovers; the

remaining fraction, 1− kf , progress to low-grade CIN stage), development of pre-cancerous
CIN lesions (at a rate (1− kf )αf ) and natural death. Hence,

dPf

dt
= (1− bf )ψf If + df2gfLfu + qf4zfHfu − (αf + µf )Pf . (A.5)

The population of females with undetected low-grade CIN (Lfu(t)) is generated by the
development of CIN lesions by females with persistent HPV infection (at the rate (1−kf )αf )

or by the regression of females with high-grade CIN (at a rate qf2zf ; where the fraction qf2
is defined below). Transition out of this class occurs at a rate gf (where a fraction, df1,

recovers; another fraction, df2, reverts to Pf class; yet another fraction, df3, is detected and
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the remaining fraction, 1− (df1 + df2 + df3), progresses to the high-grade CIN 2/3 stage).

Furthermore, this population is decreased by natural death. Thus,

dLfu

dt
= (1− kf )αfPf + qf2zfHfu − (gf + µf )Lfu. (A.6)

The population of females with detected low-grade CIN (Lfd(t)) is populated by the detection

of females in the Lfu(t) class (at the rate df3gf ). It is decreased by recovery (at a rate r1)

and natural death. Hence,

dLfd

dt
= df3gfLfu − (r1 + µf )Lfd. (A.7)

The population of females with undetected high-grade CIN 2/3 (Hfu(t)) is generated by the

progression of females with low-grade CIN (at the rate [1− (df1 + df2 + df3)]gf ) or by the
regression of individuals in the Cfu class (at a rate jf2γf ; where the fraction jf2 is defined

below). Transition out of this class occurs at a rate zf (where a fraction, qf1, recovers; a

fraction, qf2, reverts to the Lfu class; a fraction, qf3, is detected; another fraction, qf4,
reverts to the Pf class and the remaining fraction, 1− (qf1 + qf2 + qf3 + qf4), progresses to

the Cfu class). Furthermore, this population is decreased by natural death. Thus,

dHfu

dt
= [1− (df1 + df2 + df3)]gfLfu + jf2γfCfu − (zf + µf )Hfu. (A.8)

The population of females with detected high-grade CIN 2/3 (Hfd(t)) is populated by the
detection of females in the Hfu(t) class (at the rate qf3zf ). It is decreased by recovery (at

a rate r2) and natural death. Hence,

dHfd

dt
= qf3zfHfu − (r2 + µf )Hfd. (A.9)

The population of females with undetected cervical cancer (Cfu(t)) is generated by females

in the Hfu class who develop cervical cancer (at the rate [1 − (qf1 + qf2 + qf3 + qf4)]zf ).

Transition out of this class occurs at a rate γf (where a fraction, jf1, is detected; another
fraction, jf2, reverts to the Hfu class and the remaining fraction, 1− (jf1 + jf2), recovers).

Furthermore, it is decreased by natural death and cancer-related mortality (at a rate δfu).
Thus,

dCfu

dt
= [1− (qf1 + qf2 + qf3 + qf4)]zfHfu − (γf + µf + δfu)Cfu. (A.10)

The population of females with detected cervical cancer (Cfd(t)) is populated by the detection
of females in the Cfu(t) compartment (at the rate jf1γf ). It is diminished by the recovery

(at a rate r3), natural death and cancer-related mortality (at a rate δfd). Hence,

dCfd

dt
= jf1γfCfu − (r3 + µf + δfd)Cfd. (A.11)

The population of females who recovered from cervical cancer (Rfc(t)) is generated by the
recovery of females with undetected (at the rate [1 − (jf1 + jf2)]γf ) and detected (at the
rate r3) cervical cancer. Like in other epidemiological classes, females in this class also suffer
natural death (at the rate µf ). Hence,

dRfc

dt
= [1− (jf1 + jf2)]γfCfu + r3Cfd − µfRfc. (A.12)

The population of females who recovered from HPV infection without developing cervical
cancer (Rf (t)) is populated by the recovery of females in the If , Pf , Lfu, Lfd, Hfu and
Hfd classes (at the rates bfψf , kfαf , df1gf , r1, qf1zf and r2, respectively). It is decreased

by the loss of infection acquired immunity (at the rate ξf ) and natural death, so that

dRf

dt
= bfψf If +kfαfPf +df1gfLfu+ r1Lfd+ qf1zfHfu+ r2Hfd− (ξf +µf )Rf . (A.13)

The population of susceptible males (Sm(t)) is generated by the recruitment of new

sexually-active males (at a rate πm). This population is further increased by the loss of

infection-acquired immunity by infected males who recovered from HPV infection without
developing HPV-related cancer (at a rate ξm). The population is decreased by the acquisition
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of HPV infection, following effective contact with infected females (in the Ef , If , Pf , Lfu,

Lfd, Hfu and Hfd classes), at a rate λf , given by

λf =
βf cm(Nm, Nf )

{
ηfEf + If + θf

[
(Pf + Lfu + θfhHfu + ν

(
Lfd + θuHfd

)]}
Nf

.

(A.14)

In (A.14), βf is the probability of transmission of HPV infection from infected females to
susceptible males per contact, and cm(Nm, Nf ) is the average number of male partners per

female per unit time. Similarly, 0 ≤ ηf < 1 is a modification parameter accounting for the
assumption that exposed females (in the Ef class) are less infectious than symptomatically-

infected females, and θf > 0 models the assumed variability of the infectiousness of HPV-

infected females in the Pf , Lfu, Lfd, Hfu and Hfd classes in relation to the infectiousness
of females in the Ef and If classes. Furthermore, θfh > 1(θu > 1) accounts for the as-

sumed increase of the infectiousness of females with undetected (detected) high-grade CIN,

in comparison to those in the Pf and Lfu (Lfd) classes. The parameter ν > 0 models the
variability of the infectiousness of females with detected CIN, in relation to the infectiousness

of females with undetected CIN. The population of susceptible males is further diminished

by natural death (at a rate µm; it is assumed that males in all epidemiological compartments
suffer natural death at this rate). Thus,

dSm

dt
= πm + ξmRm − (λf + µm)Sm. (A.15)

The population of exposed males (Em(t)) is generated by the infection of susceptible males
(at the rate λf ). Exposed males develop clinical symptoms of HPV (at a rate σm) and suffer

natural death. Thus,
dEm

dt
= λfSm − (σm + µm)Em. (A.16)

The class of infected males with clinical symptoms of HPV (Im(t)) is populated by the

development of clinical symptoms of HPV by exposed males (at the rate σm). It is assumed
that a fraction, 0 ≤ bm ≤ 1, of individuals in this class recovers (at a rate bmψm), while the

remaining fraction, 1−bm, develops persistent HPV infection (at the rate (1−bm)ψm). This

population is further decreased by natural death. Thus,

dIm

dt
= σmEm − (ψm + µm)Im. (A.17)

The population of males with persistent HPV infection (Pm(t)) is generated by the develop-

ment of persistent HPV infection by symptomatic males (at the rate (1− bm)ψm) as well as
by the reversion of males with low-grade and high-grade INM (at a rate d2gm and qm3zm,

respectively; where the fractions d2 and qm3 are defined below). Individuals move out of this
class through recovery (at a rate kmαm; where km is the fraction of males in this class that
recovers; the remaining fraction, 1 − km, progresses to low grade INM stage), development

of pre-cancerous INM lesions (at a rate (1− km)αm) and natural death. Hence,

dPm

dt
= (1− bm)ψmIm + dm2gmLm + qm3zmHm − (αm + µm)Pm. (A.18)

The population of males with the low-grade INM (Lm(t)) is generated by the development of

INM lesions by males with persistent infection (at the rate (1− km)αm) or by the regression

of males in the Hm class (at a rate qm2zm). Transition out of this class occurs at a rate gm
(where a fraction, dm1, recovers; another fraction, dm2, reverts to Pm class and the remaining

fraction, 1 − (dm1 + dm2), progresses to the high-grade INM 2/3 stage). Furthermore, this
population is decreased by natural death. Thus,

dLm

dt
= (1− km)αmPm + qm2zmHm − (gm + µm)Lm. (A.19)

The population of males with the high-grade INM 2/3 (Hm(t)) is generated by the progression
of infected males with INM (at the rate [1−(dm1+dm2)]gm) or regression of males in the Cm
class (at a rate jmγm; where the fraction jm is defined below). Transition out of this class
occurs at a rate zm (where a fraction, qm1, recovers; a fraction, qm2, reverts to the Lm class;
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another fraction, qm3, reverts to Pm class and the remaining fraction, 1− (qm1 +qm2 +qm3),

progresses to class Cm). Furthermore, the population is decreased by natural death. Thus,

dHm

dt
= [1− (dm1 + dm2)]gmLm + jmγmCm − (zm + µm)Hm. (A.20)

The population of males with HPV-related cancer (Cm(t)) is generated by males in the Hm
class who develop HPV-related cancer (at the rate [1− (qm1 + qm2 + qm3)]zm). Transition

out of the class occurs at a rate γm (where a fraction, jm, reverts to the Hm class and the
remaining fraction, 1−jm, recovers). Furthermore, it is decreased by natural death (it should

be mentioned that since HPV-related cancer, such as penile cancer, is rare in males [59], no

mortality due to HPV-related cancer is assumed for males). Thus,

dCm

dt
= [1− (qm1 + qm2 + qm3)]zmHm − (γm + µm)Cm. (A.21)

The population of males who recovered from HPV-related cancer (Rmc(t)) is generated by

the recovery of males with HPV-related cancer (at the rate (1 − jm)γm). It is reduced by
natural death. Hence,

dRmc

dt
= (1− jm)γmCm − µmRmc. (A.22)

The population of males who recovered from HPV infection without developing HPV-related

cancer (Rm(t)) is populated by the recovery of males in the Im, Pm, Lm and Hm classes
(at the rates bmψm, kmαm, dm1gm, and qm1zm, respectively). It is decreased by the loss of

infection acquired immunity (at the rate ξm) and natural death, so that

dRm

dt
= bmψmIm + kmαmPm + dm1gmLm + qm1zmHm − (ξm + µm)Rm. (A.23)

It is worth stating, from the equations given in {(A.15)− (A.23)}, that

dNm(t)

dt
= πm − µmNm(t), so that Nm(t) −→

πm

µm
, as t −→∞. (A.24)

Furthermore, since the model {(A.2) - (A.23)} is a sex-structured one, it is crucial that the
conservation law of sexual contacts (i.e., the total number of sexual contacts made by males

balances that made by females) is preserved in the heterosexual community [45]. Hence, for

the model {(A.2) - (A.23)},

cm(Nm, Nf ) Nm = cf (Nm, Nf ) Nf . (A.25)

It is assumed that male sexual partners are abundant, and that females can have enough
number of male sexual partners per unit time (so that it is reasonable to assume that

cf (Nm, Nf ) = cf a constant). Hence, (A.25) can be re-written as

cm(Nm, Nf ) =
cfNf

Nm
. (A.26)

It is assumed (for mathematical convenience), from the now on, that only undetected infected

females with low- or high-grade CIN can transmit HPV infection to males (i.e., ν = 0).
Consequently, using (A.25) in (A.1) and (A.14), the force of infections, λm and λf , are now
re-written, respectively, as

λm =
βmcf [ηmEm + Im + θm(Pm + Lm + θmhHm)]

Nm
, (A.27)

λf =
βf cf

[
ηfEf + If + θf (Pf + Lfu + θfhHfu)

]
Nm

.
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Appendix B. Proof of Theorem 3.1

Proof. Consider the screening-free model (3.1). The proof is based on using a Comparison

Theorem [41]. It is worth mentioning, first of all, that since the off-diagonal entries of the
Jacobian matrix of the infected components of the screening-free (3.1), at the DFE (E0),

are non-negative, the system (3.1) satisfies the Type K condition [41]. Hence, comparison

theorem can be used.
Let R0 < 1 (so that the DFE, E0, of the screening-free model (3.1) is LAS, in line with

Lemma 3.2). The infected components of the model (3.1) can be re-written as:

dx

dt
= (F − V)x− Jx, (B.1)

where,x = [Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Em(t), Im(t), Pm(t), Qm(t),

Cm(t), Rmc(t), Rm(t)]T ,

where the matrices F and V are as defined in Section 3.1, and

J =

[
1−

µfSf (t)

πf

]
J1 +

[
1−

µmSm(t)

πm

]
J2,

where,

J1 =

(
07×7 J1
07×7 07×7

)
, J2 =

(
07×7 07×7

J2 07×7

)
,

with,

J1 =



0
βmcfπfµm

πmµf

βmcf θmπfµm

πmµf
0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

J2 =



0 βf cf βf cfθf 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

It is worth noting that J1 and J2 are non-negative matrices. Furthermore, since, for all

t ≥ 0 in Ds, Sf (t) ≤ Nf (t) ≤ πf

µf
and Sm(t) ≤ Nm(t) ≤ πm

µm
, it follows that,

µfSf (t)

πf
≤

1 and
µmSm(t)

πm
≤ 1. Hence, J is a non-negative matrix. Thus, it follows, from (B.1), that

dx

dt
≤ (F − V)x.. (B.2)

Using the fact that the eigenvalues of the matrix F − V all have negative real parts when
R0 < 1 (based on the local asymptotic stability result given in Lemma 3.2), it follows that the

linear differential inequality system (B.2) is stable whenever R0 < 1. Hence, by Comparison
Theorem [41],

lim
t→∞

(Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Em(t), Im(t), Pm(t), Qm(t), Cm(t),

Rmc(t), Rm(t)) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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Substituting Ef (t) = If (t) = Pf (t) = Qf (t) = Cf (t) = Rfc(t) = Rf (t) = Em(t) = Im(t) =

Pm(t) = Qm(t) = Cm(t) = Rmc(t) = Rm(t) = 0 into the first and ninth equations of the

model (3.1) shows that Sf (t)→ S∗f and Sm(t)→ S∗m as t→∞ (for R0 < 1). Thus,

lim
t→∞

(Sf (t), Ef (t), If (t), Pf (t), Qf (t), Cf (t), Rfc(t), Rf (t), Sm(t)Em(t), Im(t), Pm(t),

Qm(t), Cm(t), Rmc(t), Rm(t)) = E0.

�

Appendix C. Proof of Theorem 3.3

Proof. Consider the screening-free model (3.1). Let R0 > 1 (so that the unique EEP (E1) of

the screening-free (3.1) exists, by Theorem 3.2), δf = 0 (hence, Nf (t) = N∗f =
πf

µf
at steady-

state) and ∆ 6= 0. Thus (using N∗f =
πf

µf
), and Sf (t) = N∗f (t) − Ef (t) − If (t) − Pf (t) −

Qf (t) − Cf (t) − Rfc(t) − Rf (t) and Sm(t) = N∗m(t) − Em(t) − Im(t) − Pm(t) − Qm(t) −
Cm(t) − Rmc(t) − Rm(t), it is sufficient to study the following limiting system (instead of

the system (3.1)):

dEf

dt
= λm(N∗f − Ef − If − Pf −Qf − Cf −Rfc −Rf )− (σf + µf )Ef ,

dIf

dt
= σfEf − (rf1 + ψf + µf )If ,

dPf

dt
= ψf If − (rf2 + αf + µf )Pf ,

dQf

dt
= αfPf − (rf3 + gf + µf )Qf ,

dCf

dt
= gfQf − (rf4 + µf + δf )Cf ,

dRfc

dt
= rf4Cf − µfRfc,

dRf

dt
= rf1If + rf2Pf + rf3Qf − µfRf , (C.1)

dEm

dt
= λf (N∗m − Em − Im − Pm −Qm − Cm −Rmc −Rm)− (σm + µm)Em,

dIm

dt
= σmEm − (rm1 + ψm + µm)Im,

dPm

dt
= ψmIm − (rm2 + αm + µm)Pm,

dQm

dt
= αmPm − (rm3 + gm + µm)Qm,

dCm

dt
= gmQm − (rm4 + µm)Cm,

dRmc

dt
= rm4Cm − µmRmc,

dRm

dt
= rm1Im + rm2Pm + rm3Qm − µmRm.

Consider, next, the model (C.1) with R0 > 1. The proof is based on showing that the
linearization of the model (C.1), around the associated EEP (E1), has no solution of the form

[23, 24, 55]

Z̄(t) = Z̄0e
wt, (C.2)

with Z̄0 = (Z1, Z2, · · · , Z14), Zi ∈ C, w ∈ C, and Re(w) ≥ 0. The consequence of this is

that the eigenvalues of the characteristic polynomial associated with the linearized version
of model (C.1) will have negative real part (in which case, the EEP (E1) is LAS).



616 ALI JAVAME AND A. B. GUMEL

Let E∗∗f , I∗∗f , P ∗∗f , Q∗∗f , C
∗∗
f , R∗∗fc, R

∗∗
f , E∗∗m , I∗∗m , P ∗∗m , Q∗∗m , C

∗∗
m , R∗∗mc, R

∗∗
m denote the coor-

dinates of the endemic equilibrium, EEP . Substituting the solution of the form (C.2), into
the linearized system of (C.1) around (E1), gives the following system of linear equations:

wZ1 = −(λ∗∗m + h1)Z1 − λ∗∗mZ2 − λ∗∗mZ3 − λ∗∗mZ4 − λ∗∗mZ5 − λ∗∗mZ6 − λ∗∗mZ7

+A∗∗1 Z9 + θmA
∗∗
1 Z10,

wZ2 = σfZ1 − h2Z2,

wZ3 = ψfZ2 − h3Z3,

wZ4 = αfZ3 − h4Z4,

wZ5 = gfZ4 − h5Z5,

wZ6 = rf4Z5 − µfZ6,

wZ7 = rf1Z2 + rf2Z3 + rf3Z4 − µfZ7, (C.3)

wZ8 = A∗∗2 Z2 + θfA
∗∗
2 Z3 − (λ∗∗f + h6)Z8 − λ∗∗f Z9 − λ∗∗f Z10 − λ∗∗f Z11 − λ∗∗f Z12

−λ∗∗f Z13 − λ∗∗f Z14,

wZ9 = σmZ8 − h7Z9,

wZ10 = ψmZ9 − h8Z10,

wZ11 = αmZ10 − h9Z11,

wZ12 = gmZ11 − h10Z12,

wZ13 = rm4Z12 − µmZ13,

wZ14 = rm1Z9 + rm2Z10 + rm3Z11 − µmZ14,

where,

A∗∗1 =
βmcf (N∗f − E

∗∗
f − I

∗∗
f − P

∗∗
f −Q

∗∗
f − C

∗∗
f −R

∗∗
fc −R

∗∗
f )

N∗∗m
,

A∗∗2 =
βf cf (N∗m − E∗∗m − I∗∗m − P ∗∗m −Q∗∗m − C∗∗m −R∗∗mc −R∗∗m )

N∗∗m
.

Solving for Z2 from the second equation of and also for Z9 from the ninth equation of (C.3)
and substituting the results into the remaining equations of (C.3), gives the following system
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{
1 +

1

h1

[
w + λ∗∗m

(
1 +

σf

w + h2

)]}
Z1 = −

λ∗∗m
h1

Z3 −
λ∗∗m
h1

Z4 −
λ∗∗m
h1

Z5 −
λ∗∗m
h1

Z6

−
λ∗∗m
h1

Z7 +
A∗∗1
h1

Z9 +
θmA∗∗1
h1

Z10,(
1 +

w

h2

)
Z2 =

σf

h2
Z1,(

1 +
w

h3

)
Z3 =

ψf

h3
Z2,(

1 +
w

h4

)
Z4 =

αf

h4
Z3,(

1 +
w

h5

)
Z5 =

gf

h5
Z4,(

1 +
w

µf

)
Z6 =

rf4

µf
Z5,(

1 +
w

µf

)
Z7 =

rf1

µf
Z2 +

rf2

µf
Z3 +

rf3

µf
Z4,{

1 +
1

h6

[
w + λ∗∗f

(
1 +

σm

w + h7

)]}
Z8 =

A∗∗2
h6

Z2 +
θfA

∗∗
2

h6
Z3 −

λ∗∗f

h6
Z10 −

λ∗∗f

h6
Z11

−
λ∗∗f

h6
Z12 −

λ∗∗f

h6
Z13 −

λ∗∗f

h6
Z14,(

1 +
w

h7

)
Z9 =

σm

h7
Z8,(

1 +
w

h8

)
Z10 =

ψm

h8
Z9,(

1 +
w

h9

)
Z11 =

αm

h9
Z10,(

1 +
w

h10

)
Z12 =

gm

h10
Z11,(

1 +
w

µm

)
Z13 =

rm4

µm
Z12,(

1 +
w

µm

)
Z14 =

rm1

µm
Z9 +

rm2

µm
Z10 +

rm3

µm
Z11.

Adding the first, third, fourth, fifth, sixth and seventh and then the eighth, tenth, eleventh,

twelfth, thirteenth and fourteenth equations of (C.3), and finally moving all the negative
terms to the left-hand sides gives

[1 + F1(w)]Z1 + [1 + F3(w)]Z3 + [1 + F4(w)]Z4 + [1 + F5(w)]Z5 + [1 + F6(w)]Z6

+ [1 + F7(w)]Z7 =
(
HZ̄

)
1

+
(
HZ̄

)
3

+
(
HZ̄

)
4

+
(
HZ̄

)
5

+
(
HZ̄

)
6

+
(
HZ̄

)
7
,

[1 + F2(w)]Z2 =
(
HZ̄

)
2
, (C.4)

[1 + F8(w)]Z8 + [1 + F10(w)]Z10 + [1 + F11(w)]Z11 + [1 + F12(w)]Z12 + [1 + F13(w)]Z13

+ [1 + F14(w)]Z14 =
(
HZ̄

)
8

+
(
HZ̄

)
10

+
(
HZ̄

)
11

+
(
HZ̄

)
12

+
(
HZ̄

)
13

+
(
HZ̄

)
14
,

[1 + F9(w)]Z9 =
(
HZ̄

)
9
,

where,
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F1(w) =
1

h1

[
w + λ∗∗m

(
1 +

σf

w + h2

)]
, F2(w) =

w

h2
,

F3(w) =
1

h3

(
w +

h3λ∗∗m
h1

)
, F4(w) =

1

h4

(
w +

h4λ∗∗m
h1

)
,

F5(w) =
1

h5

(
w +

h5λ∗∗m
h1

)
, F6(w) =

1

µf

(
w +

µfλ
∗∗
m

h1

)
,

F7(w) =
1

µf

(
w +

µfλ
∗∗
m

h1

)
, F8(w) =

1

h6

[
w + λ∗∗f

(
1 +

σm

w + h7

)]
,

F9(w) =
w

h7
, F10(w) =

1

h8

(
w +

h8λ∗∗f

h6

)
,

F11(w) =
1

h9

(
w +

h9λ∗∗f

h6

)
, F12(w) =

1

h10

(
w +

h10λ∗∗f

h6

)
,

F13(w) =
1

µm

(
w +

µmλ∗∗f

h6

)
, F14(w) =

1

µm

(
w +

µmλ∗∗f

h6

)
,

with H equals to:

0 0 0 0 0 0 0 0
A∗∗

1
h1

θmA
∗∗
1

h1
0 0 0 0

σf
h2

0 0 0 0 0 0 0 0 0 0 0 0 0

0
ψf

h3
0 0 0 0 0 0 0 0 0 0 0 0

0 0
αf

h4
0 0 0 0 0 0 0 0 0 0 0

0 0 0
gf
h5

0 0 0 0 0 0 0 0 0 0

0 0 0 0
rf4
µf

0 0 0 0 0 0 0 0 0

0
rf1

µf

rf2

µf

rf3

µf
0 0 0 0 0 0 0 0 0 0

0
A∗∗

2
h6

θfA
∗∗
2

h6
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 σm
h7

0 0 0 0 0 0

0 0 0 0 0 0 0 0 ψm
h8

0 0 0 0 0

0 0 0 0 0 0 0 0 0 αm
h9

0 0 0 0

0 0 0 0 0 0 0 0 0 0 gm
h10

0 0 0

0 0 0 0 0 0 0 0 0 0 0 rm4
µm

0 0

0 0 0 0 0 0 0 0 rm1
µm

rm2
µm

rm3
µm

0 0 0



.

It should be noted note that the notation H(Z̄)i (with i = 1, . . . , 14) denotes the ith coor-
dinate of vector H(Z̄). Furthermore, the matrix H has no negative entries, and the EEP

E1 = (E∗∗f , I∗∗f , P ∗∗f , Q∗∗f , C
∗∗
f , R∗∗fc, R

∗∗
f , E∗∗m , I∗∗m , P ∗∗m , Q∗∗m , C

∗∗
m , R∗∗mc, R

∗∗
m ) satisfies E1 =

HE1. Furthermore, since the coordinates of the EEP, E1, are all positive, it follows that if Z̄

is a solution of (C.4), then it is possible to find a minimal positive real number, s, such that
|Z̄|≤ s E1,

where |Z̄|= (|Z1|, . . . , |Z9|), and |.| is a norm in C. The task ahead is to show that Re(w) < 0.

It will be proved by contradiction. Assume the first case w = 0 then, (C.3) is a homogeneous
linear system in the variables Zi (i = 1, . . . , 14). The determinant of this system corresponds

to that of the Jacobian of the system (C.1), evaluated at E1, given by, ∆ = µfµm(D1D2−D3).

It should be recalled that ∆ 6= 0 (Theorem 3.3). Hence, the linear system (C.3) can only
have the trivial solution which contradicts the existence of the EEP, E1. Now consider the

case when w 6= 0 for which Re (Fi(w)) ≥ 0 (i = 1, . . . , 14) since, by assumption, Re w ≥ 0. It

means that |1 + Fi(w)| > 1 for all i. Now, by defining F (w) = min|1 + Fi(w)|, i = 1, . . . , 14,

we obtain F (w) > 1. Hence,
s

F (w)
< s. The minimality of s implies that |Z̄|>

s

F (w)
E1. On

the other hand, taking norms of both sides of the forth equation of (C.4), and using the fact
that all the entries of H are non-negative, gives,

F (w)|Z9| ≤ H(|Z|)9 ≤ s(H|E1|)9 ≤ sI∗∗m .
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Hence, |Z9| ≤
s

F (w)
I∗∗m which is a contradiction. Thus, Re w < 0. Hence, the unique

endemic equilibrium (E1) of the model (3.1) is LAS whenever R0 > 1, δf = 0 and ∆ 6= 0. �

Appendix D. Proof of Theorem 3.4

Proof. Consider the screening-free model (3.1), with R1 > 1 (so that its unique EEP (E1)
exists, by Theorem 3.2). Furthermore, let Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t. It should be

noted, first of all, that none of the state variables Rfc(t), Rf (t), Rmc(t) and Rm(t) feature in

any of the other equations of the model (3.1). Thus, the equations for Rfc(t), Rf (t), Rmc(t)

and Rm(t) can be temporarily removed from the analysis.
Consider, next, the following non-linear Lyapunov function for the sub-model (consisting

of the equations for the variables Sf , Ef , If , Pf , Qf , Cf , Em, Im, Pm, Qm and Cm) of the

screening-free model (3.1):

F =

(
Sf − S∗∗f − S

∗∗
f ln

Sf

S∗∗f

)
+

(
Ef − E∗∗f − E

∗∗
f ln

Ef

E∗∗f

)

+b1

(
If − I∗∗f − I

∗∗
f ln

If

I∗∗f

)
+ b2

(
Pf − P ∗∗f − P

∗∗
f ln

Pf

P ∗∗f

)

+b3

(
Qf −Q∗∗f −Q

∗∗
f ln

Qf

Q∗∗f

)
+ b4

(
Cf − C∗∗f − C

∗∗
f ln

Cf

C∗∗f

)
(
Sm − S∗∗m − S∗∗m ln

Sm

S∗∗m

)
+

(
Em − E∗∗m − E∗∗m ln

Em

E∗∗m

)
(D.1)

+b5

(
Im − I∗∗m − I∗∗m ln

Im

I∗∗m

)
+ b6

(
Pm − P ∗∗m − P ∗∗m ln

Pm

P ∗∗m

)
+b7

(
Qm −Q∗∗m −Q∗∗m ln

Qm

Q∗∗m

)
+ b8

(
Cm − C∗∗m − C∗∗m ln

Cm

C∗∗m

)
,

where,

b1 =
βmcfµmS

∗∗
f I∗∗m

σfπmE
∗∗
f

, b2 =
βmcfµmS

∗∗
f I∗∗m

ψfπmI
∗∗
f

, b3 =
βmcfµmS

∗∗
f I∗∗m

αfπmP
∗∗
f

, b4 =
βmcfµmS

∗∗
f I∗∗m

gfπmQ
∗∗
f

,

b5 =
βf cfµmS

∗∗
m I∗∗f

σmπmE∗∗m
, b6 =

βf cfµmS
∗∗
m I∗∗f

ψmπmI∗∗m
, b7 =

βf cfµmS
∗∗
m I∗∗f

αmπmP ∗∗m
, b8 =

βf cfµmS
∗∗
m I∗∗f

gmπmQ∗∗m
.

The Lyapunov derivative of (D.1) is given by
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Ḟ =

(
1−

S∗∗f

Sf

)[
πf −

(
βmcfµmIm

πm
+ µf

)
Sf

]

+

(
1−

E∗∗f

Ef

)[
βmcfµmIm

πm
Sf − (σf + µf )Ef

]

+b1

(
1−

I∗∗f

If

)[
σfEf − (rf1 + ψf + µf )If

]
+b2

(
1−

P ∗∗f

Pf

)[
ψf If − (rf2 + αf + µf )Pf

]
+b3

(
1−

Q∗∗f

Qf

)[
αfPf − (rf3 + gf + µf )Qf

]
+b4

(
1−

C∗∗f

Cf

)[
gfQf − (rf4 + µf + δf )Cf

]
(D.2)

+

(
1−

S∗∗m
Sm

)[
πm −

(
βf cfµmIf

πm
+ µm

)
Sm

]
+

(
1−

E∗∗m
Em

)[
βf cfµmIf

πm
Sm − (σm + µm)Em

]
+b5

(
1−

I∗∗m
Im

)
[σmEm − (rm1 + ψm + µm)Im]

+b6

(
1−

P ∗∗m
Pm

)
[ψmIm − (rm2 + αm + µm)Pm]

+b7

(
1−

Q∗∗m
Qm

)
[αmPm − (rm3 + gm + µm)Qm]

+b8

(
1−

C∗∗m
Cm

)
[gmQm − (rm4 + µm)Cm] .

The following relations, at the endemic steady-state (obtained from the associated sub-model

of the model (3.1)), will be used to simplify (D.2):

πf =
βmcfµm

πm
I∗∗m S∗∗f + µfS

∗∗
f , σf + µf =

βmcfµm

πm

I∗∗m S∗∗f

E∗∗f
, rf1 + ψf + µf = σf

E∗∗f

I∗∗f
,

rf2 + αf + µf = ψf
I∗∗f

P ∗∗f
, rf3 + gf + µf = αf

P ∗∗f

Q∗∗f
, rf4 + µf + δf = gf

Q∗∗f

C∗∗f
, (D.3)

πm =
βf cfµm

πm
I∗∗f S∗∗m + µmS

∗∗
m , σm + µm =

βf cfµm

πm

I∗∗f S∗∗m

E∗∗m
, rm1 + ψm + µm = σm

E∗∗m
I∗∗m

,

rm2 + αm + µm = ψm
I∗∗m
P ∗∗m

, rm3 + gm + µm = αm
P ∗∗m
Q∗∗m

, rm4 + µm = gm
Q∗∗m
C∗∗m

.

Substituting (D.3) into (D.2), and simplifying, gives

Ḟ ≤ µfS
∗∗
f

(
2−

S∗∗f

Sf
−

Sf

S∗∗f

)
+ µmS

∗∗
m

(
2−

S∗∗m
Sm
−
Sm

S∗∗m

)

+ M1

(
7−

S∗∗f

Sf
−
ImSfE

∗∗
f

I∗∗m S∗∗f Ef
−
Ef I

∗∗
f

E∗∗f If
−
IfP

∗∗
f

I∗∗f Pf
−
PfQ

∗∗
f

P ∗∗f Qf
−

Cf

C∗∗f
−
QfC

∗∗
f

Q∗∗f Cf

)
(D.4)

+ M2

(
7−

S∗∗m
Sm
−

IfSmE
∗∗
m

I∗∗f S∗∗m Em
−
EmI∗∗m
E∗∗m Im

−
ImP ∗∗m
I∗∗m Pm

−
PmQ∗∗m
P ∗∗m Qm

−
Cm

C∗∗m
−
QmC∗∗m
Q∗∗mCm

)
,

where,
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M1 =
βmcfµm

πm
S∗∗f I∗∗m > 0 and M2 =

βf cfµm

πm
S∗∗m I∗∗f > 0.

Since the arithmetic mean exceeds the geometric mean, it follows that the parentheses of
(D.4) are negative. Hence, Ḟ ≤ 0. Furthermore,

lim
t→∞

(Sf (t), Ef (t), If (t), Pf (t), Qf (t), Cf (t), Sm(t), Em(t), Im(t), Pm(t), Qm(t), Cm(t))

→ (S∗∗f , E∗∗f , I∗∗f , P ∗∗f , Q∗∗f , C
∗∗
f , S∗∗m , E∗∗m , I∗∗m , P ∗∗m , Q∗∗m , C

∗∗
m ).

Substituting
(
If (t), Pf (t), Qf (t), Im(t), Pm(t), Qm(t)

)
=
(
I∗∗f , P ∗∗f , Q∗∗f , I

∗∗
m , P ∗∗m , Q∗∗m

)
into

the model (3.1) shows that
(
Rfc(t), Rf (t), Rmc(t), Rm(t)

)
→
(
R∗∗fc, R

∗∗
f , R∗∗mc, R

∗∗
m

)
as t →

∞. Hence, the unique endemic equilibrium of the screening-free model (3.1), with θm = θf =

0, is GAS in D\D0 whenever R1 > 1, Sf (t) ≤ S∗∗f and Sm(t) ≤ S∗∗m for all t. �

Appendix E. Proof of Theorem 4.1

Proof. Consider the Pap screening model (2.3). The proof is based on using a Comparison

Theorem [41]. As in Appendix B, it can be shown that the system (2.3) satisfies Type K
condition (hence, Comparison theorem can be used).

Let R0s < 1 (so that the DFE, E0s, is LAS, in line with Lemma 4.1). The infected

components of the model (2.3) can be re-written as:

dxs

dt
= (Fs − Vs)xs − Jsxs, (E.1)

where,

xs = [Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hft(t), Cfu(t), Cfd(t), Rfc(t), Rf (t),

Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t)]T ,

with the matrices Fs and Vs are as defined in Section 4, and

Js =

[
1−

µfSf (t)

πf

]
J1 +

[
1−

µmSm(t)

πm

]
J2,

where,

J1 =

[
011×11 J1
011×8 08×8

]
and J2 =

[
011×11 08×11

J2 08×8

]
,

with,

J1 =



u1 u2 u3 u4 u5 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,
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where u1 =
βmcfηmπfµm

µfπm
, u2 =

βmcfπfµm

µfπm
, u3 =

βmcf θmπfµm

µfπm
, u4 =

βmcf θmπfµm

µfπm
and

u5 =
βmcf θmθmhπfµm

µfπm
,

J2 =



βf cfηf βf cf βf cfθf βf cfθf 0 βf cfθfθfh 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0


.

It is worth noting that J1 and J2 are non-negative matrices. Furthermore, since, for all t ≥ 0

in D,

Sf (t) ≤ Nf (t) ≤
πf

µf
and Sm(t) ≤ Nm(t) ≤

πm

µm
,

it follows that,

µfSf (t)

πf
≤ 1 and

µmSm(t)

πm
≤ 1.

Hence, J is a non-negative matrix. Thus, it follows, from (E.1), that

dxs

dt
≤ (Fs − Vs)xs. (E.2)

Using the fact that the eigenvalues of the matrix Fs − Vs all have negative real parts when

R0s < 1 (based on the local asymptotic stability result given in Lemma 4.1), it follows

that the linear differential inequality system (E.2) is stable whenever R0s < 1. Hence, by
Comparison Theorem [41],

lim
t→∞

(Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hfd(t), Cfu(t), Cfd(t), Rfc(t),

Rf (t), Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t))

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Substituting Ef (t) = If (t) = Pf (t) = Lfu(t) = Lfd(t) = Hfu(t) = Hfd(t) = Cfu(t) =
Cfd(t) = Rfc(t) = Rf (t) = Em(t) = Im(t) = Pm(t) = Lm(t) = Hm(t) = Cm(t) =

Rmc(t) = Rm(t) = 0 into the first and thirteenth equations of the model (2.3) shows that
Sf (t)→ S∗f and Sm(t)→ S∗m as t→∞ (for R0s < 1). Thus,

lim
t→∞

(Sf (t), Ef (t), If (t), Pf (t), Lfu(t), Lfd(t), Hfu(t), Hfd(t), Cfu(t), Cfd(t), Rfc(t),

Rf (t), Sm(t)Em(t), Im(t), Pm(t), Lm(t), Hm(t), Cm(t), Rmc(t), Rm(t)) = E0s.

�
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Variable Description

Sf (t) Population of susceptible females

Ef (t) Population of exposed (asymptomatic) females

If (t) Population of symptomatic (infected with clinical symptoms of HPV) females
Pf (t) Population of females with persistent HPV infection

Lfu(t) Population of females with undetected low-grade CIN

Lfd(t) Population of females with detected low-grade CIN
Hfu(t) Population of females with undetected high-grade CIN

Hfd(t) Population of females with detected high-grade CIN

Cfu(t) Population of females with undetected cervical cancer
Cfd(t) Population of females with detected cervical cancer

Rfc(t) Population of females who recovered from cervical cancer

Rf (t) Population of females who recovered from HPV infection without developing
cervical cancer

Sm(t) Population of susceptible males

Em(t) Population of exposed (asymptomatic) males

Im(t) Population of symptomatic males
Pm(t) Population of males with persistent HPV infection

Lm(t) Population of males with low-grade INM

Hm(t) Population of males with high-grade INM
Cm(t) Population of males with HPV-related cancer

Rmc(t) Population of males who recovered from HPV-related cancer

Rm(t) Population of males who recovered from HPV infection without developing
HPV-related cancer

Table 1. Description of the state variables of the
Pap screening model (2.3).
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Parameter Description Baseline Value Ranges Ref.

per year

πf (πm) Recruitment rate of new sexually-active 10000 [9000,11000] [52]

females (males)
1
µf

( 1
µm)

Average duration of sexual activity 65 [59.5,71.5] [10]

for females (males)
βm(βf ) Infection probability for females (males) 0.4/contact [0.34,0.44] [12]

cm(cf ) Average number of male (female) sexual 2 (2
Nf

Nm
) [1.8,2.2] [52]

partners for females (males) per unit time
ξf (ξm) Rate of loss of infection-acquired 0.5 [0.45,0.55] [39]

immunity for females (males)

σf (σm) Rate of symptoms development for 5 [4.5,5.5] A
exposed females (males)

bf (bm) Fraction of symptomatic females (males) 0.95 [0.75,0.95] [54]

who recover naturally from HPV
(but do not develop persistent infection)

ψf (ψm) Transition rate out of the If (Im) class 0.5 [0.45,0.55] [22]

for females (males)
kf (km) Fraction of symptomatic females (males) 0.5 [0.45,0.55] [45]

who recover naturally from persistent

infection with HPV
αf (αm) Transition rate out of the Pf (Pm) class 0.25 [0.2,0.3] [21]

for females (males)
df1(dm1) Fraction of infected females (males) with 0.04 [0.01,0.1] [45]

low-grade low-grade CIN (INM ) who

recover naturally from HPV infection
df2(dm2) Fraction of females (males) with undetected 0.28 [0.2,0.35] [21]

low-grade CIN (INM) who revert to the

Pf ] (Pm) class
df3 Fraction of females with low-grade CIN 0.64 [0.6,0.7] [45]

who is detected

gf (gm) Transition rate out of Lfu (Lm) class 1.18 [1,1.5] [45]
for females (males)

r1 Recovery rate of detected females with 0.13 [0.1,0.2] [48]

low-grade CIN
qf1(qm1) Fraction of infected females (males) with 0.24 [0.2,0.3] [45]

high-grade CIN 2/3 (INM 2/3) who recover
naturally from HPV infection

qf2(qm2) Fraction of females (males) with undetected 0.04 [0.03,0.05] [48]

high-grade CIN 2/3 (INM 2/3) who revert
to the Lfu (Lm) class

Table 2. Description of parameters of the Pap
screening model (2.3). ”A” denotes ”assumed”.
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Parameter Description Baseline Value Ranges Ref.

per year

qf3 Fraction of females with high-grade 0.47 [0.4,0.55] [45]

CIN 2/3 who is detected
qf4(qm3) Regression rate from the Hfu (Hm) class 0.17 [0.1,0.25] [35]

to Pf (Pm) class

zf (zm) Transition rate out of the Hfu(Hm) class 2.08 [2,2.2] [45]
for females (males)

r2 Recovery rate of detected females with 0.13 [0.1,0.2] [48]

high-grade CIN 2/3
jf1 Fraction of females with cervical cancer 0.62 [0.5,0.7] [42]

who is detected

jf2(jm) Fraction of females (males) with cervical 0.23 [0.15,0.3] [21]
(HPV-related) cancer who revert to the

Hfu (Hm) class

γf (γm) Transition rate out of the Cfu(Cm) class 1.31 [1.2,1.4] [42]
for females (males)

r3 Recovery rate of females with detected 0.75 [0.65,0.85] [21]
cancer

ηf (ηm) Modification parameter for infectiousness 0.5 [0.45,0.55] A

of exposed females (males) in the Ef (Em)
class, relative to those in the If (Im) class

θf (θm) Modification parameter for infectiousness 0.9 [0.8,1] [45]

of females (males) in the Pf , Lfu, Lfd,
Hfu, Hfd (Pm, Lm, Hm) classes, relative

to those in the Ef , If (Em, Im) classes

θfh(θmh) Modification parameter for infectiousness 1.5 [1.35,1.65] A
of females (males) in the Hfu (Hm) class,

relative to those in the Pf , Lfu (Pm, Lm)

classes
δfu(δfd) Cancer-induced mortality rate for 0.01 (0.001) [0.009,0.02] [45]

undetected (detected) females ([0.0009,0.002])

Table 3. Description of parameters of the Pap
screening model (2.3) continued. ”A” denotes ”as-
sumed”.
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Variable Description

Sf (t) Population of susceptible females

Ef (t) Population of exposed (asymptomatic) females

If (t) Population of symptomatic (infected with clinical symptoms of HPV) females
Pf (t) Population of females with persistent HPV infection

Qf (t) Population of females with CIN

Cf (t) Population of females with cervical cancer
Rfc(t) Population of females who recovered from cervical cancer

Rf (t) Population of females who recovered from HPV infection without developing

cervical cancer

Sm(t) Population of susceptible males

Em(t) Population of exposed (asymptomatic) males
Im(t) Population of symptomatic males

Pm(t) Population of males with persistent HPV infection
Qm(t) Population of males with INM

Cm(t) Population of males with HPV-related cancer

Rmc(t) Population of males who recovered from HPV-related cancer
Rm(t) Population of males who recovered from HPV infection without developing

HPV-related cancer

Table 4. Description of the state variables of the
screening-free model (3.1).
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Parameter Description Baseline Value Ranges Ref.

per year

πf (πm) Recruitment rate of new sexually-active 10000 [9000,11000] [52]

females (males)
1
µf

( 1
µm)

Average duration of sexual activity 65 [59.5,71.5] [10]

for females (males)
βm(βf ) HPV infection probability from males to 0.8/contact [0.72,0.88] [22]

females (females to males) (0.7/contact) [0.63,0.77]

cm(cf ) Average number of male (female) sexual 2 (2
Nf

Nm
) [1.8,2.2] [52]

partners for females (males) per unit time

σf (σm) Rate of symptoms development for 5 [4.5,5.5] A

exposed females (males)
ψf (ψm) Rate of development of persistent infection 0.5 [0.45,0.55] [22]

for females (males)

αf (αm) Progression rate from HPV to CIN (INM) 0.1 [0.09,0.11] [21]
for females (males)

gf (gm) Progression rate from CIN (INM) to cancer 0.08 [0.079, 0.081] [21]

for females (males)
rf1(rm1) Natural recovery rate of infected females 0.495 [0.446,0.545] [22]

(males) (0.9) [0.89, 0.91]
rf2(rm2) Natural recovery rate of females (males) 0.1 [0.09,0.11] [45]

with persistent HPV infection

rf3(rm3) Natural recovery rate of females with CIN 0.05 [0.045,0.055] [48]
(males with INM)

rf4(rm4) Natural recovery rate of females with 0.76 [0.68,0.84] [21]

cervical cancer (males with HPV-related
cancer)

θf (θm) Modification parameter for the 0.9 [0.8,1] [45]

infectiousness of females (males) with
persistent infection, relative to those in

the If (Im) class

δf Cancer-induced mortality rate for 0.01 [0.009,0.011] [45]
females

Table 5. Description of parameters of the
screening-free model (3.1). ”A” denotes ”assumed”.
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Table 6. PRCC values of the parameters of the
screening-free model (3.1) using R0 as output. Base-
line parameter values and ranges used are as given in
Table 5.
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Parameter PRCC value

cf 0.9123
bm −0.8571

bf −0.8494

βf 0.8133
βm 0.8128

πm −0.7373

πf 0.7281
µf −0.7258

µm 0.7098

ψm −0.6151
ψf −0.5868

αm −0.4380
αf −0.4110
θm 0.2732

θf 0.2257
dm2 0.1199

qm3 0.0986
ηf 0.0984
df2 0.0773

gm 0.0690
jm 0.0668
qf4 −0.0563

km −0.0473
r3 0.0472
qm1 0.0376

qm2 −0.0355

Parameter PRCC value

r2 0.0348
σm −0.0340

gf −0.0300

kf −0.0274
jf1 −0.0269

ξf 0.0262

df3 0.0223
ξm −0.0200

r1 0.0192

δfd 0.0182
θfh 0.0178

jf2 0.0173
ηm 0.0166
df1 −0.0152

dm1 −0.0141
δfu 0.0123

zm −0.0101
γm −0.0090
zf −0.0068

qf3 −0.0066
γf 0.0059
σf 0.0051

θmh −0.0028
qf1 0.0010
qf2 0.0007

Table 7. PRCC values of the parameters of the Pap
screening model (2.3), using R0s as output. Baseline
parameter values and ranges used are as given in Ta-
bles 2 and 3.
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Figure 1. Schematic diagram of the Pap screening
model (2.3).
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Figure 2. Solution profiles of the screening-free
model (3.1), showing the total number of HPV-
infected individuals (females and males) as a func-
tion of time using various initial conditions. Param-
eter values used are as given in Table 5, with cf = 1,
βf = 0.2 and βm = 0.2 (so that, R0 = 0.5159 < 1).
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Figure 3. Solution profiles of the screening-free
model (3.1), showing the total number of HPV-
infected individuals (females and males) with θm =
θf = 0 as a function of time using various initial con-
ditions. Parameter values used are as given in Table
5, with cf = 3, βf = 2.5 and βm = 2.5 (so that,
R1 = 6.2549 > 1).
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Figure 4. Box plot of the basic reproduction num-
ber (R0) as a function of the number of runs (NR)
for the screening-free model (3.1), using the baseline
parameter values and ranges given in Table 5.
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Figure 5. Solution profiles of the Pap screening
model (2.3), showing the total number of HPV-
infected individuals (females and males) as a func-
tion of time, using various initial conditions. Pa-
rameter values used are as given in Tables 2 and 3,
with cf = 1.3, βm = 0.25 and βf = 0.25 (so that,
R0s = 0.8111 < 1).
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Figure 6. Box plot of the effective reproduction
number (R0s) of the Pap screening model (2.3) as
a function of the number of runs (NR), using the pa-
rameter values and ranges given in Tables 2 and 3.
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Figure 7. Simulations of the Pap screening model
(2.3), showing the cumulative number of new HPV
cases (for females and males) as a function of time.
Parameter values used are as given in Tables 2 and 3
(with the top-eleven PRCC-ranked parameters mod-
ified accordingly). Green color: baseline parameters
as in Tables 2 and 3 (R0s=2.1019). Blue color: top-
eleven PRCC-ranked parameters in Table 7 decreased
by 10% (R0s=1.8537). Red color: top-eleven PRCC-
ranked parameters in Table 7 increased by 10%
(R0s=2.1734).
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Figure 8. Simulations of the Pap screening model
(2.3), showing the cumulative number of cervical can-
cer cases as a function of time. Parameter values
used are as given in Tables 2 and 3 (with the top-
eleven PRCC-ranked parameters modified accord-
ingly). Green color: baseline parameters as in Ta-
bles 2 and 3 (R0s=2.1019). Blue color: top-eleven
PRCC-ranked parameters in Table 7 decreased by
10% (R0s=1.8537). Red color: top-eleven PRCC-
ranked parameters in Table 7 increased by 10%
(R0s=2.1734).
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Figure 9. Simulations of the Pap screening model
(2.3), showing the cumulative number of HPV-related
cancer cases for males as a function of time. Pa-
rameter values used are as given in Tables 2 and 3
(with the top-eleven PRCC-ranked parameters mod-
ified accordingly). Green color: baseline parameters
as in Tables 2 and 3 (R0s=2.1019). Blue color: top-
eleven PRCC-ranked parameters in Table 7 decreased
by 10% (R0s=1.8537). Red color: top-eleven PRCC-
ranked parameters in Table 7 increased by 10%
(R0s=2.1734).
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Figure 10. Simulations of the Pap screening model
(2.3), showing the cumulative number of new HPV
cases (for females and males) as a function of time in
the presence (green color) and absence (blue color)
of the HPV transmission by individuals in the pre-
cancerous stages (both CIN and INM). Parameter
values used are as given in Tables 2 and 3 (R0s =
2.1019 > 1).
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Figure 11. Simulations of the Pap screening model
(2.3), showing a counter plot of R0s, as a function of
the fraction of symptomatic females who recovered
naturally from HPV (bf ) and the fraction of sympto-
matic males who recovered naturally from HPV (bm).
Parameter values used are as given in Tables 2 and
3.
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Figure 12. Simulations of the Pap screening model
(2.3), showing the cumulative number of cervical
cancer cases for females as a function of time.
Green color: 0% of females with CIN detected
(R0s=2.1201). Blue color: 25% of females with CIN
detected (R0s=2.1118). Red color: 50% of females
with CIN detected (R0s=2.1051).


