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ABSTRACT. This study focuses on the problem of approximat-
ing solution of generalized equilibrium problems and common
fixed point of finite family of strict pseudocontractive mappings.
The result obtained is applied in approximation of solution of
generalized mixed equilibrium problems and common fixed point
of finite family of strict pseudocontractive mappings. Our theo-
rems improve, complement and unify some existing results that
were recently announced by several authors. Corollary obtained
and our method of proof are of independent interest.
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1. INTRODUCTION

The research embodied in this paper focuses on finding approxi-
mate solution of generalized equilibrium problems which is also a
common fixed point of finite family of strictly pseudocontractive
mappings. Equilibrium problem arises in many areas of applica-
tions such as physics, economics, finance, transportation, network
and structural analysis, elasticity and optimization (see [23]). The
Equilibrium problem was first introduced by Blum and Ottelli [2]
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for solving some important problems such as image recovery, in-
verse problems, transportation problems, fixed point problems and
optimization problems which can be formulated as variational in-
equality problem. They proved that it includes classical variational
inequality and fixed point problems as special cases. Several au-
thors have constructed some iterative schemes for finding a com-
mon element of the set of the solutions of equilibrium problems
and the set of fixed points of some classes of mappings (see also
[7, 16, 17, 23] and the references therein). We now turn to review
of happenings in the recent research trend.

Ceng et al. [3] proposed an iterative scheme for approximation of
solution of eqilibrium problem and fixed point of k-strictly pseudo-
contractive mapping T as follows:{

f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ K,

xn+1 = αnun + (1− αn)Tun, n ≥ 1,
(1)

where {αn}n≥1 ⊂ (0, 1) and {rn}n≥1 ⊂ (0,+∞) are two sequences
of real numbers, satisfying certain conditions. They proved that
{xn}n≥1 and {un}n≥1 converge weakly to some p ∈ Ω := F (T ) ∩
EP (f); and further argued that the convergence of the sequences
{xn}n≥1 and {un}n≥1 in (1) is strong convergence if and only if

lim inf
n≥1

d(xn,Ω) = 0,

where d(xn,Ω) denotes the metric distance from the point xn to
Ω. It is necessary to observe that only weak convergence is obtained
using algorithm (1), and the strong convergence obtained hinged on
the assumption that lim inf

n≥1
d(xn,Ω) = 0, which is of course a very

strong condition.

In order to get strong convergence Jaiboon and Kumam [10] con-
structed CQ algorithm that enable them do so. Precisely, they
constructed the following iterative scheme

x0 ∈ H, C1 = C, f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0,

∀ y ∈ K,
yn+1 = αnun + (1− αn)Tun, n ≥ 1,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2},
xn+1 = PCn+1x0,

(2)
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where {αn}n≥1 ⊂ (0, 1) and {rn}n≥1 ⊂ (0,+∞) are sequences of
real numbers, satisfying certain conditions: They proved that the
sequences {xn} and {un} converge strongly to p = PF (T )∩EP (f)x0.
It is important to note that the scheme (2) involves the projection
operator, which is not readily available in application. Moreover,
the iterative parameter αn, n ∈ N in scheme (2) does not accommo-
date the canonical choice αn = 1

n
, n ∈ N.

In 2012, He [7] introduced an iterative scheme that accommodated
the cannonical choice of iterative parameter, which also does not
involve projection operator. In fact, He [7] proved the following
theorem:

Theorem 0.1. (He [7]) Let K be a nonempty, closed and con-
vex subset of a real Hilbert space H and f : K × K → R be a
bifunction satisfying A1 − A4. Let Ti : K → K be finite family
of ki-strictly pseudocontractive mappings i = 1, 2, · · · , N such that
Ω =

⋂N
i=1 F (Ti)

⋂
GEP (f) 6= ∅. 0 ≤ ki < 1. Suppose that v and

x1 are arbitrary elements in K, for some nonnegative real num-
bers λi, i = 1, 2, · · · , N,

∑N
i=1 λi = 1. Let {xn} and {un} be the

sequences generated by
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ K,

xn+1 = αnv + (1− αn)yn,

yn = (1− βn)xn + βnzn,

zn = (1− σ)un + σ
∑N

i=1 λiTiun,

(3)

where σ ∈ (0, 1 − k), k := sup{ki : 1 ≤ i ≤ N}, {αn}∞n=1, {βn}∞n=1

and {rn}∞n=1 satisfy the following conditions:

(i) {αn}∞n=1 ⊂ (0, 1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞;

(ii) {βn}∞n=1 ⊂ (0, 1), 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iii) {rn}∞n=1 ⊂ (0,+∞), lim inf
n→∞

rn > 0, lim
n→∞

|rn+1 − rn| = 0.

Then, {xn} and {un} converge strongly to x∗ = PΩ(u).

We note that the scheme (3) approximates a solution of classical
equilibrium problem and a common fixed point of finite family of
strict pseudocontractions.



412 E. U. OFOEDU AND I. U. NWOKPOKU

In 2014, Huang and Ma [9] constructed a modified Mann iterative
algorithm that approximates the solution of the generalized equilib-
rium problem and the common fixed point of finite family of strict
pseudocontractive mappings. They proved the following theorem:

Theorem 0.2. (Huang and Ma [9]) Let K be a nonempty closed
convex subset of a real Hilbert space H. Let T : K → H be a λ-
inverse-strongly monotone mapping and Let f be a bifunction from
K ×K to R which satisfies A1 -A4. Let S : K → K be a k-strict
pseudocontractive mapping. Assume that Ω := EP (f, T )

⋂
F (S)

is nonempty. Let {αn}∞n=1, {βn}∞n=1, {γn}∞n=1, and {δn}∞n=1 be se-
quences in (0, 1). Let {rn}∞n=1 be a sequence in (0, 2λ), and let
{en}∞n=1, be a bounded sequence in K. Let {xn}∞n=1, be a sequence
generated by
x1 ∈ K,
f(un, u) + 〈Txn, u− un〉+ 1

rn
〈u− un, un − xn〉 ≥ 0 ∀ u ∈ K,

xn+1 = αnxn + βn(δnun + (1− δn)Sun) + γnen n ≥ 1,

(4)
Assume that the sequences {αn}∞n=1, {βn}∞n=1, {γn}∞n=1, {δn}∞n=1 and
{rn}∞n=1 satisfy the following conditions: 0 < a ≤ αn ≤ a

′
< 1,

0 ≤ k ≤ δn ≤ b < 1, 0 < c ≤ rn ≤ d < 2λ and
∞∑
n=1

γn < ∞. Then,

the sequence {xn} converges weakly to some point x∗ ∈ Ω.

Observe that the result of Huang and Ma [9] concluded weak con-
vergence. Furthermore, only a single k-strict pseudocontractive map-
ping was considered in the work of Huang and Ma.

Motivated and inspired by works of He [7], Huang and Ma [9],
and that of other authors mentioned above, it is our purpose in
this paper to proposed a new iterative algorithm which converges
strongly to solution of generalized equilibrium problem which is also
a common fixed point of finite family of strict pseudocontractions.
Our theorem improves and compliments the results of He [7], Huang
and Ma [9], and that of a host of other authors.

2. PRELIMINARY

In what follows, we assume that H is a real Hilbert space with inner
product 〈., .〉 and ‖.‖ as the norm associated with the inner product.
K is a nonempty, closed and convex subset of H, PK : H → K the
metric projection of H onto K. T : K → K is a self mapping,
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F (T ) denotes the set of fixed points of the operator T , xn → x∗

and xn ⇀ x∗ denote strong and weak convergence of a sequence
{xn} to x∗, respectively. It is well known that given any nonemepty,
closed and convex subset K of H, then for arbitrary vector x ∈ H,
z = PKx if and only if

〈x− z, y − z〉 ≤ 0,∀ y ∈ K. (5)

It is also well known that the following identities hold: ∀t ∈ [0, 1]and
∀ x, y ∈ H,

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2. (6)

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 〈x, y〉 ,∀x, y ∈ H. (7)

Moreover, it is known that given any vector y ∈ H, there exists
fy ∈ H∗ = H (H∗ the dual of H) such that ∀ x ∈ H,

fy(x) = 〈x, y〉 . (8)

Remark 1. It is easy to see using equation (8) that if xn ⇀ x∗,
then, 〈xn, y〉 → 〈x∗, y〉.

It is necessary to recall the following important definitions.

Definition 1. Let T : D(T ) ⊆ H → H be a mapping (with domain
D(T ) in H), then T is said to be

(i) L-Lipschitz if there exists L ≥ 0 such that ∀ x, y ∈ D(T ),

‖Tx− Ty‖ ≤ L‖x− y‖.

If L ∈ [0, 1), then T is called contraction and the mapping
T is called nonexpansive if L ∈ [0, 1];

(ii) k-strictly pseudocontractive mapping if there exists a con-
stant k ∈ [0, 1) such that ∀ x, y ∈ D(T ),

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− Tx− (y − Ty)‖2;

(iii) k-quasi-strictly pseudocontraction if F (T ) is not empty and
there exists k ∈ [0, 1) such that ∀ x,∈ D(T ), ∀ x∗,∈
F (T ),

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + k‖x− Tx‖2.

(iv) firmly nonexpansive if

∀ x, y ∈ D(T ), ‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉 ;

(v) monotone if ∀ x, y ∈ D(T ), 〈Tx− Ty, x− y〉 ≥ 0;
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(vi) α-inverse strongly Monotone if there exists α > 0 such that
∀ x, y ∈ D(T ),

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2.

Remark 2. It is easy to see that every nonexpansive mapping is 0-
strictly pseudocontractive. Hence, the class of k-strictly pseudocon-
tractive mappings contains the class of nonexpansive mappings. It
is worthy to note that the converse is false. The following example
portrays this fact:

Example 1. Let T : H → H be defined for any x ∈ H by

T (x) = −2x.

It is clear that T is Lipschitz but not nonexpansive.

It could easily be shown that T is strictly Pseudocontractive, thus
the class of k-strictly pseudocontractive mappings properly con-
tains the class of nonexpansive mappings. It is easy to see that
every k-strictly pseudocontraction with nonempty fixed point set is
k-quasi-strictly pseudocontraction.

Definition 2. The generalized mixed equilibrium problems (abbrre-
viated GMEP) for operators f, Φ, B is a problem of finding u∗ ∈ K
such that

f(u∗, y) + Φ(y)− Φ(u∗) + 〈Bu∗, y − u∗〉 ≥ 0,∀ y ∈ K, (9)

where f is a real valued bifunction with domain K × K, Φ is a
proper extended real valued function with domain K, that is, Φ :
K → <∪{+∞} and B a nonlinear monotone operator.The solution
set of (9) is denoted by

GMEP (f,Φ, B)

:= {u ∈ K : f(u, y) + Φ(y)− Φ(u) + 〈Bu, y − u〉 ≥ 0,∀ y ∈ K}.

If Φ ≡ 0 ≡ B in (9), then, inequality (9) reduces to the Classical
Equilibrium Problem , that is the problem of finding u∗ ∈ K
such that

f(u∗, y) ≥ 0, ∀ y ∈ K; (10)

and in this case, GMEP (f, 0, 0) is denoted by

EP (f) := {u ∈ K : f(u, y) ≥ 0,∀ y ∈ K}.
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If Φ ≡ 0 ≡ f in (9), then (9) reduces to the Classical Varia-
tional Inequality Problem, that is, the problem of finding u∗ ∈
K such that

〈Bu∗, y − u∗〉 ≥ 0,∀ y ∈ K; (11)

and in this case, GMEP (0, 0, B) is denoted by

V.I(B,K) = {u ∈ K : 〈Bu, y − u〉 ≥ 0 ,∀ y ∈ K}.
If B ≡ 0 ≡ f in (9), then (9) reduces to the following minimization
problem: find u∗ ∈ K s.t

Φ(y) ≥ Φ(u∗),∀ y ∈ K; (12)

in this case, GMEP (0,Φ, 0) is denoted by Argmin(Φ), where

Argmin(Φ) = {u ∈ K : Φ(y) ≥ Φ(u),∀ y ∈ K}.

If B ≡ 0 in (9), then (9) reduces to the Mixed Equilibrium
Problem, that is, the problem of finding u∗ ∈ K such that

f(u∗, y) + Φ(y)− Φ(u∗) ≥ 0, ∀ y ∈ K; (13)

and in this case,l GMEP (f,Φ, 0) is denoted by

MEP (f,Φ) = {u ∈ K : f(u, y) + Φ(y)− Φ(u) ≥ 0,∀ y ∈ K}.

If Φ ≡ 0 in (9), then (9) reduces to the Generalized Equi-
librium Problem, that is, the problem of finding u∗ ∈ K such
that

f(u∗, y) + 〈Bu∗, y − u∗〉 ≥ 0,∀ y ∈ K; (14)

and in this case, GEP (f, 0, B) is denoted by

GEP (f,B) = {u ∈ K : f(u, y) + 〈Bu, y − u〉 ≥ 0,∀ y ∈ K}.
If f ≡ 0 in (9), then (9) reduces to the Generalized Variaria-
tional Inequality Problems i.e the problem of finding u∗ ∈ K
such that

Φ(u∗)− Φ(y) + 〈Bu∗, y − u∗〉 ≥ 0,∀ y ∈ K. (15)

In this case, GEP (0,Φ, B) is denoted by

GV I(Φ, B,K) = {u ∈ K : Φ(u)−Φ(y)+〈Bu, y − u〉 ≥ 0,∀ y ∈ K.}
From the forgoing analysis we observe that (9) solves three difer-
ent types of problems simultaneously, that is, it solves problem of
optimization, variational inequality and equilibrium problems.



416 E. U. OFOEDU AND I. U. NWOKPOKU

In solving equilbrium problem, we impose the following conditions
on our bifunction f , namely:

A1 f(x, x) = 0,∀ x ∈ K;

A2 f is monotone in the sense that

f(x, y) + f(y, x) ≤ 0,∀ y, x ∈ K;

A3 f is hemi-continuous

i.e lim sup
t→0+

f(tz + (1− t)x, y) ≤ f(x, y),∀ y, x ∈ K;

A4 The function f(x, .) is convex and lower semicontinous ∀ x ∈
K.

In what follows, the following Lemmas shall play important roles:

Lemma 1. [9] Let K be a closed and convex subset of H and let
f : K ×K → R be a bifunction satisfying conditions A1 to A4. Let
r > 0 and x ∈ H, then there exists z ∈ K s.t

f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0 ∀ y ∈ K.

Lemma 2. [9] Let K be a nonempty closed and convex subset of
a real Hilbert space H and let f : K × K → R be a bifunction
satisfying A1 − A4. For r > 0 and x ∈ H, define a mapping Tr as
follows:

Tr(x) = {z ∈ K : f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0 ∀ y ∈ K}.

Then, the following holds:

(i) Tr is single valued
(ii) Tr is firmly nonexpansive ie ∀x, y ∈ H, ‖Trx − Try‖2 ≤
〈x− y, Trx− Try〉

(iii) F (Tr) = EP (f)
(iv) EP (f) is closed and convex.

Lemma 3. [22] Suppose that {an}n≥1 is a sequence of nonnegative
numbers such that

an+1 = (1− αn)an + σn ∀n ≥ 1,
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where {αn}∞n=1 is a sequence in (0, 1) and {σn}n≥ is a sequence of

nonnegative numbers such that
∞∑
n=1

αn = ∞ and σn = o(αn) ( that

is, limn→∞
σn
αn

= 0) or
∞∑
n=1

σn <∞, then lim
n→∞

an = 0.

Lemma 4. [14] Let K be a nonempty closed convex subset of a
Hilbert space H, and let T : K → Kbe a self mapping.
(i) If T is k-strict pseudocontraction, then the mapping T is 1+k

1−k −
Lipschitz; in addition, the mapping (I−T ) is demiclosed at 0; that
is, if {xn} is a sequence in K with xn ⇀ x and xn − Txn → 0 ,
then x ∈ F (T ).

(ii) If T is k-quasi-strict pseudocontraction, then the fixed point
set, F (T ), of T is closed and convex.

Lemma 5. [13] Let {γn} be a sequence of real numbers such that
there exists a subsequence {γnj

} such that γnj
< γnj+1, ∀j ∈ N.

Consider the sequence of integers {τ(n)} defined by

τ(n) = max
k
{k ≤ n : γk < γk+1}.

Then,

(i) {τ(n)} is a non decreasing sequence for all n ≥ n0

(ii) limn→∞ τ(n) =∞;
(iii) γτ(n) < γτ(n)+1 ∀ n ≥ n0

(iv) γn < γτ(n)+1 ∀ n ≥ n0

3. MAIN RESULT

In this section, we will introduce our iterative scheme, present our
main result and its detailed proof. We shall also demonstrate how
our main result can be used to approximate the common solution
of generalised mixed equilibrium problems and common fixed point
of a finite family of strict pseudocontractions.

Let K be a nonempty subset of a real Hilbert space H, let f :
K × K → R and A : K → H be given functions. Let {αn} and
{βn} be sequences in (0, 1). The schemes {xn}n≥1 is defined from
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arbitrary elements x1, u ∈ K by
f(un, y) + 〈Axn, y − un〉+ 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ K,

zn = (1− βn)un + βnTi(n)un,

xn+1 = αnu+ (1− αn)zn,

(16)
were {rn}n≥1 is a sequence of positive real numbers, and {un}n≥1 is
a sequence guaranteed by Lemma 2, provided the mappings f and
A satify appropriate conditions.

To appreciate how {zn}n≥1 in (16) runs, we compute some terms of
the sequence . Observe that

z1 = (1− β1)u1 + β1T1u1,

z2 = (1− β2)u2 + β2T2u2,

· · · ,
zN = (1− βN)uN + βNTNuN ,

zN+1 = (1− βN+1)uN+1 + βN+1T1uN+1,

zN+2 = (1− βN+2)uN+2 + βN+2T2uN+2,

· · · ,
z2N = (1− β2N)u2N + β2NTNu2N ,

z2N+1 = (1− β2N+1)u2N+1 + β2N+1T1u2N+1,

· · · ,
zkN+i = (1− βkN+i)ukN+i + βkN+iTiukN+i,

· · · , where un = Trn(I − rnA)xn, k ≥ 0 and i = 1, 2, · · · , N.
Remark 3. Thus, the sequence {zn}n≥1 can be written in compact
form as

zn = (1− βn)un + βnTi(n)un, i(n) ∈ {1, 2, · · · , N}.
We are now ready to present our main result.

Theorem 0.3. Let K be a nonempty, closed and convex subset of
a real Hilbert space H and f : K × K → R be a bifunction sat-
isfying A1 − A4 and A be α-inverse strongly monotone mapping
of K into H. Let Ti : K → K be a finite family of ki-strictly
pseudocontractive mappings i = 1, 2, · · · , N , 0 ≤ ki < 1 and
k := sup{ki : 1 ≤ i ≤ N}. Let {xn}, {un} be sequences defined
from arbitrary elements x1, u ∈ K by (16). Suppose that Ω =⋂N
i=1 F (Ti)

⋂
GEP (f, A) 6= ∅, and that (i) limαn = 0,

∞∑
n=1

αn =∞;
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(ii) 0 < δ ≤ βn ≤ 1 − k − δ < 1; (iii) 0 < b ≤ rn ≤ c ≤ 2α, then
{xn} and {un} converge strongly to x∗ = PΩ(u).

Proof. Observe that for any x, y ∈ K, for any n ∈ N, and using the
fact that 0 < b ≤ rn ≤ c ≤ 2α, we obtain that

‖(I − rnA)x− (I − rnA)y‖2 = ‖x− y − rn(Ax−Ay)‖2

= ‖x− y‖2 − 2rn 〈x− y,Ax−Ay〉
+rn

2‖Ax−Ay‖2

≤ ‖x− y‖2 − 2αrn‖Ax−Ay‖2

+rn
2‖Ax−Ay‖2

= ‖x− y‖2 + rn(rn − 2α)‖Ax−Ay‖2

≤ ‖x− x‖2.

Thus, I−rnA is nonexpansive. Moreover, it is clearly from Lemmas
1, 2 and Remark 3 that (16) is well defined. Now, let x∗ = PΩ(u);
we note that PΩ is well defined since Ω is intersection of nonempty
closed and convex sets (see (iv) of Lemma 2 and (ii) of Lemma 4).
We now show that

‖zn − x∗‖ ≤ ‖xn − x∗‖, ∀ n ≥ 1.

Using the fact that Ti are ki- strictly pseudocontractive mapping,
we have

‖zn − x∗‖2 = ‖(1− βn)un + βnTi(n)un − x∗‖2

= ‖(1− βn)(un − x∗) + βn(Ti(n)un − x∗)‖2

= (1− βn)‖un − x∗‖2 + βn‖Ti(n)un − x∗‖2

−βn(1− βn)‖Ti(n)un − un‖2

≤ (1− βn)‖un − x∗‖2

+βn[‖un − x∗‖2 + k‖Ti(n)un − un‖2]

−βn(1− βn)‖Ti(n)un − un‖2

= ‖un − x∗‖2 − βn(1− k − βn)‖Ti(n)un − un‖2.

From condition (ii), we have that

0 < δ ≤ βn ≤ 1− k − δ < 1. (17)

Multiplying inequality (17) by −1 and adding 1−k to the resulting
inequality, we obtain that

δ ≤ 1− k − βn,
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which implies that

−βn(1− k − βn) ≤ −δ2.

Thus,

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − δ2‖Ti(n)un − un‖2. (18)

Next, Using Lemma 2 (ii) and definition of un, we have that un =
Trn(I − rnA)xn. Furthermore, using the fact that x∗ ∈ GEP (f, A),
we also have that x∗ = Trn(I − rnA)x∗. Thus, by nonexpansiveness
of Trn and condition (iii) we have that

‖un − x∗‖2 = ‖Trn(I − rnA)xn − Trn(I − rnA)x∗‖2

≤ ‖(I − rnA)xn − (I − rnA)x∗‖2

= ‖xn − x∗ − rn(Axn − Ax∗)‖2

= ‖xn − x∗‖2 − 2rn 〈xn − x∗, Axn − Ax∗〉
+rn

2‖Axn − Ax∗‖2

≤ ‖xn − x∗‖2 − 2αrn‖Axn − Ax∗‖2

+rn
2‖Axn − Ax∗‖2

= ‖xn − x∗‖2 + rn(rn − 2α)‖Axn − Ax∗‖2

≤ ‖xn − x∗‖2. (19)

Using inequalities (18) and (19), we obtain that

‖xn+1 − x∗‖ = ‖αn(u− x∗) + (1− αn)(zn − x∗)‖
≤ αn‖u− x∗‖+ (1− αn)‖zn − x∗‖
≤ αn‖u− x∗‖+ (1− αn)‖xn − x∗‖. (20)

It is easy to deduce from (20) that

‖xn − x∗‖ ≤ max{‖u− x∗‖, ‖x1 − x∗‖}.

Hence, {xn}n≥1 is bounded. Consequently, {zn}, {un} are bounded.

We now consider the following two cases:

Case 1: ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖, ∀ n ≥ n0, for some n0 ≥ 1.
Therefore, {||xn−x∗||} is a monotone nonincreasing sequence, hence
its limit exists.

Next we show that

lim
n→∞

||zn − un|| = lim ||xn − zn|| = 0.
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It follows from inequalities (18) and (19), that

||xn+1 − x∗||2 = ||αn(u− x∗) + (1− αn)(zn − x∗)||2 (21)

≤ αn‖u− x∗‖2 + (1− αn)‖zn − x∗‖2

≤ αn‖u− x∗‖2

+(1− αn)
(
‖un − x∗‖2 − δ2‖Ti(n)un − un‖2

)
≤ αn‖u− x∗‖2

+(1− αn)
(
‖xn − x∗‖2 − δ2‖Ti(n)un − un‖2

)
≤ αn||u− x∗||2 + ‖xn − x∗‖
−(1− αn)δ2‖Ti(n)un − un‖2,

which implies that

(1−αn)δ2||Ti(n)un−un||2 ≤ αn||u−x∗||2+||xn−x∗||2−||xn+1−x∗||2.
(22)

Thus,

lim
n→∞

‖Ti(n)un − un‖ = 0. (23)

Since ‖zn − un‖ = βn‖Ti(n)un − un‖ and {βn} is bounded, we have
that

lim
n→∞

‖zn − un‖ = 0. (24)

Also, for some M0 > 0,

||xn+1 − zn|| = αn||u− zn||
≤ αnM0.

Therefore,

lim
n→∞

‖xn+1 − zn‖ = 0. (25)

Next, we show that lim ||Axn − Ax∗|| = 0.
Using convexity of ‖.‖2, inequalities (18) and (19)

||xn+1 − x∗||2 ≤ αn‖u− x∗‖2 + (1− αn)‖zn − x∗‖2

≤ αn||u− x∗||2 + (1− αn)‖un − x∗‖2

≤ αn||u− x∗||2 + (1− αn)‖xn − x∗‖2

+rn(rn − 2α)||Axn − Ax∗||2,
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which implies that

−rn(rn − 2α)||Axn − Ax∗||2 ≤ αn||u− x∗||2

+(1− αn)||xn − x∗||2

−||xn+1 − x∗||2.

Using condition (iii), we obtain that

b(2α− c)||Axn − Ax∗||2 ≤ αn||u− x∗||2

+(1− αn)||xn − x∗||2 − ||xn+1 − x∗||2.

Hence,

lim
n→∞

||Axn − Ax∗||2 = 0. (26)

Using the fact that un = Trn(I − rnA)xn, x∗ = Trn(I − rnA)x∗,
x∗ ∈ GEP (f, A), firmly nonexpansiveness of Trn , equation (7) and
the fact that I − rnA is nonexpansive, we obtain that

‖un − x∗‖2 = ‖Trn(I − rnA)xn − Trn(I − rnA)x∗‖2

≤ 〈(xn − rnAxn)− (x∗ − rnAx∗), un − x∗〉

=
1

2

(
‖(xn − rnAxn)− (x∗ − rnAx∗)‖2 + ‖un − x∗‖2

)
− 1

2

(
‖ ((xn − rnAxn)− (x∗ − rnAx∗))− (un − x∗)‖2

)
≤ 1

2

(
‖xn − x∗‖2 + ‖un − x∗‖2

)
−1

2
‖(xn − un)− rn(Axn − Ax∗)‖2,

which implies that

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖(xn − un)− rn(Axn − Ax∗)‖2

= ‖xn − x∗‖2 − ‖xn − un‖2 − rn2‖Axn − Ax∗‖2

+2rn 〈xn − un, Axn − Ax∗〉
≤ ‖xn − x∗‖2 − ‖xn − un‖2

+2rn‖xn − un‖.‖Axn − Ax∗‖. (27)

Substituting inequality (27) in inequality (22),using the facts that
{xn}, {un} are bounded and equation (26), we obtain that

‖xn+1 − x∗‖2 ≤ αn‖u− x∗‖2 + ‖xn − x∗‖2

−‖xn − un‖2 + 2rn‖xn − un‖‖Axn − Ax∗‖.
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Thus,

‖xn − un‖2 ≤ αn‖u− x∗‖2 + ‖xn − x∗‖2

−‖xn+1 − x∗‖2 + 2rn‖xn − un‖.‖Axn − Ax∗‖,

consequently,

lim
n→∞

‖xn − un‖ = 0. (28)

Since we have from (24) and (28) that

lim
n→∞

‖un − zn‖ = lim
n→∞

‖un − xn‖ = 0

, it follows that

‖xn − zn‖ = ‖xn − un + un − zn‖
≤ ‖xn − un‖+ ‖un − zn‖ → 0 as n→∞.

Thus,

lim
n→∞

‖xn − zn‖ = 0. (29)

Next, we show that

lim
n→∞

‖un+j − un‖ = 0

and

lim
n→∞

‖xn+j − xn‖ = 0, ∀ j ∈ {1, 2, · · · , N}.

We proceed as follows:

‖un+1 − un‖ ≤ ‖un+1 − xn+1‖+ ‖xn+1 − un‖
≤ ‖un+1 − xn+1‖+ ‖xn+1 − zn‖

+‖zn − un‖ → 0 as n→∞.

Consequently,

‖un+j − un‖ ≤ ‖un+j − un+j−1‖
+‖un+j−1 − un+j−2‖+ ‖un+j−2 − un+j−3‖

+ · · ·+ ‖un+1 − un‖ → 0 as n→∞.

Therefore,

lim
n→∞

‖un+j − un‖ = 0. ∀ j ∈ {1, 2, · · · , N}. (30)

Similarly, using (28) and (30), we obtain that

‖xn+1 − xn‖ ≤ ‖xn+1 − un+1‖+ ‖un+1 − un‖
+‖un − xn‖ → 0 as n→∞. (31)



424 E. U. OFOEDU AND I. U. NWOKPOKU

Consequently,

‖xn+j − xn‖ ≤ ‖xn+j − xn+j−1‖
+‖xn+j−1 − xn+j−2‖+ ‖xn+j−2 − xn+j−3‖

+ · · ·+ ‖xn+1 − xn‖ → 0 as n→∞.
Therefore,

lim
n→∞

‖xn+j − xn‖ = 0 ∀ j ∈ {1, 2, · · · , N}.

Next, we show that limn→∞ ‖un − Tjun‖ = 0 = limn→∞ ‖xn −
Tjxn‖, ∀ j ∈ {1, 2, · · · , N}.

Observe that for any n ∈ N, there exist k(n) ∈ N ∪ {0}, i(n) ∈
{1, 2, · · · , N} such that n = k(n)N + i(n). Now, for any n ≥ 1, set
Tn = Ti(n).Then, it follows that

Tn+j =

{
T(i(n)+j), i(n) + j ≤ N

T(i(n)+j−N), otherwise.
(32)

Hence, using (23) we have that

‖un − Tnun‖ = ‖un − Ti(n)un‖ → 0 as n→∞. (33)

Consequently, for any j ∈ {1, 2, · · · , N}, we have using equation
(30), (33) and Lemma 4 that

‖un − Tn+jun‖ ≤ ‖un − un+j‖+ ‖un+j − Tn+jun+j‖
+‖Tn+jun+j − Tn+jun‖ → 0 as n→∞.

Thus,

lim
n→∞

‖un − Tjun‖ = 0, ∀ j ∈ {1, 2, · · · , N}. (34)

Moreover, for each j ∈ {1, 2, · · · , N}, we observe from equations
(28) and (34) and Lemma 4 that

‖xn − Tjxn‖ ≤ ‖xn − un‖+ ‖un − Tjun‖
+‖Tjun − Tjxn‖ → 0 as n→∞. (35)

(36)

Next, we show that lim supn→∞ 〈(u− x∗), xn+1 − x∗〉 ≤ 0. From
properties of limit superior of bounded sequence of real numbers,
we have that there exists a subsequence {xnk

} of {xn} such that

lim sup
n→∞

〈u− x∗, xn − x∗〉 = lim
k→∞
〈u− x∗, xnk

− x∗〉 . (37)
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Since {xnk
}k≥1 is bounded, there exists a subsequence {xnkm

}m≥1

of {xnk
}k≥1 such that xnkm

⇀ p∗ ∈ K m→∞

Claim : p∗ ∈ Ω.

Proof of Claim: We first show that p∗ ∈ F (Ti) ∀ j ∈ {1, 2, · · · , N}.
It follows from ((35)) that

lim
m→∞

‖xnkm
− Tjxnkm

‖ = 0, ∀ j ∈ {1, 2, · · · , N}

Hence by Lemma 4, we have that p∗ ∈ F (Tj) ∀ j ∈ {1, 2, · · · , N}.
Since un = Trn(I − rnA)xn, for any y ∈ K, we have that

f(un, y) + 〈Axn, y − un〉+
1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ K

From A2, we have that

f(un, y) + f(y, un) ≤ 0 ≤ f(un, y) + 〈Axn, y − un〉

+
1

rn
〈y − un, un − xn〉 , ∀ y ∈ K.

This implies that

〈Axn, y − un〉+
1

rn
〈y − un, un − xn〉 ≥ f(y, un), ∀ y ∈ K. (38)

Relacing n with nkm in (38), we obtain that

〈
Axnkm

, y − unkm

〉
+

1

rnkm

〈
y − unkm

, unkm
− xnkm

〉
≥ f(y, unkm

), ∀ y ∈ K. (39)

Now, for t ∈ (0, 1) and y ∈ K, set zt = ty + (1 − t)p∗. Clearly,
zt ∈ K since K is convex. Therefore, using monotonicity of A and
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the conditions on {rn}, we have that〈
zt − unkm

, Azt
〉
≥

〈
zt − unkm

, Azt
〉
−
〈
Axnkm

, zt − unkm

〉
− 1

rnkm

〈
zt − unkm

, unkm
− xnkm

〉
+ f(zt, unkm

)

=
〈
zt − unkm

, Azt − Aunkm

〉
+
〈
Aunkm

− Axnkm
, zt − unkm

〉
− 1

rnkm

〈
zt − unkm

, unkm
− xnkm

〉
+ f(zt, unkm

)

≥
〈
Aunkm

− Axnkm
, zt − unkm

〉
− 1

rnkm

〈
zt − unkm

, unkm
− xnkm

〉
+ f(zt, unkm

)

≥
〈
Aunkm

− Axnkm
, zt − unkm

〉
−1

b
‖zt − unkm

‖.‖unkm
− xnkm

‖+ f(zt, unkm
).

Using the fact that lim ‖xn − un‖ = 0, A is uniformly continuous
and from A4, we obtain as m→∞ that

〈zt − p∗, Azt〉 ≥ f(zt, p
∗). (40)

From A1 and A4, we have that

0 = f(zt, zt)

= f(zt, ty + (1− t)p∗)
≤ tf(zt, y) + (1− t)f(zt, p

∗)

≤ tf(zt, y) + (1− t) 〈zt − p∗, Azt〉
= tf(zt, y) + t(1− t) 〈y − p∗, Azt〉 ,

this implies that

0 ≤ f(zt, y) + (1− t) 〈y − p∗, Azt〉 .

As t→ 0 we obtain using A3 that

f(p∗, y) + 〈y − p∗, Ap∗〉 ≥ 0, ∀ y ∈ K.
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This implies that p∗ ∈ EP (f, A). Hence, p∗ ∈ Ω.
It follows from equation (37), Remark (1) and inequality (5) that

lim sup
n→∞

〈u− x∗, xn − x∗〉 = lim
k→∞
〈(u− x∗), xnk

− x∗〉

= lim
i→∞

〈
u− x∗, xnki

− x∗
〉

= 〈u− x∗, p∗ − x∗〉
≤ 0.

But,

‖xn+1 − x∗‖2 = 〈xn+1 − x∗, xn+1 − x∗〉 .
= 〈αn(u− x∗) + (1− αn)(zn − x∗), xn+1 − x∗〉
= αn 〈(u− x∗), xn+1 − x∗〉

+(1− αn) 〈(zn − x∗), xn+1 − x∗〉
≤ αn 〈(u− x∗), xn+1 − x∗〉

+(1− αn)‖zn − x∗‖.‖xn+1 − x∗‖
≤ αn 〈(u− x∗), xn+1 − x∗〉

+
1− αn

2
(‖zn − x∗‖2 + ‖xn+1 − x∗‖2).

Thus,

2‖xn+1 − x∗‖2 ≤ 2αn 〈(u− x∗), xn+1 − x∗〉
+(1− αn)(‖zn − x∗‖2 + ‖xn+1 − x∗‖2),

which implies that

‖xn+1 − x∗‖2 ≤ 2αn 〈(u− x∗), xn+1 − x∗〉+ (1− αn)‖xn − x∗‖2

≤ σn + (1− αn)‖xn − x∗‖2,

where σn = max{0, 2αn 〈(u− x∗), xn+1 − x∗〉}. Clearly, σn → 0 as n→
∞. Hence by Lemma 3 that xn → x∗ = PΩu.

Case 2: There exists a subsequence {xnk
} of {xn} such that ‖xnk

−
x∗‖ < ‖xnk+1 − x∗‖ ∀ k ≥ 1.
By Lemma 5, there exists a sequence of integers {τ(n)} that satisfies

(i) {τ(n)} is nondecreasing, ∀ n ≥ n0;
(ii) limn→∞ τ(n) =∞;

(iii) ‖xτ(n) − x∗‖ < ‖xτ(n)+1 − x∗‖, ∀ n ≥ n0;
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(iv) ‖xn − x∗‖ < ‖xτ(n)+1 − x∗‖, ∀ n ≥ n0.

Consequently,

0 ≤ lim inf(‖xτ(n)+1 − x∗‖ − ‖xτ(n) − x∗‖)
≤ lim sup(‖xτ(n)+1 − x∗‖ − ‖xτ(n) − x∗‖)
≤ lim sup(‖xn+1 − x∗‖ − ‖xn − x∗‖)
= lim sup(‖αnu+ (1− αn)zn − x∗‖ − ‖xn − x∗‖)
≤ lim sup(αn‖u− x∗‖+ (1− αn)‖zn − x∗‖ − ‖xn − x∗‖)
≤ lim sup(αn‖u− x∗‖+ (1− αn)‖xn − x∗‖ − ‖xn − x∗‖)
= 0.

Therefore,

lim(‖xτ(n)+1 − x∗‖ − ‖xτ(n) − x∗‖) = 0. (41)

It follows from equation (22) that

‖Ti(τ(n))u(τ(n)) − u(τ(n))‖2

≤ 1

(1− α(τ(n)))δ2

[
α(τ(n))‖u− x∗||2

+‖x(τ(n))− x∗‖2 − ‖x(τ(n))+1 − x∗‖2
]
.(42)

Using equation (41) and inequality (42), we obtain that

lim
n→∞

‖Ti(τ(n))uτ(n) − uτ(n)‖ = 0.

Following the same argument as in the proof of Case 1, we obatin
that since

‖zτ(n) − uτ(n)‖ = βτ(n)‖Ti(τ(n))uτ(n) − uτ(n)‖
and {βτ(n)} is bounded, we have that

lim
n→∞

‖zτ(n) − uτ(n)‖ = 0. (43)

Also, for some M0 > 0,

||xτ(n)+1 − zτ(n)|| = ατ(n)||u− zτ(n)||
≤ ατ(n)M0,

so that

lim
n→∞

‖xτ(n)+1 − zτ(n)‖ = 0. (44)

Therefore, comparing (44) with (25), we obatin using the same
pattern of computation as in Case 1 (starting from (25), but with
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the index n replcaed with τ(n)), that xτ(n) → x∗. Using part (iv)
of Lemma 5, we have that xn → x∗ as n→∞. This completes the
proof. �

Corollary 0.4. Let K be a nonempty, closed and convex subset of
a real Hilbert space H and f : K×K → R be a bifunction satisfying
A1 −A4 and A be α-inverse strongly monotone mapping of K into
H. Let Ti : K → K be a finite family of nonexpansive mappings
i = 1, 2, · · · , N Assume that Ω =

⋂N
i=1 F (Ti)

⋂
GEP (f, A) 6= ∅.

Let {xn}, {un} be sequences defined from arbitrary elements x1, u ∈
K by
f(un, y) + 〈Axn, y − un〉+ 1

rn
〈y − un, un − xn〉 ≥ 0, ∀ y ∈ K,

zn = (1− βn)un + βnTi(n)un,

xn+1 = αnu+ (1− αn)zn,

(45)
where {αn}, {βn} and {rn} satisfy the folowing conditions:

(i) limαn = 0,
∞∑
n=1

αn =∞, {αn} ⊆ (0, 1);

(ii) 0 < δ ≤ βn ≤ 1− k − δ < 1, {βn} ⊆ (0, 1);
(iii) 0 < b ≤ rn ≤ c ≤ 2α.

Then, {xn} and {un} converge strongly to x∗ = PΩ(u)

Proof. Taking ki = 0, ∀i = 1, 2, · · · , N in theorem 0.3, Then, the
result follows. �

4. APPLICATION

In this section, we will apply our main result to approximate the
solution of the generalized mixed equilibrium problems and the
common fixed point of a finite family of strict pseudocontractions.
Precisely, we prove the following theorem:

Theorem 0.5 (Generalised Mixed Equilibrium Problem). Let K
be a nonempty closed and convex subset of a real Hilbert space H
and f : K × K → R be a bifunction satisfying A1 − A4, A be
α − inverse strongly monotone mapping of K into H and φ be a
lower semicontinuous and convex functional . Let Ti : K → K be fi-
nite family of ki-strictly pseudocontractive mapping i = 1, 2, · · · , N
, 0 ≤ ki < 1 and k := sup{ki : 1 ≤ i ≤ N}. Assume that

Ω =
⋂N
i=1 F (Ti)

⋂
GEP (f, A) 6= ∅. Let {xn}, {un} be a sequences
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generated by arbitrary element x1, u ∈ K and then by
f(un, y) + φ(y)− φ(un)) + 〈Axn, y − un〉
+ 1
rn
〈y − un, un − xn〉 ≥ 0 ∀ y ∈ K

zn = (1− βn)zn + βnTi(n)zn

xn+1 = αnu+ (1− αn)zn

(46)

where {αn}, {βn}, {rn}{αn} satisfy the folowing conditions:

(i) limαn = 0,
∞∑
n=1

αn =∞, {αn}, {αn} ⊆ (0, 1);

(ii) 0 < δ ≤ βn ≤ 1− k − δ < 1;
(iii) 0 < b ≤ rn ≤ c ≤ 2α.

Then {xn}, {zn} converges strongly to x∗ = PF (u)

Proof. Define Γ : K ×K → R by

Γ(x, y) = f(x, y) + φ(y)− φ(x), (47)

then Γ satisfies conditions A1 − A4 since

Γ(x, x) = f(x, x) + φ(x)− φ(x)

= 0.

Also,

Γ(x, y) + Γ(y, x) = (f(x, y) + φ(y)− φ(x)) + (f(y, x) + φ(x)− φ(y))

= f(x, y) + f(y, x)

≤ 0.

Moreover,

lim sup
t→0+

Γ(x, ty + (1− t)w) = lim sup
t→0+

(
f(x, ty + (1− t)w)

+φ(ty + (1− t)w)− φ(x)
)

≤ lim sup
t→0+

(
tf(x, y) + (1− t)f(x,w)

+tφ(y) + (1− t)φ(w)− φ(x)
)

= f(x,w) + φ(w)− φ(x)

= Γ(x,w).

Besides, Γ(x, .) is a sum of lower semicontinuous functions, and
thus lower semicontinuous. So , it remains to show that Γ(x, .) is a
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convex function. Let t ∈ [0, 1] and y, w ∈ K be arbitrary, then

Γ(x, ty + (1− t)w)) = f(x, ty + (1− t)w))

+φ(ty + (1− t)w))− φ(x)

≤ tf(x, y) + (1− t)f(x,w)

+tφ(y) + (1− t)φ(w)− φ(x)

= t (f(x, y) + φ(y)− φ(x))

+(1− t) (f(x,w) + φ(w)− φ(x))

= tΓ(x, y) + (1− t)Γ(x,w).

Hence, if we repalce the bifunction f in Theorem 0.3 with Γ and
repeat the argument displayed in the proof of Theorem 0.3, then
the result follows. �

5. CONCLUDING REMARKS

It is worthy to note that theorem 0.3 improves the correspond-
ing result of He [7] in the following ways: First, Theorem 0.3 ap-
proximates solution of generalized equilibrium problems and a com-
mon fixed point of a finite family of strict pseudocontractions while
Theorem 0.1 (He [7]) approximates solution of classical equilibrium
problems and a common fixed point of a finite family of strict pseu-
docontractions. Secondly, in each iterate of Theorem 0.3, we are
faced with only subminimal problem of computing zn while Theo-
rem 0.1 (He [7]) poses two subminimal problems of computing zn
and yn, hence each iterate in Theorem 0.1 requires more process-
ing time. Furthermore, the the scheme introduced and studied by
He [7] seems difficult to implement due to the summation involved,
and the difficulty may be experienced if N is large enough and the
mappings Ti, i = 1, 2, · · · , N are not simple enough.

Furthermore, we observe that Theorem 0.3 complements and im-
proves Theorem 0.2 (Huang and Ma [9]) in the sense that the choice
of {αn} in Theorem 0.2 excluded the cannonical choice { 1

n
} and con-

cluded weak convergence, which is not that important considering
application point of view. Our main result, Theorem 0.3, however,
concluded strong convergence which is more applicable than weak
convergence. Furthermore, our iterative sequence in theorem 0.3
accommodates approximation of common fixed point of finite fam-
ily of strict pseudocontractive mappings which is more general than
what Huang and Ma [9] studied.
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As an application (see Theorem 0.5), the iterative algorithm studied
in this paper was shown to be suitable for approximation of solu-
tion of generalized mixed equilibrium problems which is clearly more
general than classical equilibrium problems, variational inequality
problem and convex optimization problems. Our theorems there-
fore improve, complement and unify the results of He [7], Huang
and Ma [9] and several other results announced recently.
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7. NOMENCLATURE

Ω :=
⋂N
i=1 F (Ti)

⋂
GEP (f, A) - the set of common solution fixed

point and generalized equilibrium problems studied in this paper.
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