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ABSTRACT. The purpose of this work is to study an itera-
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1. INTRODUCTION

Let E be a real Banach space and E* be its dual. Let K be a
nonempty closed convex subset of E. For some real number ¢ (1 <
q < 00), J, denotes the generalized duality mapping from E into
2" given by

Jo(@) ={f € E": {f,2) = |[z|* and || f|| = ||l=]|*~"}.

Ja (when ¢ = 2) is called the normalized duality mapping, where
(-,-) denotes the duality pairing between the elements of £ and
those of £*. It is well known that if F is uniformly smooth then J,
is norm-to-norm uniformly continuous on bounded sets (see, e.g.,
2, 3]). If F is smooth (i.e., E* is strictly convex), then J, is single-
valued (see, [5]).

For a real number L > 0, amapping 7" : K — FE is called L—Lipschitz
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if

[Tz =Tyl < L|lz - y|| Va,y € K. (1)
If L =1 then T is called nonexpansive. A point x € K is called a
fixed point of T if

Tr =x.
We shall denote the set of all fixed points of a nonlinear mapping
T by Fiz(T) i.e.,
Fiz(T) ={x € K : Tx = z}.

It is well known that (see, [4]) if K is bounded closed convex subset
of a reflexive real Banach space with normal structure and T is a
nonexpansive mapping of K into itself, then Fix(T) is nonempty.

A mapping T : E — FE is said to be accretive if for all x,y € F,
there exists j(x —y) € J(x — y) such that

(Tw =Ty, j(x—y)) 2 0.

For some positive real number n the mapping 7' is called n-strongly
accretive if

(T =Ty, j(x —y)) = nllz -y
holds V x,y € F and for some positive real number A the mapping
T is A-strictly pseudocontractive if
(Tz =Ty, j(x —y)) < llz—yll* =M = T)e— (I =Tyl* (2)

holds Vz,y € E. It is also known that if T is A-strictly pseudo-
contractive then it is %-Lipschi’czian. If I denotes the identity
operator, then its easy to see that (2) can be written in the form

(I =T)x— (I =Ty j(x—y) = NI =Tz — I =T)ylI*. (3)
In Hilbert spaces, (2) (and hence (3)) for A € (0, 1), is equivalent
to the inequality

1Tz —Ty|* <z =yl + k(I = T)z = T =Tyyl*,  (4)

where k = (1 —2X) < 1.
The variational inequality problem (VIP) is a problem of finding a
point * € K such that

(Te", jgy — 7)) 2 0 Vy € K, ()

where j,(y — 2*) € J,(y — 2*). The set of solutions of variational
inequality problem, VIP with respect to K and 7' is denoted by
VIP(T, K). If the mapping T is monotone, then the VI P is called
a monotone variational inequality problem (MVIP). The theory of
variational inequalities is well established in the literature because
of its applications in science, engineering, social sciences, and so
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forth. For further detail on variational inequalities and their appli-
cations, we refer the reader to ([6]- [9]) and [10] and the references
contained therein. It is easy to see that in a real Hilbert space H,
finding z* € VIP(K,T) is equivalent to finding the solution of the
fixed point equation:

" = Pg(I — \T)x",
where A > 0 and P is the metric projection of H onto K.

Also the variational inequality problem is considered over the set
of fixed points of a nonexpansive mapping. If we assume K is a
fixed point set of a nonexpansive mapping 7" and V' is another non-
expansive mapping (not necessarily with fixed point), the problem
(5) becomes the VIP of finding z* € Fiz(T) such that

(I =V)a™,j(y — 2%)) = 0 Vy € Fix(T), (6)

where we assume that Fiz(T) # (). This problem is called Hier-
archical fixed point problem (in short, HFPP). It is known that
Finding x* in the solution set of HF'PP is equivalent to finding the
solution of the fixed point equation:

find v € K such that £ = Ppiym)V (x").

Methods of solving equation (6) has been studied by many authors
(see, [12]- [17]) and the refrences contained therein. Ceng et al. [19]
proposed explicit and implicit iterative schemes for finding a com-
mon solution for a fixed points of nonexpansive mapping. Buong
and Duong in [20] also studied the explicit iterative algorithm for
finding the solution of a VIP defined over the set of common fixed
points of a finite number of nonexpansive mappings:

U1 = (1 — bY)uy, + nggS;f T

where SF = (1—b})1+ b5 forl <i < p, {S;}_, are finite family
of nonexpansive mappings of a real Hilbert space H, S§¥ = I - kuF,
and F'is an n-strongly monotone and L-Lipschitz continuous map-

ping.
Recently, Zhang and Yang [18] studied the following more general
explicit iterative algorithm for solving HFPP.

U1 = agcg(ug) + (1 — uakF)S;fS;j_l - Sk, (7)
where ¢ is a contraction, F' is an 7-strongly monotone and L-

Lipschitz continuous mapping and S¥ = (1 —b})I+b.S; for 1 <i <
p. Under some assumptions, the iterative sequence {uy} generated
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by (7) strongly converges to the solution of the HFPP, i.e., some
z € NE_ F(S;) such that

(WE —vg)z,v — z) > 0,Yv € M F(S)). (8)

Very recently Husain and Singh [1] studied Hybrid steepest iterative
algorithm for a hierarchical fixed point problem of a finite family of
nonexpansive mappings in a real Hilbert space. They studied the
algorithm defined as

Yn = bnan + (1 —0,)S)S) .57 2y,
Tp41 = anpg(yn) + CnYn + [(1 - Cn)[ - anﬂF]SgSg—IS{Lyn7

Vn > 0,
(9)

where SI' = o/ I 4+ (1 — a!)S; , {Si}}_, are nonexpansive mappings
and proved that the sequence generated converges strongly to the
solution of the HFPP, z € N?_, F'(.S;) such that

(WF —~g)z,v — z) > 0,Yv € NE_, F(S;).

Motivated by the work of Husain and Singh [1], in this paper we
studied a modified iterative scheme and prove its strong conver-
gence to a solution of HFPP involving finite family of strictly pseu-
docontractive maps in a setting of Banach spaces more general than
Hilbert. The results presented here improve, extend and generalised
some recently annouced results.

2. PRELIMINARY

Let K be a nonempty closed convex and bounded subset of a Ba-
nach space E and let the diameter of K be defined by d(K) :=
sup{||z —y|| : x,y € K}. For each x € K, let r(z, K) := sup{||z —
yl| vy € K} and let r(K) := inf{r(z,K) : x € K} denote the
Chebyshev radius of K relative to itself. The normal structure
coefficient N(E) of E (see, e.g, [11]) is defined by

d(K
N(E) = mf{% : K C E with d(K) > O}.
A space E such that N(E) > 1is said to have uniform normal struc-
ture. It is known that all uniformly convex and uniformly smooth
Banach spaces have uniform normal structure (see, e.g, [23, 24])
and the refrences contained therein.

Let E be a real Banach space and U(E) = {2z € E : ||z|| = 1}.
The space E is said to be uniformly convex if for each € € (0,2),
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there exists § > 0 such that M < 1-9¢ for all z,y € U with
|lx — y|| > €. The modulus of smoothness of E is the function pg :
[0,00) — [0, 00) defined by
Tyl +||r—
() = SUP{H yll ! lz — yll

FE is said to be uniformly smooth, if and only if

limPE®) _ .
t—0

“LiacUE) Iyl <1,

A Banach space F is said to have Fréchet differentiable norm, if for
all z,y € U(FE)

ot iy~ |

t—0 t
exists and is attained uniformly for y € U(FE). E is said to have
Gateax differentiable norm (and E is called smooth) if the limit ex-
ists for all z,y € U(FE), and F is said to have a uniformly Gateaux
differentiable norm if for each y € U the limit is attained uniformly
for x € U.

It is well known that if F is uniformly smooth, then the norm on F
is Fréchet differentiable and the normalized duality map is singled-
valued and norm to norm uniformly continuous on bounded sub-
sets. A Banach space F is said to be p— uniformly smooth, if there
exists a constant ¢* > 0 such that pg(t) < ¢*t? for all ¢t > 0. Every
p— uniformly smooth Banach space is unifomly smooth.

In the sequel we will make use of the following lemmas.

Lemma 1: [26] Let {a,,} be a sequence of nonnegative real num-
bers such that
A1 < (1 —wy)ay, + wyty,
where
(1) {wn} C[0,1], S wn = 00
(2) limsup t, <0
Then «,, — 0 as n — oo.

Lemma 2: [27] Let E be real Banach space and K be a closed
convex subset of E. Let T': K — K be a nonexpansive mapping
with Fiz(T) # (). Then the mapping I — T is demiclosed at 0, that
is, if {z,} is a sequence converging weakly to x and {(I — T)x,}
converges strongly to 0, then (I —T)z = 0.
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Lemma 3: [21] Let £ be a real Banach space with Frechet dif-
ferentiable norm. For x € F, let * be defined by

B(t) = sup{ oty + Iyl _ 2<y,j<x>>\ Nyl = 1} (10)

t
Then, ltz_%zﬂ (t) =0 and

lz+ 2l* < ll2l® + 2(h, (=) + IRl B (|I7]])

for all h € E — {0}.
If £=1L,2<p< oo, we know that

lz +yl1* < ll2l* + 2(y, i (2)) + (p = Dllyll*, Yz,y € E.

Then £* in (10) is estimated by 5*(t) = (p — 1)t for ¢ > 0.
In our more general setting, throughout this paper, we will assume
that

B*(t) < ct, t >0,
for some ¢ > 1 where 8* is the function appearing in (10).
Lemma 4: [24] Suppose E is a Banach space with uniform nor-
mal structure, K is a nonempty bounded subset of £ and T :
K — K is uniformly L— Lipschitzian mapping with L < N(E)%

Suppose also that there exists a nonempty bounded closed convex
subset C' of K with the following property

x € Cimplies W,,(z) C C,
where W, () is the w- limit set of {T"z}2°, at x, that is,

Wy (x) = {y €EE:y = weak —limT™z for some subsequence
J

(} of ()},
Then T has a fixed point in C.

Lemma 5: [25] Let (ag, a1, ...) € lo such that u,(a,) < 0 for all
Banach limit g and limsup (a,.1 — a,) < 0. Then limsup a,, < 0.

n—o0 n—oo

Lemma 6: Let F be a real normed linear space. Then the
following inequality holds

lz +y|* <llz|* + 2{y, j(z + y)) Y,y € E,Vj(z+y) € J(z +y).
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Lemma 7: [28] Let {x,} and {y,} be a bounded sequences in
a Banach space E and let {f3,} be a sequence in [0, 1] with 0 <
liminf 5, < 1. Suppose that x,.1 = By, + (1 — B,)z, for all
integer n > 1 and imsup(||yn+1 — Ynll — ||Zns1 — 2n||) < 0. Then,
lim||y, — z,|| =0

Lemma 8: Let E be a real Banach space with Frechet differ-
entiable norm and let K be a nonempty closed convex subset of
E. Suppose that T': K — K is A—strictly pseudocontractive such
that F(T) # (. For any a € (0,1) we define 7, : K — E by
Tox = ax+(1—a)Tz Vo € K. Then T, is a nonexpansive mapping

such that Fiz(T,) = Fix(T). for 1—a € (0, p), p = Mm{l, 1—%}
with § > X and A € (0, 1).

Proof: In view of Lemma 3, , we have the following estimate
[T = Tuyl? = llaw + (1 — @) Tz — ay — (1 — o) Ty

= |laz —ay+ (1 - a)(Tz - Ty)|
la(z —y) = (x —y) + (& —y) + (1 — a)(Tz — Ty)|
|l —y = (1 —a)@—y— (Te—Ty)|*

< o —yl? =200 = a){(I =Tz — (I = Ty, j(x —y)) +
(I-a)llz —y— (Tz=Ty)|8" (1 - a)llz —y — (Tx — Ty)||

< e =yl =220 —a)|z —y — (Tz = Ty)|I” + c(1 — a)®
|z —y — (Tx = Ty)|?

= |z —yl* = 2AM1 — @) —c(1 = a)’||lz —y — (Tz — Ty)|”

= Jle—yl? - (1 —-a)2A —c(1 — )]z —y — (Tz — Ty)|?

<l —yl*.

3. MAIN RESULTS
Lemma 9: Let {7;}!_, be \;— strictly pseudocontractive mappings
and let A = max{\;} and {a;}!_, be a finite real sequences in (0, 1).

Define T,,,x = ayo+(1—a;)Tiw and T := T, 0T, 0- - -0T,, . Then Ty,
for each 7 = 1,2, ...p and T are strictly pseudocontrative mappings.

Proof: Consider the following computation

<Tai$ - Taiy,j(:v - y)>
= (r+ (1 —a)Tiz — (ay + (1 — ) Tiy), j(x — y))
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= a{(z —y),jl@—y) + (1 — ) (Tiz — Tiy), j(z — y))

< aillz =yl + (1= i)l — ylI* = Nll(I = T)z — (I — T)yll?]

= Jz—yl* =\ — )T = Ty)z — (I - T,)yl|

(To,x — ) o . (To,y — @iy) \ 2
R (R |

Ai
= |z —yl?*- (1@) (I = Ta;)x — (I = To,)yll*.

= lz = yl? = X1 = aq)llz ~

Therefore T, is ; fa - strictly pseudocontractive. Also

(Tz — Ty, j(z —y))
= <Ta1 OTa2 O"'OTapx_Tal OTag O"'oTapyaj(x_y»
< HTaonagom-oTapx—TazoTa30~~oTapyH2—

A
1_1a1||(I_T041OTazo"'oTap)m_
(I =Ty 0Toy 00Ty )yl
A
< o=yl = === = Ta, 0 Ty 0+ 0 Tu ) —
1—0[1

(I - TOél o Ta2 ©---0 Tap)yHQ

A1
1—aq

Lemma 10: Let E be a real Banach space with Fréchet differ-
entiable norm and let K be a nonempty closed convex subset of
E. Suppose that T; : E — FE is \;— stricly pseudocontractive for
i=1,2..p, \; € (0,1) and F : E — E be an n— strongly accretive
mapping which is also L—Lipschitz for some L > 0. Assume ¢ > 1,
n € (0, 29522 and yu € (0, 254), a, € (a,b) € (0,1). Define

> acL?
H:E— Eby Hv =[] — 28T, T, -+ Ty x Vo € E. Then H

(1-d)

which implies T is

strictly pseudocontractive.

p—1

satisfies the following inequality |Hx — Hy|| < [1 - (lb_hd)] |z —yll,

where h = p (7] — QL(?’CQ‘)) .
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Proof: For any z,y € F and Lemma 3, we have

ap b F
Hx — Hy||? = ||[I — ToTo T,
[Hz — Hyl|* = [|[ = d>] Y - &
an ' 9
_ I — TaTa_l"'Ta1
= H(T%Tapl e Talx _ TapT%i1 e Taly) —

2

anptF (1o, To, ;- - - To, ) P (T, T, - - To,y)
(1—d) (1—4d)

IN

An b
ToTo - Tox—TyTo - Toyl*—2
” D p—1 lx D p—1 lyH ((1 _ d))

<F(TQPT%1 T x) = F(Ta,Toy - Tony),

j(TapTapq Ty —To,Ta, - 'Ta1y)>

* ((1anlud)) HF(TapTocp—1 e Talx) - F(TapTap_l o Taly)H

4 (((ffﬂd)) HF(T%T%_I T

_F<TapTap71 e Taly)H)

T, o, - To,x — 1o, Ty

- (7)1

S

IN

o TalyH2

p—1 ’
2

To, T, Toyx —To,Ta, - Ty y

2
_F(TapTap,l N Taly)

IN

HTapTapfl o Tow =T, To,_, - 'TalyH2

(g )
rel g )
T T
- Ua-a 77_22 i-d)
( Qi ( Lc( U pl ))
|

2

To, T, Toyx —To,To, - - Tayy

To,Toy - Toy

2

2
T,,T.

ap_1

o T = To To, - Toyy
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< [ (- ) o
< {1_%]1@_1,”2,

Hence, we have

bh
Hr —Hy|| < |1— ——+ — |
H ! yH - [ (1 —d)]Hx /I
We now prove the following Theorem

Theorem 1: Let E be a real uniformly smooth Banach space
and let K be a nonempty closed convex subset of E. Suppose
that T; : E — FE is \;— stricly pseudocontractive mappings for
i=1,2,...,psuch that Q =nNP'_, Fix(T;) # ) and let F': E — E be
an n— strongly accretive mapping which is also L— Lipschitz. Let
g : E — E be a contraction with contractive constant 7 € (0, 1).
For an arbitrary x¢ € E, define a sequence {x,} by

Yn = bnxn + (1 - bn)TapTap_l ot Ta1$n7
Tpi1 = npg(Yn) + dzy + [(1 —d)I — anﬂF]TapTap_l Ty Yn
Vn > 0,

(1)

where T,,, = ayz+(1—a;) Tz and o; € (0, 1—X) where A = Maz{\;}

for ©+ = 1,2,...p, and the parameters p,h,d satisty 0 < p < %,

€ 0. 228) and b= (1= By ). d € 0,1) and (), (0}

are sequences in (0, 1) satisfying the following condition:
(1) lima, =0, 7 ,a, =00 and > 7 |an41 — a,| < o0
n—oo
(2) b, € (2%,1) and lim |b,1 — b,| =0
n—o0

1+d’
201 2(1—d)
(3) 1—aq > 14+d

Then the sequence generated by algorithm (11) converges strongly
to z € NP _, Fixz(T;), which is also a solution of the HF PP :

(uF = pg)z, j(x = 2)) 2 0 Vo € M, Fiz(T5). (12)

Proof: We split the proof into four steps.
STEP 1 We show that {y,}, {z,} are bounded.
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Let z* € Q. From the scheme (11) and Lemma 3, we have
Hyn - "E*”Q = ||bnxn + (1 - bn)TapTozp—l o Ty — "E*”Q
= |lwp—a* = (1 =) (@0 — To,Tu, , -+ Tayzn)|”
< o, — 2 =201 = by)(xp, — T, To, - ToyTn, j(Tn —27))
+ (L =bp)llzn = To,Ta,_, -+ - Toyzn|| ¥
5*((1 - bn)Hxn - TapTap—1 Tt Talan)
[ x*||2 —2(1—1by)
X(x — 2"+ 2" =TT, - To T, j (2 — 7))
+ (1 — bp)?* ||, — T, To, , - Ty zn|?
= |lwn = 2"|* = 201 = bp) {2y — 2", j(wn — 27)) + 2(1 = by)
(To, T, -+ Toyxy — ", j(x, — 7)) +
(1= bp)?lwn — To,To,y -+ Toy |
= lon — 2" = 2(1 = bp)(wn — 2", j (2 — 27)) +2(1 — by,)
X (Lo, To, =+ Toyn —To,To, -+ - To, 2", (20 — 27))
+c(1 = by)?||@n — T, To, -+ Taynl|?
= 2|2 = 2(1 = bo) [l — 271 + 2(1 = bo)[[arn — 27|* —
A1
1—oy
+c(1 = by)?||wn — To, T

2\
L (1= by)||wn — T, T
1-— aq

c(l—bn)2||xn—Ta T . --Toﬂan2

p~ Qp—1

- ||xn—x*||2—<1—bn><1”1 —c<1—6n>)

IN

IN

Loy )2 |

(I =TT, -+ To)tn — (I — To, T

p*l" p*l..

p—1 Ta1xnl|2

e T nl” +

= lza — 2" = -

X|| @y — To,To, , -+ Ty

p—1

So
lyn — ¥ < oy — 2 (13)
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From the algorithm (11), Lamma 10 and equation (13), we have
[2nt1 — 2™ = llanpg(yn) + dan
+[(1—d)] — anﬂF]TapTap—1 Ty Y — 27|
= |lan(pg(yn) — pF (")) + d(z, — %) +
(1 —d)I - an:uF]TapTapq Ty — (1= d)] — appuFz”||
< llan(pg(yn) — pF @) + [|d(z — )| + [[[(1 = d) — anpuF]
XTo, Toy =+ Toyyn — [(1 = d)I — appuF|z™||
= llan(pg(yn) — pF ()| + dl|(z — 27)||

an b F°
+ (1=a)|[I - 0 d)]TapTap_l < To Yn
ap b F .
—[I - ToTa, |- Ty
[ (1 _ d)] P P z H
< Nan(pg(yn) — pF'(z7))| + dl|z, — ¥

HL= D)1= 5 o = o]

lan(pg(yn) — pF ()| + dl|x, — 27|

+(1 = d)||zn — 2" — anhllz, — 27|

= |lanpg(yn) — anpF(z*) — anpg(a®) + anpg(z™)||

+(1 — ayh) ||z, — x|

anpT|Yn — 27| + anllpg(z*) — pF ()| + (1 — anh) ||z, — 27|

anpT|zn — 2% + anllpg(x™) — pF(27)[] + (1 = anh)||z, — 27|

(1 = an(h = p7)llay, — 27| + anllpg(z™) — pF (")

an(h = p7)|lpg(x*) — pF (=")|
(h — p7)

IA

IN N

(1 = an(h = p7)||zn — 27| +

Hence by induction,

*\ F *
(h — p7)

Therefore,{x,}, {y,} are bounded.
STEP 2 We show that
(i) lim||zp41 — z,|| = 0 and
n—oo
(i) lim ||z, — To,Ta,_, - - Tay@n|| = 0.

1
n—00 P
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Define J
o Tpi1 — ATy
Zn = —1 4 .
Thus,
|| . || _ Ln+2 — dxn—f—l . Tpt1 — dxn
Zn+1 Zn|l = 1— d 1 — d
_ U199 (Yns1) + dTp i1
(1—d)
i [(1—d)] — a’n‘i’ll’LF]TapTapfl “ ToyYntr
(1—d)
_danrl - (anpg(yn>
(1—d)
+da7n + (1 =d) = anpuF )T, Ty, , - ToyYn — dy,)
(1—d)
_ an+1pg(yn+1) + [(1 - d)I - an+1/LF]TapTap71 e Ta1yn+1
(1—d)
_anpg(yn) — [ =d) = anpFTo, T, -+ - ToyYn
(1—d)
an109(Ynt1)  anpg(Yn)
(1—d) (1—4d)
TocpTapfl T Talyn—l—l - Toszap,1 T Toqyn
(1—d)
+an/JJFTapTap,1 te Talyn an+1,U/FTapTap,1 te TalynJrl
1-d 1—-d)
o |ansrpg@asr)  anpg(yn)
- (1—4d) (1—4d)
+‘ TapTap,l T TalynJrl - TapTap,1 T Talyn
an,UFTapTap_l te Talyn anJrI,UFTapTap_l tt Talyn+1
(1—4d) (1—d)
199 (Ynt1)  anpg(Yn) N

an,UFTapTapfl T Toqyn an—|—1/45FTapTap,1 Tt Talyn—H

(1—4d) (1—4d)
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An+1
1—-d
Ap41 — Ap
1—-d
An b
1—-d
Ap — An41
1—-d
An+1 o7
1—-d
an b I
1—-d
Ap — Ap41

1—d

P9 Ynt1) — PG (Yn)

+

£9(Yn) Yn+1 — Un

‘

+ o Talyn - FTapTap_1 t Talyn+1 +

p—1 "

HFTapTa

/’I’HFTapTapl te TalynJrl

Ap+1 — Gp

1—d

+ +

Yn+1 — Un ’pg(yn) Yn+1 — Yn

+ Yn — Yn+1

_|_

,UHFTapTap_l U Ta1yn+l

”yn+1 - ynH = an+137n+1 + (1 - bn+1)TapTap71 wo T Tnp

IN

IN

by, — (1 — bn)TapTapfl...Talan

(1 —=bn1)(To, To, - ToyTpgr — 1o, To,
—(bng1 — bn)T0, Tor,
Fon41(Tn1 — Tn) = (by = bpg1) x|

(L= b)) To, T, - Toy Tpgr — To, Toy
_(bn+1 - bn>TapTap71
+(bn+1 - bn)xn + bn+1(xn+1 - xn)H

ce Talxn)

p—1
e T

. Talxn)

p—1
o Ty,

(1= bps )| T0, Ty - - Toy g — To, Ty -+ - Ty T
Hong1 = bu|||To, To,y - - - Ty Tn — 24|

+ons1l|Tni1 — zal|

bn+1||xn+1 - an + (1 - bn+1)||xn+1 - an

H o1 — bl | T, Topy -+ Toy@n — |

|Zns1 — Tl + [brg1 — bn‘HTapTap—l o T,y — 2|
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So
An+41
HZTL+1 - Zn“ S 1 _+de Yn+1 — YUn

Apy1 — Ap

i | 21C78) R RS
Qp

b2 ) e
Ap — Qp41

o [ ] |

Therefore
Hzn-H - Zn“ - Hxn-&-l - an

< Qp+1 o7y —y

=~ 1 _ d n+1 n
Gp41 — Ap

L e 247

+ |bn+1 - bn| TapTap,1 T Talxn — Tn
At

+ F<yn) - F(yn-‘rl) +
1—-d
Ap — Qpy1
S

Hence,

limsup(||zn+1 — Znll = |Xna1 — xn||) < 0.

n—o0

Thus by Lemma 7

lim||zn, — || = 0.
n—o0o
This implies
lim||zp1 — x| = (1 — d) lim ||z, — x| = 0. (14)
n—oo n—oo
Now
Hxn - TapTapfl Tt Talan
= ||xn — Tpt1 + Ty — TapTap,1 e Talan
< Hxn - xn+1H + ‘|$n+1 - TapTapq Tt Ta1xn||
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= |z — o1l + llanpg(yn) + day, +
(1 =d)] — anuFT,, T, Ty — Toy Ty - - Ty |

p—1

< Nn = Zpa|l + anllpg(yn) — pFTo,To, - - Ty Yn|
+d||lzn — To,Ta, ., - Tartnll +
1T, To s -+ Tortn = Ty Toyy - -+ Ty |

< N = znsa|l + anllpg(yn) — pFTo, T, - T Y|
+dl|zn = T0,To,_, - Toy@n + 10, To, -+ Ta Ty
T, T+ Tastnll + Ny — 0|

< Hxn - xn-&-l” + aang(yn) - ,UFTapTap_l T Ta1ynH
+d||z, —T0,To, - To, 20|
+d||T0lpTap—1 o ToyTn — TO‘pT%—l e 'Ta1ynH + Hyn - xn”

< Hxn - xn—&-l” + aang(yn) - ILLFTapTOCp—l e Ta1yn||
||y — ToyToy s -+ Toyall + (14 d)][20 — ynll.

Notice that

||yn - $n|| = (1 - bn)HTapTa R xn”

p—1 "
Therefore
Hlﬁ - Toszocpfl T Tar'EnH < Hxn - xn—f—lH
+anlpg(yn) — pF 1o, Toy, -+ Toyynl
td||zn —To,To, ;- - Toyxn|| + (14 d)(1 = by) ¥
||TapTap71 o Toy @y — 2|
= Hxn - xn—i-lH + aang(yn) - MFTapTapq e 'Ta1yn||
(14+2d—0b,(1+ d))||T%TOZP71 v T T — |-
Thus,
(bp(1 4+ d) — 2d)||x, — To,To, - Toy Tl

< Mn — zpgall + anllpg(yn) — pETo, To, | - To, Ynll
From condition (1), (2) and equation (14), we obtain
Ty x| = 0.

lim ||z, — To, Ty, _,
n—oo
STEP 3 Next we show that for z € €,

limsup (pg(2) — pF(2), j(zn = 2)) <0,

n—oo



HYBRID STEEPEST ITERATIVE ALGORITHM FOR HIERARCHICAL .. 463

Define a map ¢ : E — R by
P(y) = pnllzn — y|I> Vy € E.

Then ¢(y) — oo as ||y|| = oo, ¢ is continuous and convex, so as £
is reflexive, there exists ¢ € F such that ¢(q) = mig ¢(u). Hence
ue

the set

ko= {ye B o) =i o) | £0
Since gz_@onn —TopTop—1--Tarx,|| = 0 and by Lemma 4 we obtain
K*nnl_ Fix(T;) # 0.

Without loss of generality, assume that y* = 2 € K* N Q. let t €
(0,1), then it follows that

¢(2) < @z +t(pg — pk)z)
and using Lemma 6
|20 — 2 —t(pg — NF)Z||2 <||zn — ZH2
— 2U((pg — pnF)z, j(zn — 2z + t(pg — pF)z)).
Thus, taking Banach limit of both sides, we have
fnllzn — 2z —t(pg — ,UF)ZHQ < pnllzn — ZH2
— 2tpn((pg — pF)z, j(xn — 2 + t(pg — pF)2)).
This implies
2tpn((pg — nE)2, j (0 — 2z + t(pg — pf)z))
<l = 2| = pnllz, — 2 = t(pg — pF)z|
= @(2) — ¢z + t(pg — pF)z) < 0.
Therefore,
tn{(pg — pF)z, j(@n — 2 + t(pg — pF)z)) <0 (15)
Thus, by equation (15), we have
tn((pg — pF)z, j(zn — 2))
= tallpg — pF)z, j(an — 2) = j(@n — 2 + t(pg — pF)z))
+un((pg — pF)z, j(zn — 2 — t(pg — pF)2))
< pnllpg — pF)z, (@ — 2) = jlan — 2+ tpg — pF)z))

Since j is norm to norm uniformly continuous on bounded subset
of E, we have

pn{(pg — pl)z, j(2n — 2)) < 0.

Furthermore since ||z,41 — z,|| = 0 as n — oo, we have
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limsup |((pg — pF)z, j(xn — 2)) = ((pg — pF)z, j (01 — 2)) | <O

n—oo

and so we obtain by Lemma 5

limsup ((pg — pF)z, j(zn — 2)) < 0.

n—o0

STEP 4 Finally we show that x, — z as n — oo.
|ns1 = 21 = llanpg(yn)
+ dr, +[(1=d) — a,uF|T,,T,, , -
= A{anpg(yn) +dx, + [(1 — d)I — a,puF] X
To,Topr *+ Tonyn — 2,§(Tn41 — 2))

- <an<pg<yn> UF() + d(a, — 2)

o Ta1yn - ZH2

a
+(1—d) x KI— ‘ifd)T%T%l e T yn

(o325 )

= an{(pg(yn) — pF(2)), j(@n11 — 2)) + (d(n — 2), j (Tns1 — 2))

a
+<(1 —d)KJ— ‘ifd)TapTapl Ty —

(=325} st )

= anp{(9(yn) — 9(2)), j(@n11 — 2))
+an((pg(2) = pF(2)),j(@pe1 — 2)) + d{(2n — 2), §(Tps1 — 2))

"
+(1 - d)< (1 ~ )T%Tapl o T

1—d

A F .
—([ 7 fd>T%T%1 o Toy 2, j(Tpyr — z)>

< anpllg(yn) — 92|70 — 2|l +
an((pg(2) — pF'(2)), j(Tn11 — 2)) + d||zn — 2|

anpbF
nsr — 2] + (1 —d)H(z— i d)T%T%I Ty -

an it F
I— T, T, .- T,
( 1—d) aptap_1 alZ

Hxn+1 - ZH
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< anp7llyn = 2l lTnsr = 2l + {anpg(2) = pF(2)), 5(2n11 = 2))
+d|, — lellwn+1 —

+(1 —d)(

- )Hyn 2l lnsa = 2|

= anpT|yn — ZHHan — 2| + an((pg(2) = pF(2)), j(Tns1 — 2))
Fdl|lzn = 2|z = 2l + [T = dlllyn = zll|lzns — ]
—anhllyn — z|l[[zn1 — 2]

= [+ anpr —d = anh]llyn = 2|20 = 2]|

Hdl|zn = 2l[[[2ns — ]|

+an((pg(2) = pF(2)), J(Tns1 = 2))

[+ anpr — d = anhlllzy = 2|21 — 2] +

IN

dl|zy = 2|[[[#n41 = =]

+an((pg(2) = pF(2)), j(ns1 = 2))
= [L=an(h = pr)lllzn = 2|20 — 2]

+an((pg(2) = pF(2)), 3(Tn11 = 2))

1 —a,(h—pr)
< <chn P4 e — zH?)

2

Fan((pg(2) — pF(2)), j(Tns1 — 2)).
Therefore,

[1 (I —an(h—p7)
2
1 —ay(h — pr) |
- 2
an((pg(2) — pF(2)), j(Tni1 — 2)),

} [mst — 2|

|z — 2]|* +

that is,

{(1 + an(Qh - PT)] 2041 — 2]

(1 —an(h — p7)
2

an((pg(2) = pF(2)), 3(Tn11 = 2))

ln — 21 +
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which implies

by — 2|12 < [

(1 - an<h - pT)):| HQ? _ Z||2
(I+au(h—pr)) "

IN
|

1
[(1+an(h — PT))] (h —p7)
((pg(2) = pF(2)), j(xns1 — 2))
and by Lemma 1 , we have that x,, — z as n — oo. This completes
the proof.

If E is a real Hilbert space H, Theorem 1 reduces to the following
corollary.

X

Corollary 1: Let H be a real Hilbert space and let K be a
nonempty closed convex subset of E. Suppose that T; : H — H
is \;— stricly pseudocontractive mappings for ¢ = 1,2, ..., p such
that Q = NE_, Fiz(T;) # 0 and let F': H — H be an n— strongly
monotone mapping which is also L— Lipschitz. Let g : H — H be
a contraction with contractive constant 7 € (0, 1). For an arbitrary
xo € H, define a sequence {z,} by

Yn = bnxn + (1 - bn)TpTaPTap_1 o Talxnv
Tpg1 = A pg(Yn) + dan + [(1 = d) ] — anp BT, To, - ToyYn
Vn > 0,
(16)
where T,,, = ax+ (1 —a;)T;x and o; € (0,1—X) fori =1,2,...p, let

the parameters p, h, d satisfy 0 < p < % and h = p (n — %2((?2‘:[) )),

d € (0,1), and {a,},{b,} are sequences in (0, 1) satisfying the fol-
lowing condition:
(1) lima, =0,> 7 ,a, =00 and > 7 |a,41 — a,| < 00
n—oo

(2) b, € (2%,1) and lim |b,, 1 — b,| =0
n—oo

14d’
201 2(1—d)
(3) 1—aq > 14+d

Then the sequence generated by algorithm (16) converges strongly
to z € NP _, Fiz(T;), which is also solution of the HF PP :

((pg — uF)z,x — z) > 0 Vo € NP_ Fix(T;).
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4. CONCLUDING REMARKS

Theorem 1 genralizes the results of Husain and Singh [1] from finite
family of nonexpansive mappings in real Hilbert space to finite fam-
ily of strictly pseudocontractive mappings in real uniformly smooth
Banach space.
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