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ABSTRACT. In this note, we denote by (Lip1)′ the space of
derivatives of Lipschitz functions of order 1. We propose a gen-
eralization of the space (Lip1)′ on the interval [0, 2π] for general
measures on subsets of [0, 2π] with respect to the representation
of the norm. As a byproduct, we obtain Hölder’s type inequal-
ities and duality results between the space (Lip1)′ as well as
its generalization, and the special atoms spaces B and B(µ, 1),
spaces first introduced by De Souza in his PhD thesis. Another
byproduct is a relation between the space (Lip1)′ as well as its
generalization, and the space L∞. As a result we prove that the
special atom space is a simple characterization of L1.
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1. Introduction

The Lipschitz space often denoted by Lip1 is the space of real-
valued functions f defined on the interval [0, 2π], for which
|f(x+ h)− f(x)| ≤Mh for some positive constant M . This space
has been studied and generalized in several different ways. The
first generalization is to replace h with hα where 0 < α ≤ 1 to
obtain the so called Lipschitz spaces Lipα of order α. Another
generalization has been to replace h with a positive function ρ(h)
playing the role of a weight (See [3],[5]). Recently, De Souza in [4]
gave a generalization related to the space Lipα for general measures
on subsets of the interval [0, 2π] for 0 < α < 1. In this note, we are
concerned with a similar generalization Lip(µ, 1) to a space related

Received by the editors September 22, 2019; Accepted: October 09, 2019

www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp.

it/jnms/
1Corresponding author

469



470 S. KERMAUSUOR, E. KWESSI, AND G. DE SOUZA

to the case α = 1, where µ is a general measure on [0, 2π] with
certain properties. In particular, we prove that Lip(µ, 1) is the
dual space of the generalization B(µ, 1) of the special atom space
to general measures µ on [0, 2π]. We start with the definition of the
Lipschitz condition for some functions, which the reader can find
in any undergraduate or graduate text in Analysis, including [7].

Definition 1.1. A function f : D ⊂ R2 → R is said to satisfy the
Lipschitz condition with respect to x if there exists K > 0 such
that

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|, ∀(t, x1), (t, x2) ∈ D. (1)

Remark 1.2. We note that in Definition 1.1, if the reverse inequality
also holds, that is, there exists K > 1 such that

1

K
|x1−x2| ≤ |f(t, x1)−f(t, x2)| ≤ K|x1−x2|, ∀(t, x1), (t, x2) ∈ D,

then f is referred to as Bi-Lipschitz. This notion is used to define
Lipschitz functions on topological manifolds, see [6].

Lipschitz functions occur almost in every aspect of Mathematics.
In ordinary differential equations, the Lipschitz condition is used in
the existence and uniqueness theorem: that is, if f : D ⊆ R2 → R
satisfies the Lipschitz condition in D with respect to x, then the
initial value problem{

dx
dt

= f(t, x) for (t, x) ∈ D

x(t0) = x0

has a unique solution in D. In analysis, any function that satisfies
the Lipschitz condition is said to be Lipschitz continuous or sim-
ply Lipschitz. It is known that functions with bounded derivative
are Lipschitz functions, and that Lipschitz functions are almost ev-
erywhere differentiable (e.g. f(x) = |x|). The next definition is a
generalization of Lipschitz functions, see [6], [7].

Definition 1.3. A function f : [0, 2π]→ R is said to be a Lipschitz
function of order α if ∀x ∈ [0, 2π], and h > 0,

|f(x+ h)− f(x)|
hα

≤M, for some M ≥ 0 and 0 < α ≤ 1.

Definition 1.4. We denote by Lipα, 0 < α ≤ 1 the set of all
Lipschitz functions of order α and endow it with the norm

‖f‖Lipα = sup
x∈[0,2π]
h>0

|f(x+ h)− f(x)|
hα

.
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Here the constants are identified as the zeros. It is worth noting
that without this classification or some other condition(s) ‖ · ‖Lipα
will not be a norm.

In this paper, we are concerned with the situation where α = 1.
That is, space of Lipschitz functions of order 1. The next definition
is the space of derivatives of Lipschitz functions of order 1.

Definition 1.5. We define the space (Lip1)′ as follows;

(Lip1)′ =

{
g′ : S ⊆ [0, 2π]→ R : g ∈ Lip1

}
where the prime denotes the derivative. We endow (Lip1)′ with the
“norm”

‖g′‖(Lip1)′ := ‖g‖Lip1 ,where g ∈ Lip1.
Remark 1.6. The space ((Lip1)′, ‖·‖(Lip1)′) is equivalent to L∞, and
hence it is a Banach space.

Details of the proof of Remark 1.6 is provided in Section 3 of this
paper.

The next definition is the definition of the special atom space
which is a slight modification of the space introduced by De Souza
in [4].

Definition 1.7. The special atom space is the space B of functions
defined by

B =

{
f : [0, 2π]→ R : f(t) =

∞∑
n=1

cn
1

|In|
χIn(t),

∑
n≥1

|cn| <∞
}

where the cn’s are real numbers, χIn is the characteristic function of
the interval In in [0, 2π] and |In| denotes the length of the interval.

We endow B with the “norm” ‖f‖B = inf
∞∑
n=1

|cn| where the infi-

mum is taken over all the representations of f .

Remark 1.8. It is worth noting that the space B contains all simple

functions. That is, if f is a simple function with f(t) =
k∑

n=1

cnχIn(t)

then f ∈ B. Also, every element in B is the limit of a sequence of
simple functions. Thus, the space B is not the same as the space
of simple functions by the definition. As, we shall show later the
space B is equivalent to L1([0; 2π]).
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Theorem 1.9. (B, ‖ · ‖B) is a Banach space.

Note that Theorem 1.9 is a particular case of Theorem 2.7 in Section
2 and the proof is similar up to minor modifications. The next
results are special cases of much general results obtained in Section
2, showing that the (Lip1)′ is the dual space of the special atom
space B.

Theorem 1.10 (Hölder’s type inequality). If f ∈ B and g′ ∈
(Lip1)′, then ∣∣∣∣∫ 2π

0

f(t)g′(t)dt

∣∣∣∣ ≤ ‖f‖B‖g′‖(Lip1)′ .
Proof. Let g ∈ Lip1, we observe that |g(t+h)−g(t)|

h
≤ ‖g‖Lip1 , for

all t ∈ [0, 2π] and h > 0. Thus |g′(t)| ≤ ‖g‖Lip1 , for almost all
t ∈ [0, 2π]. Now let f ∈ B with

f(t) =
∑
n≥1

cn
1

|In|
χIn(t), and

∑
n≥1

|cn| <∞,

we have that∫ 2π

0

f(t)g′(t)dt =

∫ 2π

0

∑
n≥1

(
cn

1

|In|
g′(t)χIn(t)

)
dt.

Thus∣∣∣∣∫ 2π

0
f(t)g′(t)dt

∣∣∣∣ ≤ ∑
n≥1
|cn|

1

|In|

∫
In

∣∣g′(t)∣∣ dt
≤

∑
n≥1
|cn|

1

|In|
|In|‖g‖Lip1 , since |g′(t)| ≤ ‖g‖Lip1

≤

∑
n≥1
|cn|

 ‖g‖Lip1 .
Taking the infimum on the R.H.S. of the latter over all represen-

tations of f , we have∣∣∣∣∫ 2π

0

f(t)g′(t)dt

∣∣∣∣ ≤ ‖f‖B‖g′‖(Lip1)′ .
�

We will denote the dual space of a normed space S by S?. That
is, S? is the set of all bounded linear functionals on S.
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Theorem 1.11. The dual space B? of B, is (Lip1)′. That is,
φ ∈ B? if and only if there exists g′ ∈ (Lip1)′ so that φ(f) =∫ 2π

0

f(t)g′(t)dt, ∀f ∈ B and ‖φ‖B? = ‖g′‖(Lip1)′.

Proof. ⇐=. Fix g′ ∈ (Lip1)′ and define φg(f) =

∫ 2π

0

f(t)g′(t)dt for

all f ∈ B. φg is a linear map on B, and |φg(f)| ≤ ‖f‖B‖g′‖(Lip1)′ ,
by Theorem 1.10. Hence φg ∈ B?

=⇒. Consider the map ψ : (Lip1)′ → B? defined by ψ(g′) =
φg, φg defined as above. We want to show that ψ is onto, i.e. given
φ ∈ B?, there exists g′ ∈ (Lip1)′ such that φ = φg. Let φ ∈ B?,
and define g(t) = φ

(
χ(0,t]

)
, t ∈ [0, 2π].

Claim: g ∈ Lip1 and hence g′ ∈ (Lip1)′.
In fact, observe that

g(t+ h)− g(t) = φ(χ(0,t+h] − χ(0,t]) = φ(χ[t,t+h]).

Thus

|g(t+ h)− g(t)| = |φ(χ[t,t+h])| ≤ ‖φ‖B?‖χ[t,t+h]‖B ≤ ‖φ‖B?h.

It follows that

|g(t+ h)− g(t)|
h

≤ ‖φ‖B? <∞, ∀h > 0.

Hence the claim is proved. Thus, we have that g′(t) exists almost
everywhere.
This implies that

φ
(
χ(0,t]

)
= g(t) =

∫ t

0

g′(s)ds =

∫ 2π

0

g′(s)χ[0,t](s)ds.

Now since

χ[a,b](t) = χ[0,b](t)− χ[0,a](t) for a < b,

we have that

φ(χ[a,b]) = φ(χ[0,b])− φ(χ[0,a]) since φ is linear

=

∫ 2π

0

g′(t)χ[0,b](t)dt−
∫ 2π

0

g′(t)χ[0,a](t)dt

=

∫ 2π

0

g′(t)
(
χ[0,b](t)− χ[0,a](t)

)
dt

=

∫ 2π

0

g′(t)χ[a,b](t)dt.
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Therefore

φ

(
1

b− a
χ[a,b]

)
=

∫ 2π

0

1

b− a
g′(t)χ[a,b](t)dt.

For f(t) =
∑
n≥1

cn
1

|In|
χIn(t) with

∑
n≥1

|cn| <∞, we have

f(t) = lim
k→∞

fk(t) where fk(t) =
k∑

n=1

cn
1

|In|
χIn(t), k ∈ N.

For each k ∈ N,

φ(fk) = φ

(
k∑

n=1

cn
1

|In|
χIn

)

=
k∑

n=1

cn
1

|In|
φ (χIn)

=
k∑

n=1

cn
1

|In|

∫ 2π

0

χIn(t)g′(t)dt

=

∫ 2π

0

(
k∑

n=1

cn
1

|In|
χIn(t)

)
g′(t)dt

=

∫ 2π

0

fk(t)g
′(t)dt.

That is,

φ(fk) =

∫ 2π

0

fk(t)g
′(t)dt.

Now since φ ∈ B?, it follows that

lim
k→∞

φ(fk) = φ(f).

On the other hand, we have that∫ 2π

0

fk(t)g
′(t)dt→

∫ 2π

0

f(t)g′(t)dt.

To see this, let hk(t) = fk(t)g
′(t) and pk(t) =

k∑
n=1

|cn|
1

|In|
|g′(t)|χIn(t).

We observe that

|hk(t)| ≤ pk(t) for all k ∈ N and t ∈ [0, 2π].
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In addition,

0 ≤ pk(t) ≤ pk+1(t), for t ∈ [0, 2π]

and

pk(t)→ p(t) :=
∑
n≥1

|cn|
1

|In|
|g′(t)|χIn(t).

So by the Monotone convergence theorem (see [9], page 83), we
have that∫ 2π

0

pk(t)dt→
∫ 2π

0

p(t)dt =
∑
n≥1

|cn|
1

|In|

∫
In

|g′(t)|dt ≤ ‖g‖Lip1
∑
n≥1

|cn| <∞.

That is ∫ 2π

0

pk(t)dt→
∫ 2π

0

p(t)dt <∞.

Hence by the Dominated convergence theorem (see [9], page 89),
we have that

lim
k→∞

∫ 2π

0

hk(t)dt =

∫ 2π

0

lim
k→∞

hk(t)dt.

Thus ∫ 2π

0

fk(t)g
′(t)dt→

∫ 2π

0

f(t)g′(t)dt.

Hence

φ(f) =

∫ 2π

0

f(t)g′(t)dt.

That is φ = φg.Therefore, ψ is onto. In addition we have,

‖φ‖B? = sup
‖f‖B≤1

|φ(f)| ≤ ‖g′‖(Lip1)′ by the Hölder’s inequality.

That is

‖φ‖B? ≤ ‖g′‖(Lip1)′ .

On the other hand, for fh(t) =
1

h
χ[x,x+h](t), h > 0, we have fh ∈ B

with ‖fh‖B ≤ 1 and

φ(fh) =
1

h

∫ 2π

0
χ[x,x+h](t)g

′(t)dt =
1

h

∫ x+h

x
g′(t)dt =

g(x+ h)− g(x)

h
.

This implies that

|φ(fh)| =
|g(x+ h)− g(x)|

h
≤ ‖φ‖B? .
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Taking the supremum over x ∈ [0, 2π] and h > 0, we obtain
‖g‖Lip1 ≤ ‖φ‖B? . So that

‖φ‖B? = ‖g′‖(Lip1)′

�

Remark 1.12. By Remark 1.6 and Theorem 1.11, we deduce that
B? ∼= L∞.

Theorem 1.13. The special atom space B is continuously con-
tained in L1 and

‖f‖1 ≤ C ‖f‖B , for f ∈ B

.

Proof. Let f ∈ B with f(t) =
∑
n≥1

cn
1

|In|
χIn(t) and

∑
n≥1

|cn| < ∞

and consider∫ 2π

0

|f(t)|dt ≤
∑
n≥1

|cn|
1

|In|

∫
In

1 dt =
∑
n≥1

|cn| <∞.

So f ∈ L1 and ‖f‖1 ≤ ‖f‖B , for f ∈ B.
�

The following theorem is a classical result in Functional Analysis,
which can be found in [8] (see page 160).

Theorem 1.14. Let X and Y be two normed linear spaces, and
let T ∈ L(X, Y ). Let T ? be the adjoint operator of T defined by
T ?f = f ◦ T for all f ∈ Y ?. Then

(1) T ? ∈ L(Y ?, X?) and ‖T ?‖ = ‖T‖
(2) T ? is injective if and only if the range of T is dense in Y . In

addition, if X and Y are Banach spaces then T ? is invertible
if and only if T is invertible.

Now, we have the following situations;

(1) B ⊆ L1 with ‖f‖1 ≤ ‖f‖B , for f ∈ B by Theorem 1.13.
(2) B? ∼= L?1 by Remark 1.12.
(3) B is dense in L1. This can be verified with standard tech-

niques and a corollary of the Hahn-Banach Theorem.

As a consequence of these facts and Theorem 1.14, the embedding
operator I : B → L1 defined by I(f) = f is a Banach space iso-
morphism. So, we have the following result;
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Theorem 1.15. B ∼= L1 with equivalent norms, i.e, there exist
f ∈ B ⇐⇒ f ∈ L1 and α ‖f‖B ≤ ‖f‖1 ≤ β ‖f‖B form some
absolute positive constants α and β.

2. GENERALIZATION OF (Lip1)′ AND B

Let X = [0, 2π] and let (X,M, µ) be a finite, non-atomic measure
space. The next definition is a natural generalization of the space
of derivatives of Lipschitz functions to general measures.

Definition 2.1. Define the space Lip(µ, 1) as

Lip(µ, 1) =

{
g : [0, 2π]→ R :

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ ≤ C <∞, ∀A ∈M, µ(A) 6= 0

}
.

Endow Lip(µ, 1) with the “norm”

‖g‖Lip(µ,1) = sup
µ(A) 6=0

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ .
Remark 2.2. Here, we consider the equivalence classes of integrable
functions that are equal almost everywhere. The space Lip(µ, 1)
as we shall show later is also L∞(X) under the condition that µ
is finite and nonatomic. However, the representation of the norm
provides an easy way to see the connection between the derivatives
of Lipschitz functions and L∞ functions, and also obtain the dual
of the generalized special atom space. Indeed, we observe that if we
take µ =Lebesgue measure and the measurable sets to be intervals
then we have a more general representation of the norm on (Lip1)′.

That is if g ∈ Lip1 and A = [x, x + h] then
1

µ(A)

∣∣∣∣∫ g′(t)dµ(t)

∣∣∣∣ =

|g(x+ h)− g(x)|
h

.

Lemma 2.3. If g ∈ Lip(µ, 1) and A ∈M then∫
A

|g(t)|dµ(t) ≤ µ(A)‖g‖Lip(µ,1).

Proof. Let g ∈ Lip(µ, 1) and A ∈ M. Now let A+ = {t ∈ A :
g(t) ≥ 0} and A− = {t ∈ A : g(t) < 0}. We have that A−, A+ ∈
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M, A = A+ ∪ A− and A+ ∩ A− = ∅. Now consider∫
A

|g(t)|dµ(t) =

∫
A+

g(t)dµ(t)−
∫
A−

g(t)dµ(t)

≤
∣∣∣∣∫
A+

g(t)dµ(t)

∣∣∣∣+

∣∣∣∣∫
A−

g(t)dµ(t)

∣∣∣∣
≤ µ(A+)‖g‖Lip(µ,1) + µ(A−)‖g‖Lip(µ,1)
= µ(A)‖g‖Lip(µ,1)

That is, ∫
A

|g(t)|dµ(t) ≤ µ(A)‖g‖Lip(µ,1).

Hence the Lemma is proved. �

Theorem 2.4.

(a) ‖ · ‖Lip(µ,1) is a norm on Lip(µ, 1).

(b)
(
Lip(µ, 1), ‖ · ‖Lip(µ,1)

)
is Banach space.

Proof.
(a) To show that ‖·‖Lip(µ,1) is a norm, first observe that ‖g‖Lip(µ,1) ≥

0, ∀g ∈ Lip(µ, 1). Now suppose ‖g‖Lip(µ,1) = 0. Then

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
= 0, ∀A ∈ M with µ(A) 6= 0. Thus

∫
A

g(t)dµ(t) = 0, ∀A ∈ M

with µ(A) 6= 0. This implies that g = 0, µ− a.e.
For α ∈ R and g ∈ Lip(µ, 1), we have

‖αg‖Lip(µ,1) = sup
µ(A)6=0

1

µ(A)

∣∣∣∣∫
A

αg(t)dµ(t)

∣∣∣∣
= sup

µ(A)6=0

|α| 1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
= |α| sup

µ(A)6=0

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
= |α| ‖g‖Lip(µ,1).

Finally, for f, g ∈ Lip(µ, 1) and A ∈M with µ(A) 6= 0, we have

1

µ(A)

∣∣∣∣∫
A

(f(t) + g(t)) dµ(t)

∣∣∣∣ ≤ 1

µ(A)

∣∣∣∣∫
A

f(t)dµ(t)

∣∣∣∣+
1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣
≤ ‖f‖Lip(µ,1) + ‖g‖Lip(µ,1)

Taking the supremum on the L.H.S of the above inequality, we get

‖f + g‖Lip(µ,1) ≤ ‖f‖Lip(µ,1) + ‖g‖Lip(µ,1).
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Thus ‖ · ‖Lip(µ,1) is a norm on Lip(µ, 1). To complete the proof, we
need to proved that Lip(µ, 1) is a complete space. In order to do so,
it is sufficient to prove that for any sequence (gn)n∈N ⊆ Lip(µ, 1)

such that
∑
n≥1

‖gn‖Lip(µ,1) ≤ C <∞ , we have

∑
n≥1

gn ∈ Lip(µ, 1) and

∥∥∥∥∥∑
n≥1

gn

∥∥∥∥∥
Lip(µ,1)

≤
∑
n≥1

‖gn‖Lip(µ,1).

To do this, let (gn)n∈N ⊆ Lip(µ, 1) such that
∑
n≥1

‖gn‖Lip(µ,1) ≤ C <

∞. Let G =
∑
n≥1

|gn|, we observe that

∫
X

G(t)dµ(t) =

∫
X

∑
n≥1

|gn(t)|dµ(t)

=
∑
n≥1

∫
X

|gn(t)|dµ(t) by the Monotone Convergence Theorem

≤
∑
n≥1

µ(X)‖gn‖Lip(µ,1) by Lemma 2.3

Thus

∫
X

G(t)dµ(t) <∞, since µ is a finite measure. Hence, G(t) <

∞ a.e, which implies that the series
∑
n≥1

gn converges a.e and also

integrable. Now, to show that
∑
n≥1

gn ∈ Lip(µ, 1), let A ∈ M with

µ(A) 6= 0. We have that∣∣∣∣∣
∫
A

∑
n≥1

gn(t)dµ(t)

∣∣∣∣∣ ≤
∫
A

∣∣∣∣∣∑
n≥1

gn(t)

∣∣∣∣∣ dµ(t)

≤
∫
A

∑
n≥1

|gn(t)| dµ(t)

=
∑
n≥1

∫
A

|gn(t)|dµ(t)

≤
∑
n≥1

µ(A)‖gn‖Lip(µ,1) by Lemma 2.3
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That is,
1

µ(A)

∣∣∣∣∣
∫
A

∑
n≥1

gndµ

∣∣∣∣∣ ≤ ∑
n≥1

‖gn‖Lip(µ,1) ≤ C < ∞. Hence∑
n≥1

gn ∈ Lip(µ, 1). Taking the supremum on the L.H.S of the latter

over all A ∈M with µ(A) 6= 0 , we have∥∥∥∥∥∑
n≥1

gn

∥∥∥∥∥
Lip(µ,1)

≤
∑
n≥1

‖gn‖Lip(µ,1).

�

The next definition is a natural extension of the special atom
space B to general measures µ defined on [0, 2π] first proposed by
G. de Souza in [4].

Definition 2.5. We define the space B(µ, 1) as

B(µ, 1) =

f : [0, 2π]→ R : f(t) =
∑
n≥1

cn
1

µ(An)
χAn

(t) and
∑
n≥1

|cn| <∞

 ,

where the cn’s are real numbers, and the An ∈ M for each n ≥ 1.

We endow B(µ, 1) with the “norm” ‖f‖B(µ,1) = inf
∑
n≥1

|cn|, where

the infimum is taken over all possible representations of f .

Remark 2.6. Similar to Remark1.8, we have that every simple func-
tion belongs to B(µ, 1). That is, if f is a simple function with

f(t) =
k∑

n=1

cnχAn(t) then f ∈ B(µ, 1). Also, every element in

B(µ, 1) is the limit of a sequence of simple functions. Similarly,
B(µ, 1) is not the same as the space of simple functions by the def-
inition. As, we shall show later the space B(µ, 1) is equivalent to
L1(X).

Theorem 2.7.

(a) ‖ · ‖B(µ,1) is a norm of B(µ, 1).

(b)
(
B(µ, 1), ‖ · ‖B(µ,1)

)
is a Banach space.

Proof. (a) To show that ‖·‖B(µ,1) is a norm, observe that ‖f‖B(µ,1) ≥
0,∀f ∈ B(µ, 1) and f = 0 implies that ‖f‖B(µ,1) = 0. On the other
hand, suppose ‖f‖B(µ,1) = 0. We want to show that f = 0, µ a.e.
Let (cnk)n,k∈N be a sequence of real numbers and (Ank)n,k∈N be a se-

quence of measurable subsets ofX such that f(t) =
∑
n≥1

cnk
1

µ(Ank)
χAnk (t)
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with
∑
n≥1

|cnk| <∞ for each k ∈ N and
∑
n≥1

|cnk| → 0 as k →∞. So we

have for each n ∈ N, |cnk| → 0 as k →∞. Thus, the coefficients of
the representations of f converges to zero and hence f = 0, µ a.e.

For α ∈ R and f ∈ B(µ, 1) with f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t)

and
∑
n≥1

|cn| <∞, we have (αf)(t) =
∑
n≥1

αcn
1

µ(An)
χAn(t) and this

implies that

‖αf‖B(µ,1) = inf
∑
n≥1

|αcn|

= |α| inf
∑
n≥1

|cn|

= |α| ‖f‖B(µ,1).

Finally, for f, g ∈ B(µ, 1), to show that ‖f + g‖B(µ,1) ≤ ‖f‖B(µ,1) +
‖g‖B(µ,1), let ε > 0 be given, and let (cn)n∈N and (bn)nN be sequences

of real numbers such that f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t) and g(t) =∑

n≥1

bn
1

µ(Bn)
χBn(t), for some sequence (An)n∈N and (Bn)n∈N inM,

and such that
∑
n≥1

|cn| < ‖f‖B(µ,1) + ε/2,
∑
n≥1

|bn| < ‖g‖B(µ,1) + ε/2.

Note that we can write

(f + g)(t) =
∑
n≥1

dn
1

µ(Dn)
χDn(t),

with
∑
n≥1

|dn| =
∑
n≥1

|cn|+ |bn| where

dn =

{
cn

2
if n is even

bn+1
2

if n is odd

and

Dn =

{
An

2
if n is even

Bn+1
2

if n is odd
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It follows that

‖f + g‖B(µ,1) ≤
∑
n≥1

|dn|

=
∑
n≥1

|cn|+
∑
n≥1

|bn|

< ‖f‖B(µ,1) + ‖g‖B(µ,1) + ε

Thus since ε is arbitrary, we have

‖f + g‖B(µ,1) ≤ ‖f‖B(µ,1) + ‖g‖B(µ,1).

(b) To prove completeness, it suffices to show that for any sequence
(fm)m≥1 ⊆ B(µ, 1), we have

‖
∑
m≥1

fm‖B(µ,1) ≤
∑
m≥1

‖fm‖B(µ,1).

Note that given ε > 0 and for each m ≥ 1, there are sequence real
numbers (cmn) and sequence of sets Amn ∈ M such that fm(t) =∑
n≥1

cmn
µ(Amn)

χAmn (t) with
∑
n≥1

|cmn| < ‖fm‖B(µ,1) +
ε

2m
. It follows

that∑
m≥1

∑
n≥1

|cmn| <
∑
m≥1

‖fm‖B(µ,1) + ε
∑
m≥1

1

2m
=
∑
m≥1

‖fm‖B(µ,1) + ε.

Since ε is arbitrary, it follows that

‖
∑
m≥1

fm‖B(µ,1) ≤
∑
m≥1

‖fm‖B(µ,1).

�

Theorem 2.8 (Hölder’s Type Inequality). If f ∈ B(µ, 1) and g ∈
Lip(µ, 1), then∣∣∣∣∫

X

f(t)g(t)dµ(t)

∣∣∣∣ ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1).

Proof. Let g ∈ Lip(µ, 1) and f ∈ B(µ, 1) with f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t)

and
∑
n≥1

|cn| <∞, we have

∫
X

f(t)g(t)dµ(t) =

∫
X

∑
n≥1

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t).
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It follows that∣∣∣∣∫
X
f(t)g(t)dµ(t)

∣∣∣∣ ≤ ∑
n≥1
|cn|

1

µ(An)

∫
X
|g(t)| dµ(t)

≤
∑
n≥1
|cn|

1

µ(An)
µ(An)‖g‖Lip(µ,1), by Lemma 2.3

= ‖g‖Lip(µ,1)

∑
n≥1
|cn|

 .

Taking the infimum over all possible representations of f , we have∣∣∣∣∫
X

f(t)g(t)dµ(t)

∣∣∣∣ ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1).

�

The following result is a classical result in real analysis. (See for
example [8], page 55 for a proof.)

Theorem 2.9. Suppose that {fn} is a sequence in L1(X) such that∑
n≥1

∫
X

|fn|dµ < ∞. Then
∑
n≥1

fn converges a.e to a function in

L1(X), and

∫
X

∑
n≥1

fndµ =
∑
n≥1

∫
X

fndµ.

Lemma 2.10. Let (cn)n∈N be a sequence of real numbers such∑
n≥1

|cn| < ∞, (An)n∈N be a sequence of measurable subsets of X

and g ∈ Lip(µ, 1). For each n ∈ N, define hn : X → R by

hn(t) := cn
1

µ(An)
χAn(t)g(t). Then

∑
n≥1

hn converges a.e. to a func-

tion in L1(X), and

∫
X

∑
n≥1

hn(t)dµ(t) =
∑
n≥1

∫
X

hn(t)dµ(t).

Proof. Let n ∈ N and consider∫
X

|hn(t)|dµ(t) =

∫
X

|cn|
1

µ(An)
χAn(t)|g(t)|µ(t)

= |cn|
1

µ(An)

∫
An

|g(t)|dµ(t)

≤ |cn|‖g‖Lip(µ,1) <∞, by Lemma 2.3
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Thus, hn ∈ L1(X) and∑
n≥1

∫
X

|hn(t)|dµ(t) ≤ ‖gn‖Lip(µ,1)

(∑
n≥1

|cn|

)
<∞.

The conclusion follows from Theorem 2.9 �

Theorem 2.11 (Duality). B?(µ, 1) ≡ Lip(µ, 1) with equivalent
norms, that is, ϕ ∈ B?(µ, 1) if and only if there exists g ∈ Lip(µ, 1)

such that ϕ(f) =

∫
X

f(t)g(t)dµ(t), ∀f ∈ B(µ, 1). Moreover,

‖ϕ‖ = ‖g‖Lip(µ,1).

Proof.
“⇐=:” Fix g ∈ Lip(µ, 1) and define ϕg : B(µ, 1)→ R by

ϕg(f) =

∫
X

f(t)g(t)dµ(t), ∀f ∈ B(µ, 1). (2)

Then clearly ϕg is a linear map and by Theorem 2.8, we have

|ϕg(f)| ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1). Thus ϕg ∈ B?(µ, 1).

“=⇒:” Consider the map ψ : Lip(µ, 1)→ B?(µ, 1) define by ψ(g) =
ϕg where ϕg is defined as in (2). We want to show that ψ in onto.
Let ϕ ∈ B?(µ, 1). Define λ : M→ R by λ(A) = ϕ(χA),∀A ∈ M.
For any disjoint sequence of measurable subsets (An)∞n=1 in M,
let A = ∪∞n=1An. Without loss of generality assume that for each
n, µ(An) 6= 0. We have that

χA =
∞∑
n=1

χAn =
∞∑
n=1

µ(An)
1

µ(An)
χAn

and
∞∑
n=1

µ(An) = µ(∪∞n=1An) < ∞, since µ is a finite measure.

Hence χA ∈ B(µ, 1). In addition, the series converges in B(µ, 1),
since∥∥∥∥∥χA −

k∑
n=1

χAn

∥∥∥∥∥
B(µ,1)

=

∥∥∥∥∥
∞∑

n=k+1

χAn

∥∥∥∥∥
B(µ,1)

≤
∞∑

n=k+1

µ(An) = µ(∪∞n=k+1An)

which approaches to 0 as k → ∞. Hence, since ϕ is linear and
continuous,

λ(∪∞n=1An) = λ(A) =
∞∑
n=1

ϕ(χAn) =
∞∑
n=1

λ(An).
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This proves that λ is a σ additive and hence a (signed) measure.
We observe that

|λ(A)| = |ϕ(χA)| ≤ ‖ϕ‖‖χA‖B(µ,1) ≤ ‖ϕ‖µ(A).

Thus if µ(A) = 0 then λ(A) = 0 and thus λ << µ. Hence by the

Radon-Nikodym Theorem, we have that λ(A) =

∫
A

gdµ for some

g ∈ L1(X). In particular, g ∈ Lip(µ, 1) since

∫
A

gdµ = ϕ(χA)

implies

∣∣∣∣∫
A

gdµ

∣∣∣∣ ≤ ‖ϕ‖µ(A). Thus

1

µ(A)

∣∣∣∣∫
A

gdµ

∣∣∣∣ ≤ ‖ϕ‖ <∞, ∀A ∈M with µ(A) 6= 0.

So we have

ϕ(χA) =

∫
A

gdµ =

∫
X

gχAdµ.

That is,

ϕ(χA) =

∫
X

χA(t)g(t)dµ(t).

Now given f ∈ B(µ, 1) with f(t) =
∑
n≥1

cn
1

µ(An)
χAn(t) and

∑
n≥1

|cn| <

∞, we have that ϕ(f) = ϕ

(∑
n≥1

cn
1

µ(An)
χAn

)
=
∑
n≥1

cn
1

µ(An)
ϕ(χAn),

since ϕ ∈ B?(µ, 1). So we get,

ϕ(f) =
∑
n≥1

cn
1

µ(An)

∫
X

χAn(t)g(t)dµ(t)

=
∑
n≥1

∫
X

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t)

=

∫
X

∑
n≥1

(
cn

1

µ(An)
χAn(t)g(t)

)
dµ(t), by Lemma 2.10

=

∫
X

(∑
n≥1

cn
1

µ(An)
χAn(t)

)
g(t)dµ(t)

=

∫
X

f(t)g(t)dµ(t).
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Thus

ϕ(f) =

∫
X

f(t)g(t)dµ(t).

This shows that ϕg(f) = ϕ(f), ∀f ∈ B(µ, 1) and for some g ∈
Lip(µ, 1). That is, ψ(g) = ϕg = ϕ . It follows that the inclusion
map i : Lip(µ, 1) → B?(µ, 1) is a bijection. Moreover, it follows
from the inequality |ϕ(f)| ≤ ‖f‖B(µ,1)‖g‖Lip(µ,1) that

‖ϕ‖ = sup
‖f‖B(µ,1)≤1

|ϕ(f)| ≤ ‖g‖Lip(µ,1).

Let A ∈ M with µ(A) 6= 0, and let f =
1

µ(A)
χA. We have that

f ∈ B(µ, 1) with ‖f‖B(µ,1) ≤ 1 and

ϕ(f) =
1

µ(A)

∫
X

χA(t)g(t)dµ(t) =
1

µ(A)

∫
A

g(t)dµ(t).

Thus

|ϕ(f)| = 1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ ≤ ‖ϕ‖.
Taking the supremum on the L.H.S over all A ∈M with µ(A) 6= 0,
we have

‖g‖Lip(µ,1) ≤ ‖ϕ‖, and hence ‖ϕ‖ = ‖g‖Lip(µ,1).

�

Remark 2.12. By Remark 2.2 and Theorem 2.11, we deduce that
B?(µ, 1) ∼= L∞(X).

Now, with arguments similar to those in Section 1, we have the
following result;

Theorem 2.13. B(µ, 1) ∼= L1(µ) with m ‖f‖B(µ,1) ≤ ‖f‖1 ≤ M ‖f‖B(µ,1)

for some absolute positive constants m and M .

3. COMMENTS

One interesting thing about the space (Lip1)′ and and Lip(µ, 1),
is their relation to L∞(X).

(1) (Lip1)′ is L∞(X) (with respect to the Lebesgue measure).
To see, let g′ ∈ (Lip1)′. We have that g ∈ Lip1 with
‖g‖Lip1 ≤ C <∞. Thus, we have

|g(t+ h)− g(t)|
h

≤ C, for all t ∈ [0, 2π] and h > 0.
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Hence, |g′(t)| ≤ C, for almost all t ∈ [0, 2π]. Thus, g′ ∈
L∞(X) and ‖g′‖∞ ≤ ‖g′‖(Lip1)′ . To see the converse, let
g ∈ L∞ ⊆ L1, i.e g ∈ L1 and define G : [0, 2π] → R by

G(t) =

∫ t

0

g(s)ds, for t ∈ [0, 2π]. G is well-defined and

Lipschitz with G′(t) = g(t) a.e. Thus, g ∈ (Lip1)′ and
‖g‖(Lip1)′ ≤ ‖g‖∞.

(2) Also, Lip(µ, 1) is L∞(X). To see this, we first observe that
if g ∈ L∞(X) then, we have for any A ∈M with µ(A) 6= 0,

1

µ(A)

∣∣∣∣∫
A

g(t)dµ(t)

∣∣∣∣ ≤ 1

µ(A)

∫
A

|g(t)|dµ(t) ≤ ‖g‖∞
1

µ(A)

∫
A

1dµ(t) ≤ ‖g‖∞.

So, g ∈ Lip(µ, 1) and ‖g‖Lip(µ,1) ≤ ‖g‖∞. On the other
hand, given g ∈ Lip(µ, 1) and A ∈ M with µ(A) 6= 0, we
obtain from Lemma 2.3 that∫

A

|g(t)|dµ(t) ≤ µ(A)‖g‖Lip(µ,1).

Since µ is a monoatomic finite measure, by a result in [10],
page 65, there exist a measurable subset Ã of X with µ(Ã) =
µ(A) such that∫ µ(A)

0

g∗(t)dµ(t) =

∫
Ã

|g(t)|dµ(t),

where g∗ denotes the decreasing rearrangement of |g|. Thus,∫ µ(A)

0

g∗(t)dt ≤ µ(A)‖g‖Lip(µ,1).

Since g∗ is a decreasing function on [0,∞), we have that
g∗(µ(A)) ≤ g∗(t) for all t ∈ [0, µ(A)]. Hence,

g∗(µ(A))µ(A) ≤
∫ µ(A)

0

g∗(t)dt ≤ µ(A)‖g‖Lip(µ,1).

So, g∗(µ(A)) ≤ ‖g‖Lip(µ,1). Let µ(A)→ 0 to obtain g∗(0) ≤
‖g‖Lip(µ,1). But ‖g‖∞ = g∗(0). It follows that

g ∈ L∞ and hence ‖g‖∞ = ‖g‖Lip(µ,1).

(3) If we let

S =

{
g : [0, 2π]→ R : ‖g‖S = sup

µ(A)6=0

1

µ(A)

∫ µ(A)

0
g∗(t)dt <∞

}
,
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then we can deduce that L∞, Lip(µ, 1), S and M(1) ( i.e
the case α = 1 in [11] for the space

M(α) =

{
g : [0, 2π]→ R : ‖g‖M(α) = sup

µ(A)6=0

1

µ(A)α

∫
A

|g(t)|dµ(t) <∞

}
introduced by G. G Lorentz) are all equivalent with equal
norms.

(4) Although these observations shows that (Lip1)′ and Lip(µ, 1)
are not new spaces, their representations provides an easy
way to obtain the dual of the special atom spaces.

(5) From Theorem 1.15 and Theorem 2.13 we have that both
B and B(µ, 1) are equivalent to L1(X) for the Lebesgue
measure and finite nonatomic measures respectively. It is
however worth noting that the Lebesgue measure is also a
nonatomic measure and thus for the decomposition of L1

with the Lebesgue measure it is enough to consider only
intervals.

4. CONCLUDING REMARKS

In 1980, De Souza in his Ph.D. thesis [1] introduced the now
well-known special atom spaces, which consists of real-valued func-
tions f defined on the interval X = [0, 2π] and which can be writ-

ten as f(t) =
∑
n≥1

cnbn(t) where the cn’s are real numbers so that∑
n≥1

|cn| < ∞ whereas the bn’s are functions defined as bn(t) =

1

|In|α
[χLn(t)− χRn(t)], for 0 < α ≤ 1, In = Ln ∪ Rn, Ln ∩ Rn =

∅, In’s are intervals, and Ln, Rn are respectively the left and right
half sides of In. Considering also the space of functions f defined as

above but with bn(t) =
1

|In|α
χIn(t), we observe that the atom space

and this space are equivalent for 0 < α < 1 but yield two completely
different spaces when α = 1. Indeed, De Souza showed in [1] that

the special atom space with bn(t) =
1

|In|
[χLn(t)− χRn(t)] is strictly

contained in L1(X). However, in this note, we obtained that the

special atom space with bn(t) =
1

|In|
χIn(t) which we denoted by

B is equivalent to L1(X) and extended it to arbitrary measures.
The space L1 has been in existence for a long time, however we are
not aware of this characterization in the literature. This therefore
makes our study noteworthy.
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