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ABSTRACT. This research aims at generating the topological
fixed point iterative scheme for the simplex method of linear
programming problems in optimization as exemplified in the op-
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rian Airways company displayed in section three. The generated
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ative method which is seen illustrated in section three.
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1. INTRODUCTORY REVIEW OF THE SIMPLEX METHOD
LEADING TO PICARD’S ALGORITHM

1.1 Background of study

Nigerian Airway founded in 1958 and headquartered in Lagos was
owned by the Federal Government of Nigeria. It was started as
part of West African Airways cooperation as a joint venture among
Nigeria, Gambia, Sierra Leone and Ghana but later existed as an
Independent Nigerian corporation in 1968. It abruptly ceased oper-
ation in 2002 due to corruption and mismanagement related cases
but was later bought over by the virgin Nigeria Airways which up
to now is the flag bearer of the former Nigerian Airways (Nwabuisi,
2008)
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In 2007, Okereke, E.C. formulated a Simplex model on the flight
attendants’ hiring and training problem of Nigeria Airways, the so-
lution of which is contained in section three of this work. Classical
analysis of the flight attendants’ problem so far formulated and its
simplex method of solution deeply created the understanding that
the simplex problem of optimization is a reformulated Picard’s fixed
point problem with iterative method of solution (Argyros, 2005).
Results of theorem 2.1 and 2.2 classically confirms this topologi-
cally.

1.2 Motivation

The flight attendants’ hiring and training problem in the Nigeria
Airways industry has never encountered meaningful improvement
since the inception of the industry due to corruption, favouritism,
Nepotism and all the likes (Ladan, Suleman, 2012), that depart-
ment is yet to grow due to setbacks (Ogbeidi, 2006). Though the
flagbear, the Virgin Airways has improved on the services of those
flight attendants but the Nigerian factor is still working against
its rapid development, hence the aim of this research including the
academic aim of trying to generate its associated mathematical re-
sults.

1.3 Preliminary

Here, we introduce the primal simplex method for solutions of lin-
ear programming problems which is a classical linear programming
method invented in the late forties by Danzig Gab according to
(Fiacco and McCormic, 1968) and hence present the following:

Solution of A System of Linear Simultaneous Equation

Before studying the most general method of solving a linear pro-
gramming problem, it will be useful to review the methods of solv-
ing a system of linear equations. Hence in the present section we
review some of the elementary concepts of linear equations. Con-
sider as in [Taha, 2005] the following system of n equations in
n−unknowns.

a11x1 + a12x2 + . . .+ a1nxn = b1(E1)

a21x1 + a22x2 + . . .+ a2nxn = b2(E2)

a31x1 + a32x2 + . . .+ a3nxn = b3 (E3)

...

an1x1 + an2x2 + . . .+ annxn = bn(En)

(1)



ON THE TOPOLOGICAL PICARD’S FIXED POINT ITERATIVE . . . 493

Assuming as in [Jetter, 1986] that the set of equations possesses a
unique solution, a method of solving the system consists of reduc-
ing the equations to a form known as canonical form.
It is well known from elementary algebra that the solutions of equa-
tion (1) will not be altered under the following elementary opera-
tions:
(a) any equations Er is replaced by the equations kEr, where k is
a non-zero-constant , and
(b) any equation Er is replaced by the equation Er + kEs, where
Esis any other equation of the system. By making use of these ele-
mentary operations. The system of equation (1) can be reduced to
a convenient equivalent form as follows. Let us select some variable
x1 and try to eliminate it from all the equations except the jth
one (for which aji non zero). This can be accomplished by dividing
the jth by aji and subtracting aki times the result from each of
the other equations, k = 1, 2, . . . , j − 1, j + 1, . . . , n. The resulting
system of equations can be written as in [Martin, 1999],[Murray,
1983]

a
′
11x1 + a

′
12x2 + . . .+ a

′
1,i−1xi−1 + 0xi + a

′
1.i+1xi+1 + . . .+ . . . a

′
1nxn = b

′
1

a
′
21x1 + a

′
22x2 + . . .+ a

′
2,i−1xi−1 + 0xi + a

′
2.i+1xi+1 + . . .+ . . . a

′
2nxn = b

′
2

...

a
′
j−1x1 + a

′
j−1.x2 + . . .+ a

′
j−1,i−1 + 0xi + a

′
j−i.j+1xi+1 + . . .+ a

′
i−1nxn = b

′
j−1

a
′
j1x1 + a

′
j2.x2 + . . .+ a

′
j,i−1,xi−1 + 1xi + a

′
j,i+1xi+1 + . . .+ a

′
jnxn = b

′
j

a
′
j+1,1x1 + a

′
j+1,2x2 + . . .+ a

′
j+1,i−1,xi−1 + 0xi + a

′
j+1,i+1xi+1 + . . .+ a

′
j+1,nxn = b

′
j + 1

a
′
n1x1 + a

′
n2x2 + . . .+ a

′
n,i−1,xi−1 + 0xi + a

′
n,i+1xi+1 + . . .+ a

′
nnxn = b

′
n

(2)

where the primes indicate that the a
′
ij and b

′
j are changed from the

original system. This procedure of eliminating a particular variable
from all but one equation is called a pivot operation. The system
of equation (2) produced by the pivot operation have exactly the
same solution as the original set of equation (1).That is, [Murray,
1983] the vector X that satisfies equation (1) and also equation (2)
and vice versa.
Next time, if we take the system of equation (2) and perform a new
pivot operating by eliminating xs, s 6= i, in all the equations except
the tth equation, t 6= j,the zeros or the 1 in the ith column will
not be disturbed. The pivotal operations as in [Nash and Sofar,
1996] can be repeated by using a different variable and equation
each time until the system of equation (1) is reduced to the form
[Lueabenger, 1984]

1x1 + 0x2 + 0x3 + . . .+ 0xn = bn1
0x1 + 1x2 + 0x3 + . . .+ 0xn = bn2
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0x1 + 0x2 + 1x3 + . . . 0xn = bn3
...

0x1 + 0x2 + 0x3 + . . .+ 1xn = bnn

(3)

This system of equations (3) is said to be in canonical form and has
been obtained after carrying out a pivot operations.
From the canonical form, the solution vector can be directly ob-
tained as in [Gass, 1990]

xi = bni i = 1, 2, . . . , n

Since the set of equations (3) has been obtained from equations (1)
only through elementary operations the system of equations (3) to
the system of equations (1). thus the solution given by equations
(4) is desired solution of equations (1).

Pivotal Reduction of a General System of Equations

Instead of a square system, let us consider a system of m equations
in n variables with n≥m. this system of equations is assumed to
be consistent as in [Fourier, 1999] so that it will have at least one
solution.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

· · ·
am1x1 + am2x2 + . . .+ amnxn = bm

(4)

The solution vector(s) X that satisfy equation (4) are not evident
from the equations. However, as in [Dantzig, 1998] it is possible to
reduce this system to an equivalent canonical system from which at
least one solution can readily be deduced. If pivotal operations with
respect to any set of m variables, say x1, x2, . . . , xm, are carried, the
resulting set of equations (4) can be written as follows:

canonical system with pivotal variables x1,x2, . . . , xm

1x1 + 0x2 + . . . + 0xm + a
′′
1.m+1xm+1 + . . . + a

′′
1nxn = bn1

0x1 + 1x2 + . . . + 0xm + a′
′

2.m+1xm+1 + . . . + a
′′
2nxn = bn2

...

0x1 + 0x2 + . . . 1xm + a
′′
m,m+1xi+1 + . . . + a

′′
mnxn = bnm

pivotal Nonpivotal or Constants

variables independent variables

(5)



ON THE TOPOLOGICAL PICARD’S FIXED POINT ITERATIVE . . . 495

One special solution that can always be deducted from the system of
equation (5) is as in [Brent, 1973]{

b′′i, i = 1, 2, . . . ,m

0 i = m + 1,m + 2, . . . , n
(6)

This solution is called a basic solution since the solution vec-
tor contains no more than m nonzero terms. The pivotal vari-
ables xi, i = 1, 2, . . . ,m are called the basic variables and the other
variables xi, i = m+1,m+2, . . . , nare called non basic variables.Of
course,this is not the only solution,but it is the one most readily
deduced from equation (5). if all b

′′
i , i = 1, 2, . . . ,m, in the solution

given equation (6) are non- negative, it satisfies equation (3) in ad-
dition to equation (5), and hence it can be called a basic feasible
solution.
It is possible as in [Brent, 1973] to obtain the other basic solu-
tions from the canonical system of equation (5).We can perform an
additional pivotal operation on the system after it is in canonical
form, by choosing a

′′
pq(which is nonzero) as the pivot term, q > m,

and using any row p (among 1, 2, . . .m).The new system will still
be in canonical form but with xq as the pivotal variable in place of
xp.The variable xp, which was a basic variable in the original canon-
ical form,will no longer be a basic variable in the new canonical
form.This new canonical system yields a new basic solution(which
may or may not be feasible) similar to that of equation (6). It is
to be noted that the values of all the basic variables change, in
general, as we go from one basic solution to another, but only one
zero variable (which is non-basic in the original canonical form) be-
comes nonzero (which is basic in the new canonical system), and
vice versa. [Boggs, Byrds and Schnabel, 1985]

Motivation of the Topological Simplex fixed point iterative algorithm

Given a system in canonical form corresponding to a basic solution,
we have seen how to move a neighbouring basic solution by a pivot
operation. Thus as in [Beveridge and Schechter, 1970] one way
to find the basic solutions and pick the one that is feasible and
corresponds to the optimal value of the objective function. This can
be done because the optimal solution, if one exists, always occurs
at an extreme point or vertex of the feasible domain. If there are
m equality constraints in n variables with n ≥ m, a basic solution
can be obtained by setting any of the n−m variables equal to zero.
The number of basic solutions to be inspected is thus equal to the
number of ways in which m variables can be selected from a set of
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n variables, that is, (
n
m

)
=

n!

(n−m)!m!

For example, if n = 10and m = 5, we have 252 basic solutions, and
if n = 20 and m = 10, we have 184,756 basic solutions. Usually,
we do not have to inspect all these basic solutions since many of
them will be infeasible. However as in [Bender, 2000], for large
values of n and m, this is still a very large number to inspect one
by one. Hence what we really need is a computational scheme that
examines a sequence of basic feasible solutions, each of which cor-
responds to a lower value of f until a minimum is reached. The
simplex method of Dantzig is a powerful scheme for obtaining a
basic feasible solution; if the solution is not optimal, the method
provides for finding a neighbouring basic feasible solution that has
a lower or equal value of f . The process is repeated until, in a finite
number of steps, an optimum is found.
The first step involved in the simplex method as in [Gass, 1990] is
to construct an auxiliary problem by introducing certain variables
known as artificial variables into the standard form of the linear
programming problem. The primary aim of adding the artificial
variables is to bring the resulting auxiliary problem into a canonical
form from which the basic feasible solution can be obtained imme-
diately. Starting from the canonical form, the optimal solution of
the original linear programming problem is to sought in two phases.
The first phase is intended to find a basic feasible solution to the
original linear programming problem. It consists of a sequence of
PIVOT operations that produces a succession of different canonical
forms from which the optimal solution of the auxiliary problem can
be found. This also enables us to find a basic feasible solution, if
one exists, of the original linear programming problem. The second
phase as in [Nocedal and Wright, 1999] is intended to find the opti-
mal solution of the original linear programming problem; it consists
of a second sequence of pivot operations that enables us to move
from one basic feasible solution to the next of the original linear
programming problem. In this process, the optimal solution of the
problem, if one exists, will be identified. The sequence of different
canonical forms that is necessary in both the phases of the simplex
method is generated according to the simplex algorithm described
in the next section. That is, [Schittkawski, 1987] the simplex algo-
rithm forms the main subroutine of the simplex method.
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Simplex Algorithm

The starting point of the simplex algorithm is always a set of equa-
tions, which includes the objective function along with the equality
constraints of the problem in canonical form. Thus as in [Schrijter,
1990] the objective of the simplex algorithm is to find the vector
X ≥ 0 that minimizes the function f (X)and satisfies the equation:

1x1 + 0x2 + . . .+ 0xm + a
′′

1.m+1xm+1 + . . .+ a
′′

1nxn = b
′′

1

0x1 + 1x2 + . . .+ 0xm + a
′′

2.m+1xm+1 + . . .+ a
′′

2nxn = b
′′

2

...

0x1 + 0x2 + . . .+ 1xm + a
′′

m.m+1xm+1 + . . .+ a
′′

mnxn = b
′′

m

0x1 + 0x2 + . . .+ 0xm − f
+c
′′

m+1xm+1 + . . .+ c
′′

mnxn = −f ′′0

(7)

Where a
′′
ij, c

′′
j , b

′′
i and f

′′
0 are constants. Notice that (−f) is treated

as a basic variable in the canonical form of equation (7). The basic
solution which can readily be deduced from equation (7) is

x1 = b
′′

i , i = 1, 2, . . . ,m

f = fn
0

xi = 0, i = m+ 1,m+ 2, . . . , n

(8)

If the basic solution is also feasible, the values of xi, i = 1, 2, . . . , n, are
non-negative and hence

b
′′

i ≥ 0, i = 1, 2, . . . ,m (9)

In phase I of the simplex method as in [Vanderbei, 1999], the ba-
sic solution corresponding to the canonical form obtained after the
introduction of the artificial variables will be feasible for the auxil-
iary problem. As stated earlier, phase II of these simplex method
starts with a basic feasible solution of the original linear program-
ming problem. Hence the initial canonical form at the start of the
simplex algorithm will always be a basic feasible solution.
We know that as in [Wesley, 1983] the optimal solution of linear pro-
gramming problem lies at one of the basic feasible solutions. Since
the simplex algorithm is intended to move from one basic feasible
solution to the other through pivotal operations, before moving to
the next basic feasible solution is not the optimal solution. By
merely glancing at the numbers.

c
′′

j , j = 1, 2, . . . , n (10)
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We can tell whether or not the present basic feasible solution is
optimal. Theorem 1 provides a means of identifying the optimal
point.

Identifying an Optimal Point

Theorem 1 [Charbonnier, Banc-Feraud, Arthur and Ba-
haud, 1994]: A basic feasible solution is an optimal solution
with a minimum objective function f

′′
0 if all the cost coefficients

c
′′
j , j = m+ 1,m+ 2 . . . , n in equation (7) are nonnegative.
Proof: from the last row of Eqs. (1.8), we can write that

f
′′

0 +
n∑

i=m+1

c
′′

i xi = f (11)

Since the variablesxm+1, xm+2, . . . , xn are presently zero and are
constrained to be nonnegative, the only way one of any of them
can change is to become positive. But if c

′′
i > 0 for i = m+ 1,m+

2, . . . , n, then increasing any xi cannot decrease the value of the
objective function f . Since no change in the nonbasic variables can
cause f to decrease, the present solution must be optimal with the
optimal value of fequal to f

′′
0 .

A glance over c
′′
i can also tell us if there are multiple optima. Let

all c
′′
i > 0, i = m + 1,m + 2, . . . , k − 1, k + 1, . . . , n, and let c

′′

k = 0
for some nonbasic variablexk. Then if the constraints allow that
variable to be made positive (from its present value of zero), no
change in f results, and there are multiple optima. It is possible,
however, that the variable may not be allowed by the constraints to
become positive; this may occur in the case of degenerate solutions.
Thus, as a corollary to the discussion above, we can as in [Aubert
and Vese, 1997] state that a basic feasible solution is the unique
optimal feasible solution c

′′
i > 0 for all nonbasic variables xj, j =

m+ 1,m+ 2, . . . , n.If, after testing for optimality, the current basic
feasible solution is found to be non-optimal, an improved basic
solution is obtained from the present canonical form as follows.

Improving a Non-optimal Basic Feasible Solution

From the last row of equation (11), we can as in [Nikolova and Nar,
2004] write the objective function as

f = f
′′

0 +
m∑
i=1

c,,i xi +
n∑

j=m+1

c
′′

jxj = f
′′

0 (12)
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for the solution given by equation (8).
If at least one c

′′
j is negative, the value of f can be reduced by making

the corresponding xj > 0. In other words, the non-basic variable
xj, for which the cost coefficient c

′′
j is negative,is to made a basic

variable in order to reduce the value of the objective function. At
the same time, due to the pivotal operation, one of the current
basic variables will become non-basic and hence the values of the
new basic variables are to be adjusted in order to bring the value
of f less than f

′′
0. If there are more than one c

′′
j < 0,the index sof

the nonbasic variable xswhich is to made basic is chosen such that

c
′′

s = minimum c
′′

j < 0 (13)

The chance of r in the case of a tie, assuming that all b
′′
i > 0,is

arbitrary by any b
′′
i for which a

′′
i > 0 is zero in equation (10), xs

cannot be increased by any amount. Such a solution is called a
degenerate solution.
In the case of a non-degenerate basic feasible solution, a new basic
feasible solution can as in [Dantzig, 1998] be constructed with a
lower value of the objective function as follows. By substituting
the value of x∗s given by equation (13) into equation (11) and (12),
we obtain

xs = x∗s

xi = b
′′

i − a
′′

isx
∗
s ≥ 0, i = 1, 2, . . . ,m and i 6= r (14)

xr = 0
xj = 0, j = m+ 1,m+ 2, . . . , n and j 6= s

f = f
′′

0 + c
′′

sx
∗
s ≤ f

′′

0 (15)

which can readily be seen to be feasible solution different from
the previous one. Since a

′′
rs > 0 in equation (12), a single pivot

operation on the element a
′′
rs in the system of equation (15) will lead

to a new canonical form from which the basic feasible solution of
equation (14) can easily be deduced. Also, equation (14) shows that
this basic feasible solution corresponds to a lower objective function
value compared to that of equation (15).This basic feasible solution
[Hofmann, 2011],[Ladan, 2002] can again be tested for optimality
by seeing whether all c

′′
i > 0 in the new canonical form. If the

solution is not optimal, the entire procedure of moving to another
basic feasible solution from the present one has to be repeated. In
the simplex algorithm [Mikairu and Eteghe, 2012],[Ogbedi, 2006],
this procedure is repeated in an iterative manner until the algorithm
finds either (a) a class of feasible solutions for which f → −∞ or (b)
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an optimal basic feasible solutions with all c
′′
i ≥ 0, i = 1, 2, . . . , n.

Since there are only a finite number of ways to choose a set of
m basic variables out of n variables, the iterative process of the
simplex algorithm will terminate in a finite number of cycles.

2. MAIN RESULTS ON TOPOLOGICAL ANALYSIS OF THE

ASSOCIATED PICARD’S FIXED POINT ITERATIVE

ALGORITHM

Review of the Picards iterative method. The Picards Linde-
loff theorem which embodies the Picards iterative method indicates
that if we consider the initial value problem

x′ (t) = f (t, x (t)) , x (t0) = x0

Then for the ordinary differential equation on [t0 − c, t0 + c], the Pi-

cards iterative method of solution becomes xn+1 = x0+
t∫
0

f (t, x (t)) dt;

where t is the variable of integration. Hence we are looking for a
curve which satisfies the differential equation and passes through
(t0, p) with p = p0 and at the end points, t = t0 ± c, x′ (t) and one
sided derivative.
Also, the Picards formula for solving a linear system of equations,
Ax+ b which is diagonal dominant is given by

xn+1 = f (xn) , x (0) = x0

where f (xn) = Aijxi + bj, 1 ≤ i ≤ n; 1 ≤ j ≤ n. The Picards itera-
tive method has always been in use over ages primarily for solving
initial value problems and system of equations and by this research
has been found equivalent to the traditional simplex method of
optimization Having discussed enough on the Basic theory of the
simplex method, it becomes important to shift into developing more
compact theorems that topologically generalizes what we have ear-
lier discussed in the previous section. To achieve progress in this
direction of establishing a suitable iterative algorithm for the sim-
plex method of optimization, we assume the following:

a.: That the domain of existence of the simplex method is the met-
ric space (X, ρ)

b.: That the solution of that method converges in the metric space
c.: That the simplex method an initial value problem (16) in the

complete metric spaces is complete
d.: That the simplex iterative method is exactly a reformulated

Picard’s iterative method for systems of linear equations
the above facts make the existence of the following theorem
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Theorem 2.1. Let the topological domain of existence of the simplex
method be the complete metric space (X, ρ) for a diagonal dominant
system of equations. Then for a strongly contractive method of
solution, the simplex initial value problem becomes

minimize or maximize

Z =
n∑

j=1

cjxj

subject to
n∑

j=1

P̄jxj = b̄xj ≥ 0 j = 1, 2, . . . , n

(16)

for any given basic vector X̄j so that its corresponding basic B̄ and
objective vector C̄j with the simplex iterative method becomes

z +
n∑

j=1

(zj − cj)xj = C̄BB
−1b

(x̄) +
n∑

j=1

(
B̄−1p̄j

)
x =

(
B̄−1b̄

) (17)

where

z − cj = C̄BB̄
−1p̄j − zj

(V̄j) Represent the ith element of the vector V̄ then (17) converges
to a unique solution x∗ ∈ X such that Tx* = x* and the sequence
{xn} of successive approximations generated by the above iteration
method is the simplex algorithm

xj+1 = Txj = z +
n∑

j=1

(zj − cj)xj = C̄BB
−1

x̄B +
n∑

j=1

(
B̄−1P̄j

)
xj = B̄−1b̄

z − cj = C̄BB
−1P̄j − zj

(18)

represented below.

(1) Choose a basic and non basic partition (B,N) such that
(x0B, X

0
N) = (B−1b, 0) ≥ 0 k := 0

(2) yk := B−T cB
(3) If ∃jk ∈ N : skjk = cjk −AT

jk
yk > 0 then continue: else exit

because xk is an optimal solution
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(4) Let

[
dxB
dxN

]
:=

[
−B−1Nejk

ejk

]
(5) If dxB ≥ 0, then terminate because (P ) is unbounded
(6) Let ak := min

{
−xkB/dxBi

: dxBi
< 0

}
and choose an

ike
{
i : dxBi

< 0, αk := −xkB/dxkB
}

(7) xk+1 = xk + αkdx
(8) B := (B\ {Bik})

⋃{
jk
}
, N :=

(
N\jk

)⋃
Bik

(9) k = k + 1
(10) Go to 2

Proof. If x*is the unique fixed point, x* = x0 = T (x0) by the
contraction principle.
But let x1 = T (x0), then

x2 = T(x1) = T (T (x0)) = T2 (x0)

x3 = T (x2) = T2 (T (x2)) = T3 (x0)

...

xn = Tn−1 (T(x0) = Tn (x0)

(19)

Hence, we have constructed a sequence {xn}n=0 of linear operators
for that linear programming simplex matrix problem defined in the
metric space(X, ρ).
We now prove that the above generated sequence is Cauchy. First,
we compute ρ (xn, xn+1) = ρ (T (xn, xn+1)) using (19) ≤ KT (xn−2,
xn−1).
Since T is a contraction

= KT (xn−2, xn−1) since K is a contraction

= K2T (xn−2, xn−1)

...

= KnT (x0, x1)

(20)

i.e. KT (xn, xn−1) ≤ KnT (x0, x1) (21)

We now show that xn is Cauchy.
Let m > n, then

ρ (xn, xm) ≤ ρ (xn, xm) + ρ (xn−1,m−1) + . . .+ ρ (xn−k−1, xm−k−1)

≤ KnT (x0, x1) (1 +K +K2 + . . .+Kn−m−1 +Kn

Since the series on the right hand side is a geometric progression
with common ratio ¡1, its sum to infinity is 1

1−k . So, we have from
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above that

ρ (xn, xm) ≤ KnT (x0, x1)

(
1

1− k

)
→ 0 as n→∞ since k < 1

Hence the sequence {xn} is Cauchy in (X, ρ) since X is complete
and {xn} converges to point in X. Let

xn → x∗ as n→∞ (22)

Since T is a contraction and continuous, it follows from (22) that
(Txn)→ T (x∗) as n→∞.
But T (xn) = xn+1 from (21). So

xn+1 = T (xn) = T (x∗) (23)

But limits are unique in a metric space, so from (22) and (23), we
obtain that

T (x∗) = x∗ (24)

Hence T has a unique fixed point in (X, ρ). We shall now prove
that this fixed point is unique suppose for the contraction there
exists y∗ ∈ X such that

y∗ = x∗ and T (y∗) = y∗ (25)

Then from (23) and (24)

ρ (x∗, y∗) = ρ (T (x∗) , T (y∗)) ≤ KT (x∗, y∗)

so that

(k − 1) T (x∗, y∗) ≥ 0 and T (x∗, y∗) = 0, T = ρ

We can divide by it to get k−1 ≥ 0 i.e k ≥ 1 which is contradiction.
Hence x∗ = y∗and the fixed point is unique.
Therefore

z +
n∑

j=1

(zj − cj)xj = C̄BB
−1b

x̄B +
n∑

j=1

(
B̄−1P̄j

)
xj = B̄−1b̄

(26)

where Z−Cj = xj+C̄BB̄
−1P̄j−Zj and Vj represent the ith element

of the vector V̄ is by the Banach fixed point method, the simplex
iterative formula for the linear programming problem
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Minimize or Maximize

z =
n∑

j=1

cjxj

Subject to
n∑

j=1

pjxj = b̄xj ≥ 0 j = 1, 2, . . . n

(27)

for any given vector x̄j with corresponding basis B̄ and objective
vector Cj it is worthy of note that the Banach fixed point method
(25) satisfying the condition K < 1.

Theorem 2.2: The necessary and sufficient condition for the linear
programming problem (26) to have a unique fixed point is that in
the matrix of linear Transformation

A =
n∑

i=1

 z −
n∑

j=1

cj

n∑
j=1

Pj−b̄j ≥ 0


for any given vector xj with corresponding basis B̄ and objec-
tive vector Cj, the original matrix A is diagonal dominant and
that A∞ = max {|∝ij| , 1 ≤ i, j ≤ n} < 1 in this case, the Banach
method called the Picard’s method becomes satisfied for use in
solving the said problem.

Convergence Analysis

Given the general Linear Programming Problem Minimize or max-
imize

z =
n∑

j=1

cjxj

Subject to
n∑

j=1

Pjxj = bjxj ≥ 0, j = 1, 2, 3, . . . , n

and for a given basis vector X̄B and its corresponding basis B̄j and
objective vector C̄B, the general simplex iteration formula given by

z +
∑

zj − cjxj = C̄BB̄
−1b̄

X̄B +
∑

B−1Pjxj =
(
B̄−1b̄

)
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where Zj − cj = C̄BB̄
−1p̄j − Cj (V̄j) represent the jth element of

the vector V ;
then the Linear Programming problem above is convergent to

xj = min

{
B̄−1b̄

B̄−1Pj

B−1Pj > 0

}
and the basic variable responsible for minimum ratio leaves the
basic solution to become non basic at zero level provided

(
B̄−1b̄

)
−

(B̄−1p̄j)xj ≥ 0, ∀ j. This condition became realized when from
the Z−equation above, an increase in non-basic xj in the current
zero value resulted in an improvement in the value of the Z relative
to the current value C̄BB̄b̄ provided Zj − Cj is strictly negative
in the case of maximization and strictly positive in the case of
minimization otherwise, Xj cannot improve the solution and must
remain non basic at zero level. This condition in optimization is
referred to as the optimality and feasibility condition.

3 APPLICATION OF THE PICARD’S TOPOLOGICAL SIMPLEX
METHOD TO THE NIGERIAN AIRWAYS’ HIRING AND

TRAINING OF FLIGHT ATTENDANTS PROBLEM SOLUTION

The Hiring and Training Problem.

Introduction. Air hostesses or stewardesses are members of a flight
crew employed by the airline to ensure the safety and comfort of the
passengers aboard a commercial flight.
The primary responsibility of these stewardesses is passenger’s safety.
However, they are tasked with secondary function of seeing to the care
and comfort of passengers. They are often perceived by the flying pub-
lic as waitresses or servants because only this latter function is normally
seen on the outside and not the extremely rare events of in-flight emer-
gency. Outside the exceptional case of in-flight emergency stewardesses
usually provide courtesy services for passengers such as preparation of
in-flight entertainment systems, sale of duty free and other merchandise
and the like.
They are normally trained in hub or headquarters city of the airways
over a period of one month on how to carry out services mentioned
above. But it is seen that often times, some of these stewardesses may
quit the job after training because of one reason or the other which
include; being pregnant etc. this affects the airways finance so much
because the cost of training becomes a waste since they cannot render
the services after training. Hence the purpose of this project work which
will be highlighted below.
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Problem Statement. The Nigerian airways must decide how many
stewardesses to hire and train over the next six months. The requirement
expressed as number of stewardess flight hours are 8000 in January, 9000
in February, 8000 in March, 1000 in April, 9000 in May and 12000 in
June.
It takes one month of training before a stewardess can be put on a
regular flight. So a trainee must be hired at least one month before she
is actually needed. Also a trainee requires 100 (hundred) hours of actual
in-flight experience during the month of training. Hence for each trainee,
100 less hours are available for flight service by regular stewardess.
Each experienced stewardess can work up to 150 hours in a month and
there are 60 regular stewardesses available at the beginning of January.
If the maximum time available for an experienced stewardess exceeds
a month flying and training requirement, the regular stewardess work
fewer than 150 hours, none is laid off. Each month, approximately 10%
of the experienced stewardess quit their jobs to get married or for other
reasons. An experienced stewardess cost the airline #80,000 a trainee
#40,000 a month in salary and other benefits.

Model Formulation. Let xi (i = 1, 2, 3, 4, 5, 6) be the number of trainees
at the beginning of each month i.e
x1 = Number of trainees at the beginning of January
x2 = Number of trainees at the beginning of February
x3 = Number of trainees at the beginning of March
x4 = Number of trainees at the beginning of April
x5 = Number of trainees at the beginning of May
x6 = Number of trainees at the beginning of June
In order to make the financial values too large, we divide 80,000 and
40,000 (i.e. the amount paid to a regular stewardess and trainee respec-
tively) by 104 giving us 8 and 4.
To form the objective function z, we compute the following; since we
started with 60 regular stewardess for the month of January we have
(60 ∗ 8) + 4x1. Since we have that at the end of each month, 0.1 of the
regular stewardess may quit leaving 0.9 then
For February we have 0.9 (60 + x1) ∗ 8 + 4x2
March → 0.9 [0.9 (60 + x1) + x2] ∗ 8 + 4x3
April → 0.9 {0.9 [0.9 (60 + x1) + x2] + x3} ∗ 8 + 4x4
May → 0.9 {0.9 [0.9 [0.9 (60 + x1) + x2] + x3] + x4} ∗ 8 + 4x5
June → 0.9 {0.9 [0.9 [0.9 [0.9 (60 + x1) + x2] + x3] + x4] + x5} ∗ 8 + 4x6
The above computation can be written in another form as;

60 ∗ 8
(
0.90 + 0.91 + 0.92 + 0.93 + 0.94 + 0.95

)
+ 4x1

+8
(
0.9 + 0.92 + 0.93 + 0.94 + 0.95

)
x1 + 4x2

+8
(
0.9 + 0.92 + 0.93 + 0.94

)
x2 + 4x3 + 8

(
0.9 + 0.92 + 0.93

)
x3 + 4x4
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+8
(
0.9 + 0.92

)
x4 + 4x5 + 8 (0.9)x5 + 4x6

Putting this together, the objective function z becomes

Z = 2249.0832+33.48472x1+28.7608x2+23.512x3+17.68x4+11.2x5+4x6

Computing the Constraints. To do this, we look at the restrictions or
conditions under which the stewardesses are subjected to. From the data
we have that each experienced stewardess can work up to 150 hours
in a month and we have 60 experienced stewardesses available at the
beginning of January. And also from the data, we know that a trainee
requires 100 hours of actual in-flight experience during the month of
training. Finally we have to remember that at the end of each month,
10% of experienced stewardesses quit their job. Then the constraint for
each is
For January → (150 ∗ 60) + 100x1 ≥ 8000
For February → 150 ∗ 0.9 (60 + x1) + 100x2 ≥ 9000
For March →!50 ∗ 0.9 [0.9 (60 + x1) + x1] + 100x3 ≥ 8000
100x1 ≥ −1000
135x1 + 100x2 ≥ 900
121.5x1 + 135x2 + 100x3 ≥ 710
109.35x1 + 121.5x2 + 135x3 + 100x4 ≥ 3439
98.415x1 + 109.35x2 + 121.5x3 + 135x4 + 100x5 ≥ 3095.1
88.5735x1 + 98.415x2 + 109.35x3 + 121.5x4 + 135x5 + 100x6 ≥ 6685.59
For all xi ≥ 0 and integers
Therefore, the linear programming problem becomes
Minimize

Z = 2249.0832+33.48472x1+28.76608x2+23.512x3+17.68x4+11.2x5+4x6

Subject to
100x1 + s1 ≥ −1000
135x1 + 100x2 + s2 ≥ 900
121.5x1 + 135x2 + 100x3 + s3 ≥ 710
109.35x1 + 121.5x2 + 135x3 + 100x4 + s4 ≥ 3439
98.415x1 + 109.35x2 + 121.5x3 + 135x4 + 100x5 + s5 ≥ 3095.1
88.5735x1+98.415x2+109.35x3+121.5x4+135x5+100x6+s6 ≥ 6685.59
Then at this point we dualize the above L.P. problem to obtain the form
below. Hence, we apply the Picard’s simplex algorithm to the following
tableau using a computer programming package called MATLAB so as
to reduce the computational time, error and to enhance fast and accurate
results.

Problem.

F = 2249.0832x1 + 28.76080x2 + 23.51200x3 + 1768000x4 + 11.20000x5 + 4.00000x6

Subject to
100x1 ≤ 1000
−135x1 − 100x2 ≤ −900
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−121.5x1 − 135x2 − 100x3 ≤ −710
−109.35x1 − 121.5x2 − 135x3 − 100x4 ≤ −3439
−98.415x1 − 109.35x2 − 121.5x3 − 135x4 − 100x5 ≤ −3095.1
−88.5735x1−98.415x2−109.35x3−121.5x4−135x5−100x6 ≤ −6685.59

Solution.
Optimization terminated successfully

First order optimally measure less than option TolFun
Active inequalities (to within options. TolCon = 1e−0.006

Iteration x1 x2 x3 x4 x5 x6 f (x)
0 0 0 0 0 0 0 0
1 0 9 0 24 0 29 3048.2504
2 0 9 0 24 0 29 3048.2504

Table 1

x1 = 0
x2 = 9
x3 = 0
x4 = 24
x5 = 0
x6 = 29
Z = 3048.2504× 104

ANALYSIS OF RESULT AND SENSITIVITY ANALYSIS.

Analysis of result. The result obtained from optimal simplex tableau
can be interpreted and presented in tabular form as follows

DECISION OPTIMAL MEANING
VARIABLE VALUE
x1 0 Hire no trainee stewardess in the month

of January
x2 9 Hire nine trainee stewardesses in February
x3 0 Hire no trainee stewardess
x4 24 Hire 24 in April
x5 0 Hire none in May
x6 29 Hire 29 stewardesses in June
Z 30482504 Maximum amount to be spent on hiring

and training of stewardesses for the
period of 6 months

Table 2

Also in a tabular form, we want to summarize the number of regular
and trainee stewardesses we will have in each month according to the
result obtained above and then finally compute or show how the total
cost will be obtained. But before we continue, let us have the following
in mind;
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i.: According to the data collected, we have that at the end of each
month, approximately 10% of the regular stewardesses quits
their job.

ii.: It costs the airways #80,000 and #40,000 in payment and other ben-
efits to maintain a regular and trainee stewardess respectively.
With these things in mind, we now present the table below

Months No of No of regulars No of regulars 10% that No of regulars

trainees at the beginning at the end left at the remaining which
hired of the month of the month end of the was carried over

month to the next month

January 0 60 60 6 54

February 9 54 63 6.3 56.7

March 0 56.7 56.7 5.67 51.03

April 24 51.03 75.03 7.503 67.527

May 0 67.527 67.527 6.7527 60.7743

June 29 60.7743 67.527 6.7527 60.7743

Total 62 350.0313
Table 3

From the table above, the number of trainee stewardesses that received
#40,000 for the period of six months is 62. Thus for six months, the
trainees cost the airways 62×40, 000 = #248, 000 in payment and other
benefits.
For regular stewardesses we have that for the period of six months.
350,0313 received #80,000. This amounts to #28002504 because 350.0313×
80, 000 = 28002504.
Hence the total amount spent on trainees and regular stewardesses for
the period is given by #2480000 + #28002504 = #30482504 which cor-
responds with the value of z in the optimal simplex tableau.

Sensitivity Analysis. Sensitivity analysis investigates the change in
the optimum solution resulting from making changes in parameters of
the LP model. It tries to find out how sensitive the optimum solution is
to small change in a parameter. These changes often come from

i.: Changes in objective function coefficient
ii.: Changes in the right hand side of the constraints
iii.: Changes due to additional constraints or variables to the problem

Suppose from the problem, that the 10% of the experienced stewardesses
does not quit their jobs at the end of each month, what will happen to
the optimum solution? Will the value of the variables be affected? How
many stewardesses should the company hire?
Hence the problem model becomes since no stewardess leaves the com-
pany at the end of each month to form the objective function we have
that for the month of
January−60 ∗ 8 + 4x1
February-(60 + x1) ∗ 8 + 4x2
March − (60 + x1 + x2) ∗ 8 + 4x3
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April − (60 + x1 + x2 + x3) ∗ 8 + 4x4
May − (60 + x1 + x2 + x3 + x4) ∗ 8 + 4x5
June − (60 + x1 + x2 + x3 + x4 + x5) ∗ 8 + 4x6
putting this together we have
480 + 4x1
480 + 8x1 + 4x2
480 + 8x1 + 8x2 + 4x3
480 + 8x1 + 8x2 + 8x3 + 4x4
480 + 8x1 + 8x2 + 8x3 + 8x4 + 4x5
480 + 8x1 + 8x2 + 8x3 + 8x4 + 8x5 + 4x6
Z = 2880 + 44x1 + 36x2 + 28x3 + 20x4 + 12x5 + 4x6
For constraints we have
January −150 ∗ 60 + 100x1 ≥ 8000
February −150 ∗ (60 + x1) + 100x2 ≥ 9000
March −150 ∗ (60 + x1 + x2) + 100x3 ≥ 8000
April −150 ∗ (60 + x1 + x2 + x3) + 100x4 ≥ 10, 000
May −150 ∗ (60 + x1 + x2 + x3 + x4) + 100x5 ≥ 9, 000
June −150 ∗ (60 + x1 + x2 + x3 + x4 + x5) + 100x6 ≥ 12, 000
Putting together the constraints becomes
100x1 ≥ −1000
150x1 + 100x2 ≥ 0
150x1 + 150x2 + 100x3 ≥ −1000
150x1 + 150x2 + 150x3 + 100x4 ≥ 1000
150x1 + 150x2 + 150x3 + 150x4 + 100x5 ≥ 0
150x1 + 150x2 + 150x3 + 150x4 + 150x5 + 100x6 ≥ 3000
After dualising by multiplying with −1, the problem becomes
Maximize

Z = 2880 + 44x1 + 36x2 + 28x3 + 20x4 + 12x5 + 4x6

Subject to
−100x1 + S1 ≤ −1000
−150x1 − 100x2 + S2 ≤ 0
-150x1 − 150x2 − 100x3 + S3 ≤ −1000
−150x1 − 150x2 − 150x3 − 100x4 + S4 ≤ 1000
−150x1 − 150x2 − 150x3 − 150x4 − 100x5 + S5 ≤ 0
−150x1 − 150x2 − 150x3 − 150x4 − 150x5 − 100x6 + S6 ≤ 3000

Solution. Using the simplex algorithm presented earlier in this work, the
following iterations was done and the last table gives the optimal and
feasible solution for the sensitivity analysis problem.
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x1 x2 x3 x4 x5 x6 S1 S2 S3 S4 S5 S6 Solution

Z -44 -36 -28 -20 -12 -4 0 0 0 0 0 0 288010

S1 100 0 0 0 0 0 1 0 0 0 0 0 1000

S2 -150 100 0 0 0 0 0 1 0 0 0 0 0

S3 -150 -150 -100 0 0 0 0 0 1 0 0 0 1000

S4 -150 -150 -150 -100 0 0 0 0 0 1 0 0 -1000

S5 -150 -150 -150 -150 -100 0 0 0 0 0 1 0 0

S6 -150 -150 -150 -150 -150 -100 0 0 0 0 0 1 -3000
Table 4

x1 x2 x3 x4 x5 x6 S1 S2 S3 S4 S5 S6 Solution

Z 0 -6.52 -28 -20 -12 -4 0 0 0 0 0 0 288010

S1 0 67 0 0 0 0 1 0 0 0 0 0 1000

x1 1 0.67 0 0 0 0 0 1 0 0 0 0 0

S3 0 -49.5 -100 0 0 0 0 0 1 0 0 0 1000

S4 0 -49.5 -150 -100 0 0 0 0 0 1 0 0 -1000

S5 0 -49.5 -150 -150 -100 0 0 0 0 0 1 0 0

S6 0 -49.5 -150 -150 -150 -100 0 0 0 0 0 1 -3000
Table 5

x1 x2 x3 x4 x5 x6 S1 S2 S3 S4 S5 S6 Solution

Z 0 2.72 0 8 6.76 -4 0 0 0 0 0 0 288010

S1 0 67 0 0 0 0 1 0 0 0 0 0 1000

x1 1 0.67 0 0 0 0 0 1 0 0 0 0 0

S3 0 -16.5 0 100 67 0 0 0 1 0 0 0 1000

S4 0 0 0 50 100.5 0 0 0 0 1 0 0 -1000

x3 0 0.33 1 1 0.67 0 0 0 0 0 1 0 0

S6 0 0 0 0 -49.5 -100 0 0 0 0 0 1 -3000
Table 6

x1 x2 x3 x4 x5 x6 S1 S2 S3 S4 S5 S6 Solution

Z 0 2.72 0 8 8.76 -4 0 0 0 0 0 0 3000

S1 0 67 0 0 0 0 1 0 0 0 0 0 1000

x1 1 0.67 0 0 0 0 0 1 0 0 0 0 0

S3 0 -16.5 0 100 67 0 0 0 1 0 0 0 1000

S4 0 0 0 50 100.5 0 0 0 0 1 0 0 -1000

x3 0 0.33 1 1 0.67 0 0 0 0 0 1 0 0

x6 0 0 0 0 0.50 1 0 0 0 0 0 1 30
Table 7

4 CONCLUSION AND SUGGESTION
The topological conclusion of this research shows that the traditional
simplex method in optimization convincingly is the Picard’s fixed point
iterative method. Secondly, from the solution result of the sensitivity
analysis problem as seen in the computation, we can deduce that only
30 trainee stewardesses will be hired within the period in question and
that will be in the month of June. And from our data, it costs the air-
line #40,000 to maintain one trainee, so that the total amount spent on
maintaining the 30 trainees is 30*#40,000 = #1,200,000.
But #30,000,000 - #1,200,000 = #28,800,000
This means that the difference (i.e. #28,800,000) will then be the total
amount spent on maintaining the regular stewardesses which is greater
than that spent for the trainees.
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Also from the analysis of the result obtained earlier from our main prob-
lem, we can see that the amount spent on maintaining the regular stew-
ardesses is far more than that spent on trainees.
Since from the analysis of our result we have seen that it will cost the air-
line more to maintain regular stewardesses than trainees, I suggest that
they depends on hiring more trainees than regulars in other to minimize
cost.
Finally, I suggest that hiring of trainee stewardesses should be done at
2 months interval as seen from the solution result of our main problem.
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