
Journal of the Vol. 38, Issue 3, pp. 533-546, 2019

Nigerian Mathematical Society c©Nigerian Mathematical Society

Special Issue: The International Conference on Non-linear Analysis
(organized to mark the 70th birthday anniversary of Prof. Charles
Ejike Chidume)

NEW INERTIAL METHOD FOR NONEXPANSIVE

MAPPINGS

YEKINI SHEHU

ABSTRACT. There have been increasing interests in studying
inertial Krasnoselskii-Mann iterations due to the presence of
inertial extrapolation step which improves the rate of conver-
gence of Krasnoselskii-Mann iterations. These results analyzed
the convergence properties of inertial Krasnoselskii-Mann itera-
tions and demonstrated their performance numerically on some
imaging and data analysis problems. It is discovered that these
proposed inertial Krasnoselskii-Mann iterations assumed some
stringent conditions on the inertial factor which make the imple-
mentations difficult in some numerical examples. In this present
paper, we provide a new inertial Krasnoselskii-Mann iteration,
prove its weak convergence and the corresponding rate of con-
vergence under some suitable conditions.
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1. INTRODUCTION

Throughout this paper, we consider the real Hilbert space setting:
H denotes a real Hilbert space with scalar product 〈., .〉 and induced
norm ‖·‖. We assume that T : H → H is a nonexpansive mapping,
i.e., T satisfies

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ H.

We further denote the set of fixed points of T by

F (T ) := {x ∈ X | Tx = x}.
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Prominent examples for nonexpansive mappings in Hilbert spaces
are, the projection map, the proximal point map, and several com-
posite maps which involve at least one of these two mappings, see,
e.g., [6] for more details.

Many iterative schemes for approximating fixed points of nonexpan-
sive mappings T are well-known from the literature, cf. [7, 9, 14, 17,
15] and references therein for some relevant results in this direction.
One of the most famous fixed point methods is the Krasnoselskii-
Mann iteration from [29, 34] that starts at some given point x1 ∈ H
and uses the recursion

xn+1 = (1− βn)xn + βnTxn ∀n = 1, 2, . . . (1)

for some suitably chosen scalars βn ∈ [0, 1]. The most general con-
vergence result for this procedure is due to Reich [39] and assumes
that if F (T ) is nonempty and {βn} satisfies the condition

∞∑
n=1

βn(1− βn) =∞, (2)

then the iterates {xn} converge weakly to a fixed point of T . Many
authors have studied approximation of fixed points of nonexpansive
mappings using Krasnoselskii-Mann iteration (1) in both Hilbert
spaces and Banach spaces (see, for example, [17, 18, 25, 26, 28, 30,
37, 39, 42] and the references contained therein).

In [20], Cominetti et al. showed that ‖xn − Txn‖ in (1) converges
to zero at a rate of O(1/

√
σn) (big-O), where σn :=

∑n
k=1 λk(1 −

λk), n ∈ N. Further convergence rate analysis for both exact and
inexact Krasnoselski-Mann iterations built from nonexpansive map-
pings have been established recently in [22, 30, 35]. For example,
it has been shown in [30, Theorem 1] that ‖xn − Txn‖2 = O(1/n).

We recall that the inertial extrapolation term is based upon a
discrete version of a second order dissipative dynamical system
[2, 3] and has been regarded as a procedure of speeding up the
convergence properties (see, e.g., [1, 8, 32, 33, 38]). In the light
of this observation, there have been increasing interests in study-
ing inertial type algorithms. See, for example, inertial forward-
backward splitting methods [4, 31, 36], inertial Douglas-Rachford
splitting method [10], inertial ADMM [11, 16], and inertial forward-
backward-forward method [12]. For example, it is known that ac-
celeration scheme developed by Nesterov improves the theoretical
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rate of convergence of forward-backward method from the standard
O(1/(n+ 1)) down to O(1/(n+ 1)2) and the inertial extrapolation
scheme of Nesterov’s accelerated forward-backward method is ac-
tually o(1/(n + 1)2) rather than O(1/(n + 1)2) (see [5]). These
results and other related ones analyzed the convergence properties
of inertial type algorithms and demonstrated their performance nu-
merically on some problems arising from image reconstructions.

Recently, Bot et al. [10] proposed the following inertial version
of the Krasnoselskii-Mann algorithm for approximating the set of
fixed points of a nonexpansive operator: x0, x1 ∈ H,{

wn = xn + θn(xn − xn−1)
xn+1 = wn + βn(Twn − wn).

(3)

They gave weak convergence analysis in real Hilbert spaces under
the conditions:
(a) 0 ≤ θn ≤ θn+1 ≤ θ < 1,∀n ≥ 1 and λ, σ, δ > 0 such that

(b) δ > θ2(1+θ)+θσ
1−θ2 ; and

(c) 0 < λ ≤ βn ≤ ρ := δ−θ[θ(1+θ)+θδ+σ]
δ[1+θ(1+θ)+θδ+σ]

.

They also applied their results to inertial Douglas-Rachford split-
ting algorithm for finding common zeros of the sum of two max-
imally monotone operators in Hilbert spaces and illustrate their
results through some numerical experiments in clustering and gen-
eralized Hebron problems. The convergence rate of (3) was also
established in [40].

The results of Bot et al. [10] improved on the results of Maingé
[33], where it was assumed, given the inertial Krasnoselskii-Mann
(3), that
(i) θn ∈ [0, θ) and θ ∈ [0, 1);
(ii)

∑
θn‖xn − xn−1‖2 <∞; and

(iii) 0 < α ≤ βn ≤ β < 1.
However, one can see from the results of [10] that the conditions (b)
and (c) imposed on the inertial factor θn and the iterative parameter
βn are stringent and not easy to implement during computations.
The same conditions in [10] have been used in [23] to solve varia-
tional inequality problem.

Motivated by the results of Bot et al. [10], our aim in this paper is to
introduce a new inertial Krasnoselskii-Mann iteration with weaker
conditions on the inertial factor θn and the iterative parameters
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than the conditions (a)-(c) assumed in [10]. Using this new pro-
posed inertial Krasnoselskii-Mann iteration, we establish both weak
convergence and corresponding nonasymptotic O(1/n) convergence
rate result. It has been shown numerically (see, e.g., [10, 11, 12])
that inertial Krasnoselskii-Mann iteration gives faster convergence
when the inertial factor θn approaches 1. One of our contributions
in this paper is that the inertial factor θn ∈ [0, 1] (θn = 1 is allowed)
unlike the assumption in [10, 33], where θn ∈ [0, 1). This means
that our results in this paper bring a major contribution to the
state-of-the-art in the literature on the inertial Krasnoselskii-Mann
iterations. Furthermore, the conditions on our iterative parame-
ters (see conditions (b) and (c) of Theorem 1 below) seem simpler
than the conditions (b) and (c) imposed in [10] and the assump-
tions of Maingé [33]. Our result complement the results given in
[10, 13, 21, 24, 27, 41] and many other recent results in the litera-
ture. Our method of proof is of independent interest.

The paper is therefore organized as follows: We first recall some ba-
sic definitions and results in Section 2. We propose the new inertial
Krasnoselskii-Mann iteration and give its weak convergence analy-
sis in Section 3. In Section 4, we give the nonasymptotic O(1/n)
convergence rate analysis of the proposed method. We conclude
with some final remarks in Section 5.

2. PRELIMINARIES

We give some basic properties which will be used in our convergence
analysis in the next section. We start with the following lemma
whose proof is elementary and therefore omitted.

Lemma 1: The following statement holds in H:

‖tx+sy‖2 = t(t+s)‖x‖2+s(t+s)‖y‖2−st‖x−y‖2, ∀x, y ∈ H,∀s, t ∈ R.

Lemma 2: (Maingé [33]) Let {ϕn}, {δn} and {θn} be sequences in
[0,+∞) such that

ϕn+1 ≤ ϕn + θn(ϕn − ϕn−1) + δn, ∀n ≥ 1,
+∞∑
n=1

δn < +∞,

and there exists a real number θ with 0 ≤ θn ≤ θ < 1 for all n ∈ N.
Then the following hold:
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(i)
∑+∞

n=1[ϕn − ϕn−1]+ < +∞, where [t]+ := max{t, 0};
(ii) there exists ϕ∗ ∈ [0,+∞) such that limn→∞ ϕn = ϕ∗.

Lemma 3: (Opial [37]) Let C be a nonempty set of H and {xn}
be a sequence in H such that the following two conditions hold:
(i) for any x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Definition: A mapping S is said to be demiclosed if for any se-
quence {xn} which weakly converges to y, and if the sequence {Sxn}
strongly converges to z, then S(y) = z.

Lemma 4: (Goebel and Reich [26]) Let C be a nonempty, closed
and convex subset ofH. Let T : C 7→ C be a nonexpansive mapping.
Then I − T is demiclosed at 0.

3. WEAK CONVERGENCE ANALYSIS

This section investigates the weak convergence analysis of the se-
quence of iterates {xn} generated by our proposed inertial Krasnose-
lskii-Mann iteration.

Theorem 1: Suppose that T : H → H is a nonexpansive mapping
such that its set of fixed points F (T ) is nonempty. Let the sequence
{xn} in H be generated by choosing x0 = x1 ∈ H and using the
recursion{

wn = xn + θn(xn − xn−1)
xn+1 = (1− αn)xn + αn((1− βn)wn + βnTwn),

(4)

where {αn}, {βn} and {θn} are sequences such that
(a) 0 ≤ θn ≤ θn+1 ≤ 1;
(b) 0 < α ≤ αn ≤ αn+1 ≤ 1

2+δ
:= ε, δ > 0; and

(c) 0 < β ≤ βn ≤ γ < 1.
Then the sequence {xn} generated by (4) converges weakly to a
fixed point of T .
Proof: Let z ∈ F (T ) and define un := (1− βn)wn + βnTwn. Then
by Lemma 1,

‖un − z‖2 = ‖(1− βn)(wn − z) + βn(Twn − z)‖2

= (1− βn)‖wn − z‖2 + βn‖Twn − z‖2

−βn(1− βn)‖Twn − wn‖2

≤ ‖wn − z‖2 − βn(1− βn)‖Twn − wn‖2. (5)
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Therefore,
‖un − z‖ ≤ ‖wn − z‖. (6)

Now, by (4), we get

‖xn+1 − z‖2 = ‖(1− αn)(xn − z) + αn(un − z)‖2

= (1− αn)‖xn − z‖2 + αn‖un − z‖2

−αn(1− αn)‖xn − un‖2, (7)

which in turn implies that (noting (6))

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + αn‖wn − z‖2

−αn(1− αn)‖xn − un‖2. (8)

Note that
xn+1 = (1− αn)xn + αnun

and this implies

un − xn =
1

αn
(xn+1 − xn), ∀n. (9)

Using (9) in (8), we get

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + αn‖wn − z‖2

−(1− αn)

αn
‖xn+1 − xn‖2. (10)

Also, by Lemma 1,

‖wn − z‖2 = ‖xn + θn(xn − xn−1)− z‖2

= ‖(1 + θn)(xn − z)− θn(xn−1 − z)‖2

= (1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2

+θn(1 + θn)‖xn − xn−1‖2. (11)

Using (11) in (10):

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + αn(1 + θn)‖xn − z‖2

−αnθn‖xn−1 − z‖2 + αnθn(1 + θn)‖xn − xn−1‖2

−1− αn
αn

‖xn+1 − xn‖2

= (1 + αnθn)‖xn − z‖2 − αnθn‖xn−1 − z‖2

+αnθn(1 + θn)‖xn − xn−1‖2

−1− αn
αn

‖xn+1 − xn‖2. (12)

Define

Γn := ‖xn−z‖2−αnθn‖xn−1−z‖2+αnθn(1+θn)‖xn−xn−1‖2, n ≥ 1.
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Since αn ≤ αn+1 and θn ≤ θn+1, then αnθn ≤ αn+1θn+1. So,

Γn+1 − Γn = ‖xn+1 − z‖2 − (1 + αn+1θn+1)‖xn − z‖2

+αnθn‖xn−1 − z‖2 + αn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

−αnθn(1 + θn)‖xn − xn−1‖2

≤ ‖xn+1 − z‖2 − (1 + αnθn)‖xn − z‖2 + αnθn‖xn−1 − z‖2

+αn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

−αnθn(1 + θn)‖xn − xn−1‖2. (13)

Now, using (12) in (13):

Γn+1 − Γn ≤ −1− αn

αn
‖xn+1 − xn‖2 + αn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

= −
(1− αn

αn
− αn+1θn+1(1 + θn+1)

)
‖xn+1 − xn‖2. (14)

By conditions (a) and (b), one gets

1− αn
αn

− αn+1θn+1(1 + θn+1) =
1

αn
− 1− αn+1θn+1(1 + θn+1)

≥ 2 + δ − 1− 2

2 + δ

= δ +
δ

2 + δ
≥ δ. (15)

Using (15) in (14), we have

Γn+1 − Γn ≤ −δ‖xn+1 − xn‖2. (16)

Therefore, {Γn} is non-increasing. Similarly,

Γn = ‖xn − z‖2 − αnθn‖xn−1 − z‖2 + αnθn(1 + θn)‖xn − xn−1‖2

≥ ‖xn − z‖2 − αnθn‖xn−1 − z‖2. (17)

Note that

αnθn ≤
1

2 + δ
= ε < 1.

From (17), we have

‖xn − z‖2 ≤ αnθn‖xn−1 − z‖2 + Γn

≤ ε‖xn−1 − z‖2 + Γ1

...

≤ εn‖x0 − z‖2 + (1 + · · ·+ εn−1)Γ1

≤ εn‖x0 − z‖2 +
Γ1

1− ε
. (18)
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Consequently,

Γn+1 = ‖xn+1 − z‖2 − αn+1θn+1‖xn − z‖2

+αn+1θn+1(1 + θn+1)‖xn+1 − xn‖2

≥ −αn+1θn+1‖xn − z‖2

and this means from (18) that

−Γn+1 ≤ αn+1θn+1‖xn − z‖2

≤ ε‖xn − z‖2
...

≤ εn+1‖x0 − z‖2 +
εΓ1

1− ε
. (19)

By (16) and (19), we get

δ
k∑

n=1

‖xn+1 − xn‖2 ≤ Γ1 − Γk+1

≤ εk+1‖x0 − z‖2 +
Γ1

1− ε
. (20)

This implies
∞∑
n=1

‖xn+1 − xn‖2 ≤
Γ1

δ(1− ε)
< +∞. (21)

Therefore, lim
n→∞
‖xn+1 − xn‖ = 0. Also, from (4), we get

‖wn − xn‖ = θn‖xn − xn−1‖
≤ ‖xn − xn−1‖ → 0, n→∞. (22)

From (12):

‖xn+1 − z‖2 ≤ (1 + αnθn)‖xn − z‖2 − αnθn‖xn−1 − z‖2

+2‖xn − xn−1‖2.
Using Lemma 2 in the last inequality (noting (21)), we get

lim
n→∞

‖xn − z‖2 = l <∞. (23)

By condition (a), we have that lim
n→∞

θn exists. Suppose lim
n→∞

θn = θ ∈
[0, 1]. Then lim

n→∞
θn‖xn−z‖2 = θl. Similarly, lim

n→∞
θn‖xn−1−z‖2 = θl.

Now, from (11)

lim
n→∞

‖wn − z‖2 = lim
n→∞

[
(1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2

+θn(1 + θn)‖xn − xn−1‖2
]

= l.
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Observe that limn→∞

[
(1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2

+ θn(1 + θn)‖xn − xn−1‖2
]

exists. Combining (5), (6) and (7), we

have

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + αn‖wn − z‖2

−αnβn(1− βn)‖Twn − wn‖2

and this implies that

αβ(1− γ)‖Twn − wn‖2 ≤ αnβn(1− βn)‖Twn − wn‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 − αn‖xn − z‖2

+αn‖wn − z‖2. (24)

By condition (b), we have that lim
n→∞

αn exists and this implies

lim
n→∞

αn‖xn−z‖2 = lim
n→∞

αn‖wn−z‖2. From (24), we have lim sup
n→∞

‖Twn−

wn‖2 ≤ 0. Therefore,

lim
n→∞

‖Twn − wn‖ = 0.

Since {xn} is bounded by (23), there exists a subsequence {xnk
} of

{xn} that converges weakly to some element p ∈ H. By Lemma 4,
we have that p ∈ F (T ). Invoking Lemma 3, one has that the entire
sequence {xn} converges weakly to p. This completes the proof.

4. RATE OF CONVERGENCE ANALYSIS

In this section, we provide a nonasymptotic O(1/n) convergence
rate result for our proposed inertial Krasnoselskii-Mann iteration
(4) under the same conditions assumed in Section 3.

Theorem 2: Suppose that T : H → H is a nonexpansive mapping
such that its set of fixed points F (T ) is nonempty. Let the sequence
{xn} in H be generated by choosing x0 = x1 ∈ H and iteration (4).
Assume that the conditions (a), (b) and (c) in Theorem 1 hold.
Then, for any z ∈ F (T ), it holds that

min
1≤i≤n

‖wi − Twi‖2 ≤
M

αβ(1− γ)

‖x0 − z‖2

n
, n ≥ 1,

where M := 1 + 2ε
δ(1−ε)2 and ε = 1

2+δ
, δ > 0.

Proof: From (21), we get
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∞∑
n=1

‖xn+1 − xn‖2 ≤
Γ1

δ(1− ε)
=

(1− α1θ1)

δ(1− ε)
‖x0 − z‖2. (25)

Combining (5) and (12), one can obtain

‖xn+1 − z‖2 ≤ (1 + αnθn)‖xn − z‖2 − αnθn‖xn−1 − z‖2

+αnθn(1 + θn)‖xn − xn−1‖2 −
1− αn
αn

‖xn+1 − xn‖2

−αnβn(1− βn)‖Twn − wn‖2.

Thus,

αnβn(1− βn)‖Twn − wn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2

+αnθn(‖xn − z‖2 − ‖xn−1 − z‖2)
+αnθn(1 + θn)‖xn − xn−1‖2. (26)

Define

δn := αnθn(1 + θn)‖xn − xn−1‖2, ∀n ≥ 1;

ϕn := ‖xn − x∗‖2, ∀n ≥ 1;

Vn := ϕn − ϕn−1, ∀n ≥ 1

and
[Vn]+ := max{Vn, 0}, ∀n ≥ 1.

Then, we obtain from (26) that

αnβn(1− βn)‖Twn − wn‖2 ≤ ϕn − ϕn+1 + αnθn(ϕn − ϕn−1) + δn

≤ ϕn − ϕn+1 + ε[Vn]+ + δn. (27)

By (25), we get
∞∑
n=1

δn =
∞∑
n=1

αnθn(1 + θn)‖xn − xn−1‖2

≤
∞∑
n=1

2ε‖xn − xn−1‖2

= 2ε
∞∑
n=1

‖xn − xn−1‖2

≤ 2ε‖x0 − z‖2

δ(1− ε)
:= C1.

Then from (26), we obtain

Vn+1 ≤ αnθnVn + δn ≤ ε[Vn]+ + δn.
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Therefore,

[Vn+1]+ ≤ ε[Vn]+ + δn ≤ εn[V1]+ +
n∑
j=1

εj−1δn+1−j. (28)

Since by the assumption that x0 = x1, we get

V1 = [V1]+ = 0, δ1 = 0.

From (28), one has
∞∑
n=2

[Vn]+ ≤ 1

1− ε

∞∑
n=1

δn =
1

1− ε

∞∑
n=2

δn. (29)

By (26), we get

αβ(1− γ)
n∑
i=1

‖wi − Twi‖2 ≤ ϕ1 − ϕn + ε
n∑
i=1

[Vi]+ +
n∑
i=2

δi

≤ ϕ1 + εC2 + C1, (30)

where

C2 :=
C1

1− ε
≥ 1

1− ε

∞∑
i=2

δi ≥
∞∑
i=1

[Vi]+

by (29). Now, since ϕ1 = ϕ0, we have

ϕ1 + εC2 + C1 = ϕ1 +
εC1

1− ε
+ C1

= ϕ0 +
1

1− ε
C1

=
[
1 +

2ε

δ(1− ε)2
]
‖x0 − z‖2

= M‖x0 − z‖2. (31)

Hence by (30) and (31), we get
n∑
i=1

‖wi − Twi‖2 ≤
M

αβ(1− γ)
‖x0 − z‖2.

Thus,

min
i∈{1,2,...,n}

‖wi − Twi‖2 ≤
M

αβ(1− γ)

‖x0 − z‖2

n
. (32)

In other words,

min
i∈{1,2,...,n}

‖wi − Twi‖2 = O(1/n).

This completes the proof.
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We give the following remarks on our results.

Remark:

• It is known that ‖Tx− x‖ = 0 if and only if Tx = x and by
Theorem 1, we get that ‖Twn−wn‖ → 0 holds when F (T ) 6=
∅. Therefore, Theorem 2 gives the convergence rate of our
proposed inertial Krasnoselskii-Mann iteration (4) using the
quantity ‖Twn − wn‖ as a measure of its convergence rate.
• We know that for the Krasnoselskii-Mann (1), the quantity
‖Txn−xn‖ is monotonically nonincreasing with n. However,
this property does not hold for inertial Krasnoselskii-Mann
(4). This implies that ” min

i∈{1,2,...,n}
” cannot be removed in

Theorem 2. Nonetheless, with or without the ” min
i∈{1,2,...,n}

”

a nonasymptotic O(1/n) convergence rate would imply that
an ε-accuracy solution, in the sense that ‖wn − Twn‖ ≤ ε,
is obtainable within no more than O(1/ε) iterations.
• If we assume that θn = 0 for all n in (4), then the ” min

i∈{1,2,...,n}
” in Theorem 2 can be removed by setting i = n. In
this case, the nonasymptotic O(1/n) convergence rate re-
sult given in Theorem 2 reduces to the O(1/n) convergence
rate for nonexpansive mappings in [30, Theorem 1] and [27,
Theorem 3.1].

5. CONCLUDING REMARKS

We presents weak convergence analysis and nonasymptotic conver-
gence rate results for a new inertial Krasnoselskii-Mann iteration.
Our results are obtained under some weaker conditions than other
previously obtained results on inertial Krasnoselskii-Mann iteration
already in the literature. Part of our future research is devoted to
application of our results to Douglas-Rachford splitting method and
numerical comparisons of inertial Krasnoselskii-Mann iteration (3)
and (4).
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