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ABSTRACT. In this paper, the notion of dislocated metric
space, which is a proper generalization of the notion of met-
ric space is discussed. A new class of contractive mappings on
dislocated metric space, called the class of 3α-contractive map-
pings is introduced. Using some classical results, new fixed point
theorems are established in dislocated metric spaces for the class
of 3α-contractive mappings. Concrete examples and an appli-
cation of our theorems to establishment of existence of solution
of certain two-point boundary value problem are given. As fur-
ther findings of this research, certain anomalies detected in the
existing literature are corrected.
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1. INTRODUCTION

The study of fixed points of mappings satisfying certain contrac-
tive type conditions has been an active field of research (see for
example, [2, 4, 5, 8, 12, 15, 18, 20, 21]). Matthews [13, 14] in-
troduced the concept of dislocated metric spaces under what was
tagged metric domains in domain theory in which self distance of a
point need not be equal to zero. A generalization of the celebrated
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Banach Contraction Mapping Principle in dislocated metric space
was given by Hitzler and Seda [7]. The study of dislocated quasi
metric space plays very important role in topology, logic program-
ming and in electronics engineering (see for example, [6, 7]).

This work ia motivated by the work of Karapinar and Erhan [9]
and Aydi and Karapinar [3]. In [9], the authors studies the classes
of cyclic contractions and Kannan-type cyclic contractions. In try-
ing to justify that a map can be a cyclic contraction but not a
Kannan-type cyclic contraction, an example (see Example 8) was
given which, however, ended up not justifying their claim. In [3],
the authors introduced the so-called classes of type A and type B
generalized α−ψ contraction (see Definitions 8 and 8). It is part of
our aim in this paper to show that type A and type B generalized
α− ψ contraction are the same.

In addition to putting right the anomalies observed in [3] and [9],
it is also our aim in this paper to introduce the classes of 3α-
contractive mappings. This class of mappings is observed to be in-
dependent of the class of mappings studied by Aydi and Karapinar
[3]. Our motivation in bringing to view the class of 3α-contractive
mappings (as we shall see in the sequel) stems mainly from the
fact that the class is not vacuous and that fixed point theory of
this class of mappings is applicable to establishment of solutions
of certain class of two-point boundary value problem for second
order ordinary differential equations. The results obtained in this
paper complements the results obtained by several authors in this
direction.

2. PRELIMINARY

Let X be a nonempty set. A function d : X×X 7→ [0, ∞) is said
to be a dislocated metric on X if for all x, y, z ∈ X, the following
conditions hold:

(D1) d(x, y) = 0 = d(y, x) =⇒ x = y

(D2) d(x, y) = d(y, x)

(D3) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is then called a dislocated metric space.
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Example 1. Let X = [0, ∞) and define the function d : X ×X 7→
[0, ∞) by

d(x, y) = max{x, y} ∀x, y ∈ X.

Then, d is a dislocated metric and the pair (X, d) is a dislocated
metric space.

Example 2. Let X = R and define d : X ×X 7→ [0, +∞) by

d(x, y) = 1
2
(|x− y|+ |x|+ |y|), ∀ x, y ∈ X.

Then, d is not a metric on X since for y = x 6= 0,

d(x, x) = 1
2
(|x− x|+ |x|+ |x|) = |x| 6= 0.

However, d is a dislocated metric on X.

Remark 1. Observe that in Example 2, if the action of d is re-
stricted to [0, +∞) × [0, +∞), then we obtain Example 1. But ∀
x, y ∈ R,

d(x, y) = 1
2
(|x− y|+ |x|+ |y|) 6= max{x, y}

in general. Thus, the function σ in Example 2 is an extension of
the function d in Example 1 from [0, +∞)× [0, +∞) to R× R.

Analogous to the concept of continuity in metric space, d-continuity
in dislocated metric space is defined in the following way:

Definition 1. [1] Let (X, σ) be a dislocated metric space. A map-
ping T : (X, σ) → (X, σ) is said to be d-continuous if for any
sequence {xn}n≥1 in X such that

σ(xn, x)→ σ(x, x) as n→∞,

we have that

σ(Txn, Tx)→ σ(Tx, Tx) as n→∞.

Definition 2. [19] For a nonempty set X, let T : X 7→ X and α :
X×X 7→ [0, ∞) be given mappings. We say that T is α-admissible
if for any x, y ∈ X such that α(x, y) ≥ 1, then α(Tx, Ty) ≥ 1.

Closely related to the concept of metric is the concept of partial
metric.
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Definition 3. [14] Let X be a nonempty set. If for any x, y, z ∈ X,
a mapping ρ : X ×X 7→ [0, ∞) satisfies

(P1) ρ(x, x) = ρ(y, y) = ρ(x, y) if and only if x = y

(P2) ρ(x, x) ≤ ρ(x, y)

(P3) ρ(x, y) = ρ(y, x)

(P4) ρ(x, z) ≤ ρ(x, y) + ρ(y, z)− ρ(y, y),

then ρ is said to be a partial metric (or briefly, ρ-metric) on X and
the pair (X, ρ) is called a partial metric space.

Every partial metric space is not a metric space. It is well known
that every partial metric space[14] is a dislocated metric space. The
converse, however, is not necessarily true. The following example
justifies this statement.

Example 3. Let X = {1, 2, 3} and define the function σ : X ×
X 7→ [0, ∞) by

σ(1, 1) = 0, σ(1, 2) = σ(2, 1) = 9
11
, σ(1, 3) = σ(3, 1) = 7

11

σ(2, 2) = 10
11
, σ(2, 3) = σ(3, 2) = 8

11
, σ(3, 3) = 1.

Then, σ is a dislocated metric. Since, for example, σ(2, 2) >
σ(1, 2), we observe that σ is not a partial metric.

It is then natural to ask whether given any partial metric, there is
an associated metric. Proposition 1 which can be readily proved
answers this question in affirmative.

Proposition 1. If (X, ρ) is a partial metric space, then

σρ(x, y) = 2ρ(x, y)− ρ(x, x)− ρ(y, y), x, y ∈ X, (1)

is a metric on X.

Lemma 1 (Compare with Lemma 2.2 of [16]). Let (X, ρ) be a
partial metric space. Then,

(a) {xn}n≥1 is a Cauchy sequence in (X, ρ) if and only if it is
a Cauchy sequence in the metric space (X, σρ);

(b) (X, ρ) is complete if and only if the metric space (X, σρ) is
complete.

Proof:

(a) (=⇒) First, we show that every Cauchy sequence in (X, ρ)
is a Cauchy sequence in (X, σρ). To this end, let {xn}n≥1
be a Cauchy sequence in (X, ρ). Then, there exists a ≥ 0
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such that for each ε > 0, there is nε ∈ N such that for all
n, m ≥ nε, we have

|ρ(xn, xm)− a| < ε
4
.

Without loss of generality, suppose that

max{ρ(xn, xn), ρ(xm, xm)} = ρ(xm, xm).

Then,

σρ(xn, xm) = 2ρ(xn, xm)− [ρ(xn, xn) + ρ(xm, xm)]

≤ 2ρ(xn, xm)− 2ρ(xn, xn)

= 2 [ρ(xn, xm)− ρ(xn, xn)]

= 2 |ρ(xn, xm)− ρ(xn, xn)|
≤ 2 (|ρ(xn, xm)− a|+ |a− ρ(xn, xn)|)
< 2

(
ε
4

+ ε
4

)
= 2

(
ε
2

)
= ε

for all n, m ≥ nε. This shows that {xn}n≥1 is a Cauchy
sequence in (X, σρ).
(⇐=) Now we prove that every Cauchy sequence {xn}n≥1 in
(X, σρ) is a Cauchy sequence in (X, ρ). Let ε = 1. Then,
there exists n0 ∈ N such that σρ(xn, xm) < 1 for all n, m ≥
n0. Since

ρ(xn, xn) ≤ ρ(xn, xn0)

≤ ρ(xn, xn0) + [ρ(xn, xn0)− ρ(xn, xn)]

= 2ρ(xn, xn0)− ρ(xn, xn)

= σρ(xn, xn0) + ρ(xn0 , xn0),

then

|ρ(xn, xn)| ≤ |σρ(xn, xn0) + ρ(xn0 , xn0)|
≤ |σρ(xn, xn0)|+ |ρ(xn0 , xn0)|
< 1 + |ρ(xn0 , xn0)| .

Consequently the sequence {ρ(xn, xn)}n≥1 is bounded in
R, and so there exists a ∈ R such that a subsequence
{ρ(xnk

, xnk
)}k≥1 is convergent to a, i.e. lim

k→∞
ρ(xnk

, xnk
) =

a. It remains to prove that {ρ(xn, xn)}n≥1 is a Cauchy se-
quence in R. Since {xn}n≥1 is a Cauchy sequence in (X, σρ),
given ε > 0, there exists nε ∈ N such that σρ(xn, xm) < ε

2
for all n, m ≥ nε.
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Thus, for all n, m ≥ nε,

|ρ(xn, xn)− ρ(xm, xm)| ≤ |ρ(xn, xn)− ρ(xn, xm)|
+ |ρ(xn, xm)− ρ(xm, xm)|
= |ρ(xm, xn)− ρ(xn, xn)|
+ |ρ(xm, xn)− ρ(xm, xm)|
= ρ(xm, xn)− ρ(xn, xn)

+ ρ(xm, xn)− ρ(xm, xm)

= 2ρ(xm, xn)− [ρ(xm, xm)

+ ρ(xn, xn)]

= σρ(xm, xn) <
ε

2
< ε.

Therefore, lim
n→∞

ρ(xn, xn) = a. On the other hand,

|ρ(xn, xm)− a| = |ρ(xn, xm)− ρ(xn, xn) + ρ(xn, xn)− a|
≤ |ρ(xn, xm)− ρ(xn, xn)|+ |ρ(xn, xn)− a|
≤ σρ(xn, xm) + |ρ(xn, xn)− a| < ε

for all n, m ≥ nε. Hence lim
n,m→∞

ρ(xn, xm) = a and {xn}n≥1
is a Cauchy sequence in (X, ρ).

(b) (=⇒) First, we show that the completeness of the partial
metric space (X, ρ) implies the completeness of the asso-
ciated metric space (X, σρ). Let {xn}n≥ be a Cauchy se-
quence in (X, σρ). Then, {xn}n≥1 is a Cauchy seuqence in
(X, ρ), and so it is convergent to a point y ∈ X with

lim
n,m

ρ(xn, xm) = lim
n→∞

ρ(y, xn) = ρ(y, y).

Then, given ε > 0, there exists nε ∈ N such that

ρ(xn, y)− ρ(y, y) < ε
2

and ρ(y, y)− ρ(xn, xn) < ε
2

whenever n ≥ nε. As a consequence, we have that

σρ(xn, y) = 2ρ(xn, y)− [ρ(xn, xn) + ρ(y, y)]

= [ρ(xn, y)− ρ(xn, xn)] + [ρ(xn, y)− ρ(y, y)]

≤ [ρ(y, y)− ρ(xn, xn)] + [ρ(xn, y)− ρ(y, y)]

≤ |ρ(y, y)− ρ(xn, xn)|+ |ρ(xn, y)− ρ(y, y)|
< ε

whenever n ≥ nε. Therefore, (X, σρ) is complete.
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(⇐=) Next, we prove that completeness of (X, σρ) implies
completeness of (X, ρ). Indeed, if {xn}n≥1 is a Cauchy
sequence in (X, ρ) then it is also a Cauchy sequence in
(X, σρ). Since the metric space (X, σρ) is complete we de-
duce that there exists y ∈ X such that limn→∞ σρ(y, xn) =
0. It then follows that {xn}n≥1 is a convergent sequence in
(X, ρ). Next, we prove that limn,m→∞ ρ(xn, xm) = ρ(y, y).
Since {xn}n≥1 is a Cauchy sequence in (X, ρ) it is sufficient
to see that limn→∞ ρ(xn, xn) = ρ(y, y). Let ε > 0 be given.
Then, there exists n0 ∈ N such that σρ(y, xn) < ε whenever
n ≥ n0. Thus

|ρ(y, y)− ρ(xn, xn)| ≤ |ρ(y, y)− ρ(y, xn)|+ |ρ(y, xn)− ρ(xn, xn)|
= |ρ(xn, y)− ρ(y, y)|+ |ρ(xn, y)− ρ(xn, xn)|
= ρ(xn, y)− ρ(y, y) + ρ(xn, y)− ρ(xn, xn)

= 2ρ(xn, y)− [ρ(xn, xn) + ρ(y, y)]

= σρ(xn, y) < ε

whenever n ≥ n0. This shows that (X, ρ) is complete.

Lemma 2. Let (X, σ) be a dislocated metric space. Let {xn}n≥1 be
a sequence in X such that xn → x. Then, for all y ∈ X, we have

lim
n→∞

σ(xn, y) = σ(x, y).

Proof:
Observe that ∀ x, y ∈ X,

σ(xn, y) ≤ σ(xn, x) + σ(x, y).

Thus,

σ(xn, y)− σ(x, y) ≤ σ(xn, x). (2)

Again,

σ(x, y) ≤ σ(x, xn) + σ(xn, y).

Thus,

σ(x, y)− σ(xn, y) ≤ σ(x, xn)

i.e., − [σ(xn, y)− σ(x, y)] ≤ σ(xn, x). (3)

Combining (2) and (3), we obtain that

|σ(xn, y)− σ(x, y)| ≤ σ(xn, x).

Taking limit as n → ∞ and using Sandwich Theorem, we obtain
that

lim
n→∞

σ(xn, y) = σ(x, y).
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Lemma 3. [7] d-limits in dislocated metric spaces are unique, i.e.,
if {xn}n≥1 is a sequence in the dislocated metric space (X, σ) such
that xn → x and xn → y, then x = y.

Definition 4 (Karapinar and Salimi [10]). Let A and B be nonempty
subsets of a metric space (X, σ) and T : A∪B 7→ A∪B be a map-
ping. The mapping T is called a cyclic map if and only if

T (A) ⊆ B and T (B) ⊆ A.

Definition 5 (Kirk, Srinivasan and Veeramani [11]). Let A and
B be nonempty subsets of a metric space (X, σ). A cyclic map
T : A ∪B 7→ A ∪B is said to be a cyclic contraction if there exists
k ∈ (0, 1) such that

σ(Tx, Ty) ≤ k σ(x, y) for all x ∈ A and y ∈ B.
Definition 6 (Karapinar and Erhan [9]). Let A and B be nonempty
subsets of a metric space (X, σ). A cyclic map T : A∪B 7→ A∪B
is called a Kannan-type cyclic contraction if there exists k ∈ (0, 1

2
)

such that

σ(Tx, Ty) ≤ k [σ(Tx, x) + σ(Ty, y)] for all x ∈ A and y ∈ B.

3. THE HEART OF THE MATTER

We begin this section by introducing the new class of 3α-contractive
mappings in dislocated metric space studied in this work.

Definition 7. Let (X, σ) be a dislocated metric space and T : X 7→
X be a given mapping. We say that T is a 3α- contractive mapping
if there exists a function α : X ×X 7→ [0, ∞) and k ∈ [0, 1) such
that

α(x, y)σ(Tx, Ty) ≤ k
3
M1(x, y); for all x, y ∈ X, (4)

where
M1(x, y) = σ(x, y) + 2σ(y, Ty).

The following examples show that Definition 7 is not vacuous.

Example 4. Let X = [0, ∞) be endowed with the dislocated metric
given as

σ(x, y) = max{x, y}.
Then, (X, σ) is a complete dislocated metric space. Let the mapping
T1 : X 7→ X be defined by

T1x =

{
1
4
x2 if x ∈ [0, 1];

0 otherwise.
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Consider the map α : X ×X 7→ [0, ∞) defined by

α(x, y) =

{
1 if x, y ∈ [0, 1];
0 otherwise.

Then, T1 is a 3α-contractive mapping and α-admissible. Also, T1
is d-continuous (refer to Example 6).

Example 5. Consider X = {0, 1, 2}. Take the dislocated metric
σ : X ×X 7→ [0, +∞) defined by

σ(x, y) =



0 if (x, y) = (0, 0);
1 if (x, y) = (0, 1);
1 if (x, y) = (0, 2);
1 if (x, y) = (1, 0);
0 if (x, y) = (1, 1);
2 if (x, y) = (1, 2);
1 if (x, y) = (2, 0);
2 if (x, y) = (2, 1);
2 if (x, y) = (2, 2).

Note that σ is not a metric. More so, σ is not a partial metric.
However, (X, σ) is a complete dislocated metric space. Let T2 :
X 7→ X be defined by

T2x =

{
0 if x ∈ {0, 1};
1 if x = 2.

Define the mapping α : X ×X 7→ [0, ∞) by

α(x, y) =

{
1 if x = 0;
0 otherwise.

Then, T2 is a 3α-contractive mapping. Also, T2 is α-admissible.

Remark 2. We remark that d-continuity is a d-metric property.
That is to say, a mapping that is d-continuous with respect to a
given d-metric may fail to be d-continuous with respect to another
d-metric. We illustrate this fact in the next example.

Example 6. Let X = [0, ∞). Endow X respectively with the
two dislocated metrics σ1 and σ2 defined by σ1(x, y) = |x − y|
and σ2(x, y) = max{x, y} for all x, y ∈ X. Define the mapping
T : X 7→ X by

Tx =

{
1
4
x2 if x ∈ [0, 1];

0 otherwise.

Obviously, T is not d-continuous on the dislocated metric space
(X, σ1). However, T is d-continuous on (X, σ2).
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We now present the following fixed point theorems and their ac-
companying proofs.

Theorem 2. Let (X, σ) be a complete dislocated metric space and
T : X 7→ X be a 3α contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is d-continuous,

then there exists u ∈ X such that σ(u, u) = 0.

(iv) If in addition, there exists x ∈ X such that whenever σ(x, x)
= 0, we have that α(x, x) ≥ 1,

then u is a fixed point of T , that is, Tu = u.

Proof:
By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0)
≥ 1. We define a sequence {xn} ∈ X by xn+1 = Txn = T n+1x0 for
all n ≥ 0. Suppose that xn0 = xn0+1 for some n0. Then, the proof
is completed since

u = xn0 = xn0+1 = Txn0 = Tu.

Consequently, throughout the proof, we assume that

xn 6= xn+1 for all n.

Observe that

α(x0, x1) = α(x0, Tx0) ≥ 1 =⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1,

since T is α-admissible. By repeating the process above, we derive
that

α(xn, xn+1) ≥ 1, for all n = 0, 1, 2, . . . (5)

Step 1: We shall prove that

lim
n→∞

σ(xn, xn+1) = 0.

Combining (4) and (5), we find that

σ(xn, xn+1) = σ(Txn−1, Txn)

≤ α(xn−1, xn)σ(Txn−1, Txn)

≤ k
3
M1(xn−1, xn) (6)

= k
3

[σ(xn−1, xn) + 2σ(xn, xn+1)] (7)

for all n ∈ N. That is, for all n ∈ N, we have that

3σ(xn, xn+1) ≤ kσ(xn−1, xn) + 2kσ(xn, xn+1)

≤ kσ(xn−1, xn) + 2σ(xn, xn+1).
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Thus,
σ(xn, xn+1) ≤ kσ(xn−1, xn) ∀n ∈ N. (8)

From (8), we find that

σ(xn, xn+1) ≤ knσ(x0, x1) ∀ n ∈ N. (9)

Since k ∈ [0, 1), we conclude that

lim
n→∞

σ(xn, xn+1) = 0. (10)

Step 2: We shall prove that {xn} is a Cauchy sequence. First,
by using (D4) and (9), we have that

σ(xn, xn+j) ≤ σ(xn, xn+1) + σ(xn+1, xn+2) + · · ·+ σ(xn+j−1, xn+j)

=

n+j−1∑
p=n

σ(xp, xp+1)

≤
n+j−1∑
p=n

kp(σ(x0, x1))

≤
+∞∑
p=n

kp(σ(x0, x1))→ 0 as n→∞.

Thus, by the symmetry of σ, we obtain that

lim
n,m→∞

σ(xn, xm) = 0. (11)

Hence, we conclude that {xn} is a Cauchy sequence in (X, σ). Since
(X, σ) is complete, there exists u ∈ X such that xn → u as n→∞.
By Lemma 2, we obtain that

lim
n→∞

σ(xn, xm) = σ(u, xm)

and lim
m→∞

σ(u, xm) = σ(u, u).

Therefore,

0 = lim
n,m→∞

σ(xm, xn)

= lim
m→∞

[
lim
n→∞

σ(xn, xm)
]

= lim
m→∞

σ(u, xm)

= σ(u, u). (12)

Thus, d-continuity of T and Lemma 2 give

lim
n→∞

σ(xn+1, Tu) = lim
n→∞

σ(Txn, Tu) = σ(Tu, Tu). (13)
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On the other hand, since lim
n→∞

xn = u, it follows that lim
n→∞

xn+1 = u.

Thus, applying Lemma 2, we obtain that

lim
n→∞

σ(xn+1, Tu) = σ(u, Tu). (14)

Comparing (13) and (14) and using Lemma 3, we get

σ(u, Tu) = σ(Tu, Tu).

From hypothesis (iv) and the fact that σ(u, u) = 0, we have α(u, u)
≥ 1. Therefore, by Definition 7,

σ(u, Tu) = σ(Tu, Tu)

≤ α(u, u)σ(Tu, Tu)

≤ k
3
M1(u, u)

= k
3

[σ(u, u) + 2σ(u, Tu)]

= 2k
3
σ(u, Tu).

Hence,

(1− 2k
3

)σ(u, Tu) ≤ 0. (15)

But k ∈ [0, 1) =⇒ 1− 2k
3
∈ (1

3
, 1]. So, (15) gives

σ(u, Tu) ≤ 0.

Hence, σ(u, Tu) = 0, that is Tu = u. So, we conclude that u is a
fixed point of T .

Remark 3. Theorem 2 remains true if we replace the d-continuity
hypothesis by the following property:

“ If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n
and xn → x ∈ X as n→∞, then there exists a subsequence

{xnj
} of {xn} such that α(xnj

, x) ≥ 1 for all j.”

Thus, we have the following theorem:

Theorem 3. Let (X, σ) be a complete dislocated metric space and
T : X 7→ X be a 3α-contractive mapping. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n
and xn → x ∈ X as n→∞, then there exists a subsequence
{xnj
} of {xn} such that α(xnj

, x) ≥ 1 for all j.

Then, there exists u ∈ X such that Tu = u.
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Proof:
Following the proof of Theorem 2, we know that the sequence {xn}
defined by xn+1 = Txn for all n ≥ 0 is Cauchy in (X, σ) and
converges to some u ∈ X. So,

lim
j→∞

σ(xnj+1, Tu) = σ(u, Tu). (16)

We shall show that Tu = u. Now, suppose, on the contrary, that
Tu 6= u (which implies that σ(Tu, u) 6= 0). From (5) and Condition
(iii), there exists a subsequence {xnj

} of {xn} such that α(xnj
, u) ≥

1 for all j. By Definition 7, we obtain that

σ(xnj+1, Tu) ≤ α(xnj
, u)σ(xnj+1, Tu)

= α(xnj
, u)σ(Txnj

, Tu)

≤ k
3
M1(xnj

, u) (17)

where

M1(xnj
, u) = σ(xnj

, u) + 2σ(u, Tu).

But lim
j→∞

xnj
= u =⇒ lim

j→∞
σ(xnj

, u) = 0 and using (12), we have

that

lim
j→∞

M1(xnj
, u) = 2σ(u, Tu).

Letting j →∞ in (17) gives σ(u, Tu) ≤ 2k
3
σ(u, Tu), which implies

that (1 − 2k
3

)σ(u, Tu) ≤ 0. Thus, σ(u, Tu) = 0, a contradiction.
Hence, Tu = u, that is, u is a fixed point of T .

Corollary 4. Let (X, σ) be a complete dislocated metric space and
T : X 7→ X be such that

σ(Tx, Ty) ≤ k
3
M1(x, y)

where k ∈ [0, 1). Then, T has a fixed point.

Proof:
To prove the above corollary, it suffices to take α(x, y) = 1 in
Theorem 3.

4. APPLICATION

Here, we consider the following two-point boundary value prob-
lem for the second-order differential equation.:

d2v

dt2
= f(t, v(t)), t ∈ [0, 1], v(0) = v(1) = 0, (18)
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where f : [0, 1] × R 7→ R is a continuous function. Let X =
C(I)(I = [0, 1]) be the space of all continuous functions defined on
I. We endow on X, the dislocated metric ρ given by

ρ(v1, v2) = ||v1 − v2||∞ + ||v1||∞ + ||v2||∞ for all v1, v2 ∈ X,

where

||u||∞ = max
t∈[0, 1]

|u(t)| for each u ∈ X.

Note that ρ is also a partial metric on X since

σρ(v1, v2) := 2ρ(v1, v2)− ρ(v1, v1)− ρ(v2, v2) = 2||v1 − v2||∞.

So by Lemma 1, (X, σρ) is complete since the metric space (X, || ·
||∞) is complete. It is well known (see Pascali and Shurlan[17]) that
v ∈ C2(I) being a solution of (18) is equivalent to that v ∈ X = C(I)
is a solution of the Hammerstein equation

v(t) +

∫ 1

0

κ(t, x) f(x, x v(x)) dx = 0, for all t ∈ I,

i.e,

v(t) = −
∫ 1

0

κ(t, x) f(x, x v(x)) dx, for all t ∈ I. (19)

Theorem 5. Suppose that the following conditions are satisfied:

(i) there exists a continuous function η : I 7→ [0, ∞) such that

|f(x, a)− f(x, b)| ≤ 8η(x)|a− b|,

for each x ∈ I and a, b ∈ R;
(ii) there exists a continuous function ζ : I 7→ [0, ∞) such that

|f(x, a)| ≤ 8ζ(x)|a|,

for each x ∈ I and a ∈ R;
(iii) sup

x∈I
η(x) = k1 <

1
9
;

(iv) sup
x∈I

ζ(x) = k2 <
1
9
.

(v) the Green’s function associated to (18) is

κ(t, x) =

{
t(1− x); if 0 ≤ t ≤ x ≤ 1
x(1− t); if 0 ≤ x ≤ t ≤ 1.

(20)

Then, Problem (18) has a solution v ∈ X = C(I, R).
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Proof:
Consider the mapping T : X 7→ X defined by

Tv(t) = −
∫ 1

0

κ(t, x) f(x, v(x)) dx,

for all t ∈ I and v ∈ X. Then, Problem 18 is equivalent to finding
u ∈ X that is a fixed point of T .

Now, let v1, v2 ∈ X. We have

|Tv1(t)− Tv2(t)| =
∣∣∣∣∫ 1

0

κ(t, x) f(x, v1(x)) dx−
∫ 1

0

κ(t, x) f(x, v2(x)) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

κ(t, x) [f(x, v1(x))− f(x, v2(x))] dx

∣∣∣∣
≤
∫ 1

0

κ(t, x) |f(x, v1(x))− f(x, v2(x))| dx

≤ 8

∫ 1

0

κ(t, x) η(x) |v1(x)− v2(x)| dx

≤ 8k1||v1 − v2||∞ sup
t∈I

∫ 1

0

κ(t, x) dx

= k1||v1 − v2||∞.

In the above equality, we used the fact that for each t ∈ I, we have∫ 1

0

κ(t, x) dx = −1
2
(t2 − t),

and so

sup
t∈I

∫ 1

0

κ(t, x) dx = sup
t∈I

{
−1

2
(t2 − t)

}
= 1

8
.

Therefore,
||Tv1 − Tv2||∞ ≤ k1||v1 − v2||∞. (21)

Again, we have

|Tv1(t)| =
∣∣∣∣∫ 1

0

κ(t, x) f(x, v1(x)) dx

∣∣∣∣
≤
∫ 1

0

κ(t, x) |f(x, v1(x))| dx

≤ 8

∫ 1

0

κ(t, x) ζ(x) |v1(x)| dx

≤ 8k2||v1||∞ sup
t∈I

∫ 1

0

κ(t, x) dx

= k2||v1||∞.



562 E. U. OFOEDU AND C. S. ODILIOBI

Thus,
||Tv1||∞ ≤ k2||v1||∞. (22)

By symmetry,
||Tv2||∞ ≤ k2||v2||∞. (23)

Take k = 3(k1 + 2k2). Under assumptions in Theorem 5, we have
k ∈ [0, 1). Summing (21), (22) and (23), we get

σ(Tv1, T v2) = ||Tv1 − Tv2||σ + ||Tv1||σ + ||Tv2||σ
≤ k1||v1 − v2||∞ + k2||v1||∞ + k2||v2||∞
≤ (k1 + 2k2) (||v1 − v2||∞ + ||v1||∞ + ||v2||∞)

= k
3
σ(v1, v2)

≤ k
3
M(v1, v2).

Now, we see clearly that the hypotheses of Corollary 4 are satisfied,
and so T has a fixed point u ∈ X, that is, the Problem 18 has a
solution v ∈ C2(I).

Example 7. Consider the problem of the forced oscillations of finite
amplitude of a pendulum. The amplitude of oscillation v(t) is a
solution of the problem{

d2v
dt2

+ a2 sin v(t) = z(t), if t ∈ [0, 1]
v(0) = v(1) = 0,

(24)

where the driving function z(t) is odd and periodic (of period, say,
P ). The constant a 6= 0 depends on the length of the pendulum
and on gravity. Observe that (24) can be put in the form of (18)
where f(t, v(t)) = z(t) − a2 sin v(t). If in addition, the conditions
of Theorem 5 are satisfied, then (24) has a solution v ∈ X = C2(I).

5. FURTHER FINDINGS

Further Finding 1: Karapinar and Erhan [9] claimed that a map
can be a cyclic contraction but not a Kannan-type cyclic contraction
using the following example.

Example 8 (Karapinar and Erhan [9]). Take X = R, with the
usual metric. Suppose that A = [−1, 0] and B = [0, 1]. Let T :
A ∪B 7→ A ∪B be defined by

Tz = −z
3

for all z ∈ A ∪B.

They claimed that T is cyclic contraction but not Kannan-type
cyclic contraction. This example, however, is misleading. To see
this, we consider the following proposition:



NEW FIXED POINT THEOREMS IN DISLOCATED METRIC . . . 563

Proposition 6. Let X = R with σ the usual metric on R. Suppose
that A = [−1, 0] and B = [0, 1]. Let Tλ : A∪B 7→ A∪B be defined
by

Tλz = −λz for all z ∈ A ∪B,

where λ ∈ (0, 1). Then, Tλ is a cyclic contraction and also a
Kannan-type cyclic contraction.

Proof: We begin by showing that Tλ is a cyclic contraction, that
is, Tλ is a cyclic map and that

σ(Tλx, Tλy) ≤ kλσ(x, y) where x ∈ A, y ∈ B and kλ ∈ (0, 1).
(25)

We first show that Tλ is a cyclic map. Now, Tλ is a cyclic map
because

Tλ[A] = [0, λ] ⊆ [0, 1] = B and Tλ[B] = [−λ, 0] ⊆ [−1, 0] = A.

We then show that Tλ is a cyclic contraction.

σ(x, y) = |x− y| = y − x
since x ∈ A = [−1, 0] and y ∈ B = [0, 1]. Moreover,

σ(Tλx, Tλy) = |(−λx)−(−λy)| = |−λ| |x−y| = λ|x−y| = λ(y−x).

For fixed λ ∈ (0, 1), choose kλ = 1
2
(1 + λ). Then, obviously, kλ ∈

(0, 1) and λ ≤ kλ. We then see that (25) is satisfied. Hence, Tλ is
a cyclic contraction.
Next, we show that Tλ is a Kannan-type cyclic contraction, that is,

σ(Tλx, Tλy) ≤ k′λ[σ(Tλx, x) + σ(Tλy, y)] (26)

where x ∈ A, y ∈ B and k′λ ∈ (0, 1
2
). But

σ(Tλx, x) = |Tλx− x|
= | − λx− x|
= (λ+ 1)| − x|
= −(λ+ 1)x since x ∈ A = [−1, 0]

and

σ(Tλy, y) = |Tλy − y|
= | − λy − y|
= (λ+ 1)| − y|
= (λ+ 1)y since y ∈ B = [0, 1]

so that

σ(Tλx, x) + σ(Tλy, y) = −(λ+ 1)x+ (λ+ 1)y = (λ+ 1)(y − x).
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Now, λ ∈ (0, 1) ⇐⇒ λ
λ+1
∈ (0, 1

2
). Choose k′λ = 1+3λ

4(1+λ)
= 1

2
(1
2

+
λ
λ+1

). Then, obviously, k′λ ∈ (1
4
, 1

2
) ⊂ (0, 1

2
) and λ

λ+1
≤ k′λ. We

then see that (26) is satisfied. Hence, Tλ is a Kannan-type cyclic
contraction.

Further Finding 2: Recently, Aydi and Karapinar[3] introduced
the classes of type A and type B generalized α− ψ contractions in
the following definitions 8 and 9.

Definition 8 (Aydi and Karapinar [3]). Let (X, σ) be a dislocated
metric space and T : X 7→ X be a given mapping. T is called a
generalized α − ψ contractive mapping of type A if there exist two
functions α : X ×X 7→ [0, ∞) and ψ ∈ Ψ such that

α(x, y)σ(Tx, Ty) ≤ ψ(M(x, y)); for all x, y ∈ X
where

M(x, y) = max
{
σ(x, y), σ(x, Tx), σ(y, Ty), σ(x, Ty)+σ(y, Tx)

4

}
.

(27)

Definition 9 (Aydi and Karapinar [3]). Let (X, σ) be a dislocated
metric space and T : X 7→ X be a given mapping. T is called a
generalized α − ψ contractive mapping of type B if there exist two
functions α : X ×X 7→ [0, ∞) and ψ ∈ Ψ such that

α(x, y)σ(Tx, Ty) ≤ ψ(M0(x, y)); for all x, y ∈ X
where

M0(x, y) = max {σ(x, y), σ(x, Tx), σ(y, Ty)} . (28)

However, to show that these definitions are misleading, we consider
the following proposition:

Proposition 7. Let σ be a dislocated metric on a nonempty set X.
Let M(x, y) and M0(x, y) be defined as in (27) and (28) respec-
tively. Then,

M(x, y) = M0(x, y).

Proof: If we can show that σ(x, Ty)+σ(y, Tx)
4

≤M0, then we are done.
Now, observe that

σ(x, Ty)+σ(y, Tx)
4

≤ σ(x, y)+σ(y, Ty)+σ(y, x)+σ(x, Tx)
4

= 2σ(x, y)+σ(y, Ty)+σ(x, Tx)
4

. (29)

Now, from the definition of M0, three cases arise:
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Case 1: For M0 = σ(x, y), (29) gives

σ(x, Ty)+σ(y, Tx)
4

≤ σ(x, y) = M0.

Case 2: For M0 = σ(y, Ty), (29) reduces to

σ(x, Ty)+σ(y, Tx)
4

≤ σ(y, Ty) = M0.

Case 3: For M0 = σ(x, Tx), (29) gives

σ(x, Ty)+σ(y, Tx)
4

≤ σ(x, Tx) = M0.

Thus, for each case, σ(x, Ty)+σ(y, Tx)
4

≤M0. We then conclude that

M(x, y) = M0(x, y).

6. CONCLUDING REMARKS

It is of interest to note here that the mappings in Examples 4 and
5 are two concrete examples of mappings satisfying the conditions
in Theorems 2 and 3 respectively.

As can be seen from Proposition 6, if we take λ = 1
3
∈ (0, 1), then

T is indeed cyclic contraction but also Kannan-type cyclic contrac-
tion. Many authors (See for example, Zoto, Hoxha and Kumari[22])
have been misled by this particular example and they keep on cit-
ing it as an example of a map that is cyclic contraction but not
Kannan-type cyclic contraction.

From Proposition 7, we conclude that Type A and Type B are
equivalent. Thus, we observe the following implications in the work
of Aydi and Karapinar[3]:

(1) Definition 2.3 is a mere repetition of Definition 1.10.
(2) Theorems 2.4 and 2.5 are mere repetitions of Theorems 2.1

and 2.2 respectively.
(3) Corollaries 3.3 and 3.4 are mere repetitions of Corollaries

3.1 and 3.2 respectively.
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