APPLICATION OF THE BRIOT-BOUQUET DIFFERENTIAL EQUATION TO A CLASS OF ANALYTIC FUNCTIONS

F. M. JIMOH ${ }^{1}$ AND K. O. BABALOLA

ABSTRACT. In this paper, using the technique of the BriotBouquet differential subordination, we find the real number ρ such that $\operatorname{Re}\left[D^{n} f(z)^{\alpha} / \alpha^{n} z^{\alpha}\right]>\rho$ implies univalence of certain analytic functions.

Keywords and phrases: Analytic and univalent functions, Carathéodory functions, Hypergeometric functions, Briot-Bouquet differential subordination, dominant of a differential subordination.

2010 Mathematical Subject Classification: 30C45, 30C80

1. INTRODUCTION

We denote as usual by A the class of functions f such that

$$
f(z)=z+a_{2} z^{2}+\ldots
$$

which are analytic in the unit disk E and by P the class of Carathéodory functions such that if $p \in P$ then p has the form

$$
p(z)=1+c_{1} z+c_{2} z^{2}+\ldots
$$

that is analytic in E and satisfies $R e p(z)>0, z \in E$. Furthermore, we denote by $P(\beta)$ the subclass of P satisfying the condition $\operatorname{Re} p(z)>\beta$ for $\beta \in[0,1)$.
If p and q are two analytic functions in the unit disk E, we say that the function $p(z)$ is subordinate to $q(z)$ i. e.

$$
\begin{equation*}
p(z) \prec q(z) \tag{1}
\end{equation*}
$$

if and only if there exists an analytic function $w(|w(z)|<1, z \in E)$ satisfying $w(0)=0$ such that $p(z)=q(w(z))$. In particular if $q(z)$ is univalent in E then the subordination condition (1) holds if and only if $p(0)=q(0)$ and $p(E) \subseteq q(E)$.

[^0]The class $J_{n}^{\alpha}(\beta)$ is a subclass of A defined as follows:
Definition 1: An analytic function $f \in J_{n}^{\alpha}(\beta)$ if and only if

$$
\begin{equation*}
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)}>\beta, \quad z \in E \tag{2}
\end{equation*}
$$

for non-negative real number $\alpha, 0 \leq \beta<1, n \geq 0$ and D^{n} is the Salagean operator.
It was established in [5] that analytic functions satisfying (2) also satisfy

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\beta
$$

This last condition implies univalence of functions in $J_{n}^{\alpha}(\beta)$ for $n \geq 1$.

In the present paper, by using the technique of the Briot-Bouquet differential subordination, we find the largest real number ρ such that

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\rho
$$

given that the function $f \in A$ satisfies (2).
A function $p(z) \in P$ is said to satisfy a Briot-Bouquet differential subordination if

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \tag{3}
\end{equation*}
$$

for complex constants β and γ, complex functions $h(z)$ with $h(0)=$ 1 and $\operatorname{Re}(\beta h(z)+\gamma)>0$ in E.
A dominant of the the differential subordination (3) is a univalent function $q(z)$ such that $p(0)=q(0)$ and $p \prec q$. If a dominant \tilde{q} is such that $\tilde{q} \prec q$ for all dominants q of the differential subordination, then \tilde{q} is said to be the best dominant. More results on the subject of differential subordinations can be found in $[4,6,7]$.

2. PRELIMINARY LEMMAS

The following lemmas are fundamental in the proof of our main results.
Lemma 1 [3]: Let $f(z) \in A$, and $\alpha>0$ be real. If $\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}$ takes a value which is independent of n, then

$$
\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}}=\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)}
$$

Lemma 2 [4]: Let $p(z)$ be analytic in E and let $h(z)$ satisfy the differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\eta p(z)+\gamma} \prec h(z),
$$

and $\operatorname{Re}(\eta h(z)+\gamma)>0$ in E. Then the differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\eta q(z)+\gamma}=h(z), q(0)=0
$$

has a univalent solution $q(z)$. In addition $p(z) \prec q(z) \prec h(z)$ and $q(z)$ is the best dominant.
The next lemma gives some well-known properties of the Gaussian hypergeometric function

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\ldots \tag{4}
\end{equation*}
$$

where a, b, and c are complex constants with $c \neq 0,-1,-2, \ldots$
Lemma 3 [1]: For real or complex numbers a, b and $c(c \neq$ $0,-1,-2, \ldots)$, we have

$$
\begin{gathered}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{(-a)} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z) \\
(\operatorname{Re}(c)>\operatorname{Re}(b)>0) \\
{ }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z) \\
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) .
\end{gathered}
$$

3. MAIN RESULTS

Theorem 1: Let $f(z) \in J_{n}^{\alpha}(\beta)$. Then we have the subordination

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \prec q(z) \prec h(z)=\frac{1+(1-2 \beta) z}{1-z} \tag{5}
\end{equation*}
$$

and $q(z)$ is the best dominant where $q(z)$ is given by

$$
\begin{aligned}
& q(z)=(1-z)^{-1}\left[{ }_{2} F_{1}\left(1,1 ; 1+\alpha ; \frac{z}{z-1}\right)\right. \\
&\left.+\frac{(1-2 \beta) \alpha z}{\alpha+1}{ }_{2} F_{1}\left(1,1 ; \alpha+2 ; \frac{z}{z-1}\right)\right] .
\end{aligned}
$$

Furthermore,

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\rho
$$

where

$$
\rho=\frac{1}{2}\left[{ }_{2} F_{1}\left(1,1 ; 1+\alpha ; \frac{1}{2}\right)-\frac{(1-2 \beta) \alpha}{\alpha+1}{ }_{2} F_{1}\left(1,1 ; \alpha+2 ; \frac{1}{2}\right)\right]
$$

is the best possible.
proof: Since $f(z) \in J_{n}^{\alpha}(\beta)$. Then

$$
\begin{equation*}
\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \frac{D^{n+1} f(z)}{D^{n} f(z)} \prec h(z)=\frac{1+(1-2 \beta) z}{1-z}, n \in N . \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(z)=\frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}} \tag{7}
\end{equation*}
$$

where $p(z)$ is analytic with $p(0)=1$. Taking logarithmic differentiation of both sides of (7), we obtain

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}+\alpha=\frac{D^{n+1} f(z)^{\alpha}}{D^{n} f(z)^{\alpha}} \tag{8}
\end{equation*}
$$

Since the left hand side of (8) is independent of n, we use Lemma 1 and divide through by α, to obtain

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{\alpha p(z)}+1=\frac{D^{n+1} f(z)}{D^{n} f(z)} \tag{9}
\end{equation*}
$$

Using (7), and (9) in (6) gives

$$
p(z)+\frac{z p^{\prime}(z)}{\alpha} \prec h(z)=\frac{1+(1-2 \beta) z}{1-z} .
$$

Then by Lemma 2 with $\eta=0$ and $\gamma=\alpha$, the differential equation

$$
q(z)+\frac{z q(z)^{\prime}}{\alpha}=h(z)=\frac{1+(1-2 \beta) z}{1-z}
$$

has a univalent solution given by

$$
q(z)=\frac{\alpha}{z^{\alpha}} \int_{0}^{z} t^{\alpha-1} \frac{1+(1-2 \beta) t}{1-t} d t .
$$

In addition, $p(z)=\frac{D^{n} f^{\alpha}(z)}{\alpha^{n} z^{\alpha}} \prec q(z) \prec h(z)$.
By a change of variable $t=s z, q(z)$ can be written as

$$
\begin{aligned}
q(z) & =\frac{\alpha}{z^{\alpha}} \int_{0}^{1}(s z)^{\alpha-1} \frac{1+(1-2 \beta) s z}{1-s z} z d s \\
& =\alpha \int_{0}^{1} s^{\alpha-1}[1+(1-2 \beta) s z][1-s z]^{-1} d s \\
& =\alpha \int_{0}^{1} s^{\alpha-1}[1-s z]^{-1} d s+\alpha z[1-2 \beta] \int_{0}^{1} s^{\alpha}[1-s z]^{-1} d s .
\end{aligned}
$$

Using the first property of hypergeometric functions given in Lemma 3 , we can rewrite $q(z)$ as

$$
\begin{aligned}
q(z) & =\alpha \frac{\Gamma(\alpha) \Gamma(1)}{\Gamma(\alpha+1)}{ }_{2} F_{1}(1, \alpha, \alpha+1 ; z) \\
& +\alpha z(1-2 \beta) \frac{\Gamma(\alpha+1) \Gamma(1)}{\Gamma(\alpha+2)}{ }_{2} F_{1}(1, \alpha+1, \alpha+2 ; z)
\end{aligned}
$$

By using $\Gamma(n)=(n-1)$! and the third property of Lemma 3, we have

$$
\begin{aligned}
& q(z)=(1-z)^{-1}\left[{ }_{2} F_{1}\left(1,1 ; \alpha+1 ; \frac{z}{z-1}\right)\right. \\
&\left.+\alpha z \frac{1-2 \beta}{\alpha+1}{ }_{2} F_{1}\left(1,1 ; \alpha+2 ; \frac{z}{z-1}\right)\right]
\end{aligned}
$$

as desired.
To prove the second part of the theorem, we only need to show that

$$
\inf _{|z|<1} \operatorname{Re} q(z)=q(-1), z \in E
$$

The function $\frac{1+(1-2 \beta) z}{1-z}$ is convex univalent in E, therefore for $|z| \leq$ $r<1$

$$
\operatorname{Re} \frac{1+(1-2 \beta) z}{1-z} \geq \frac{1-(1-2 \beta) r}{1+r} .
$$

Setting

$$
q(s, z)=\frac{1+(1-2 \beta) s z}{1-s z}, 0 \leq s \leq 1
$$

$z \in E$ and $d \mu(s)=\alpha s^{\alpha-1} d s$ which is a positive measure on $[0,1]$, we obtain

$$
q(z)=\int_{0}^{1} q(s, z) d \mu(s)
$$

so that

$$
\begin{aligned}
\operatorname{Re} q(z) & =\int_{0}^{1} \operatorname{Re}\left[\frac{1+(1-2 \beta) s z}{1-s z}\right] d \mu(s) \\
& \geq \int_{0}^{1} \frac{1-(1-2 \beta) s r}{1+s r} d \mu(s)
\end{aligned}
$$

If $r \rightarrow 1^{-}$, then we have

$$
\operatorname{Re} q(z) \geq q(-1)
$$

Hence,

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\rho
$$

where

$$
\begin{aligned}
\rho=q(-1)= & \frac{1}{2}\left[{ }_{2} F_{1}\left(1,1 ; 1+\alpha ; \frac{1}{2}\right)\right. \\
& \left.-\frac{(1-2 \beta) \alpha}{\alpha+1}{ }_{2} F_{1}\left(1,1 ; \alpha+2 ; \frac{1}{2}\right)\right] .
\end{aligned}
$$

This ρ is the best possible since $q(z)$ is the the best dominant.
Corollary 1: Let $f(z) \in A$. If

$$
f^{\prime} \prec \frac{1+(1-2 \beta) z}{1-z} \text {, i.e } \operatorname{Re} f^{\prime}(z)>\beta \text {. }
$$

Then

$$
\frac{f(z)}{z} \prec \frac{2(\beta-1) \ln (1-z)}{z}+2 \beta-1
$$

and $q(z)$ is given by

$$
q(z)=\frac{1}{z} \int_{0}^{z} \frac{1+(1-2 \beta) t}{1-t} d t
$$

is the best dominant.
Moreso,

$$
\operatorname{Re} \frac{f(z)}{z} \geq 2(1-\beta) \ln 2+2 \beta-1
$$

Corollary 2: Let $f \in A$ and $\operatorname{Re} f^{\prime}(z)>0$. Then

$$
\operatorname{Re} \frac{f(z)}{z} \geq 2 \ln 2-1
$$

Corollary 3: Let $f \in A$ and

$$
f^{\prime}(z)+z f^{\prime \prime}(z) \prec \frac{1+(1-2 \beta) z}{1-z} \text {, i.e } \operatorname{Re}\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>\beta \text {. }
$$

Then

$$
f^{\prime}(z) \prec q(z)=\frac{(2 \beta-2) \ln (1-z)}{z}+2 \beta-1,
$$

and

$$
\operatorname{Re} f^{\prime}(z) \geq 2(1-\beta) \ln 2+2 \beta-1
$$

4. REMARKS

Remark 1: If $\beta=\frac{1}{2}$ in Theorem 1, then

$$
\rho=\frac{1}{2}\left[F_{1}\left(1,1 ; 1+\alpha ; \frac{1}{2}\right)\right] .
$$

By virtue of equation (4),

$$
\begin{aligned}
{ }_{2} F_{1}\left(1,1 ; 1+\alpha ; \frac{1}{2}\right)=1 & +\frac{1}{2(\alpha+1)}+\frac{1}{2(\alpha+1)(\alpha+2)} \\
& +\frac{3}{4(\alpha+1)(\alpha+2)(\alpha+3)}+\ldots
\end{aligned}
$$

So that

$$
\rho>\frac{1}{2} .
$$

This implies that for each $f \in J_{n}^{\alpha}\left(\frac{1}{2}\right)$,

$$
\operatorname{Re} \frac{D^{n} f(z)^{\alpha}}{\alpha^{n} z^{\alpha}}>\frac{1}{2} .
$$

Remark 2: Corollaries 1 and 2 agree with existing results (see[2]).

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee whose comments improved the original version of this manuscript.

REFERENCES

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical formulas, Graph and Mathematical Tables. Dover Publications, New York. 1971
[2] Babalola, K. O., Opoola T. O. A sharp inclusion theorem for certain class of Analytic function defined by Salagean derivaties. International Journal of Mathematics and Computer Science, 2(4), 371-375, 2007.
[3] Babalola, K. O. and Opoola, T. O. Radius problems for certain classes of analytic functions involving Salagean derivative. Advances in Inequalities for Series, 15-21, 2008.
[4] Eenigenburg, P., Miller, S. S., Mocanu, P. T., Reade, M. O. On Briot- Bouquet Differential subordinations. Rev. Roumanie Math. Pures Appl., 29, 567-573, 1984.
[5] Jimoh, F. M. and Babalola, K. O. Functions defined by products of geometric expressions. Nigerian Journal of Mathematics and Applications, 24, 176-183, 2015.
[6] Miller, S. S. and Mocanu, P. T. Differential subordinations and univalent functions. Michigan Math. J., 28, 157-171, 1981.
[7] Miller, S. S. and Mocanu, P. T. On some classes of first-order differential subordinations. Michigan Math. J., 32, 185-195, 1985.

DEPARTMENT OF PHYSICAL SCIENCES, AL-HIKMAH UNIVERSITY, ILORIN, NIGE-
RIA
E-mail address: folashittu@yahoo.com
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILORIN, ILORIN, NIGERIA
E-mail address: kobalola@gmail.com

[^0]: Received by the editors January 17, 2020; Revised February 18, 2020 ; Accepted: February 19, 2020
 www.nigerianmathematicalsociety.org; Journal available online at https://ojs.ictp. it/jnms/
 ${ }^{1}$ Corresponding author

