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THE EFFECT OF VARIABLE VISCOSITY ON A
REACTIVE HEAT GENERATING FLUID FLOW OVER A
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ABSTRACT. The study examines the effect of variable viscos-
ity on a reactive fluid moving with the strong effect of internal
energy running through a convective surface with the impact of
appreciable thermal radiation. The governing equations guid-
ing the energy heat transfer and the fluid motion are solved by
adopting the series solution of modified decomposition method
named after George Adomian. The amount of entropy formation
across the convective surface and other thermophysical param-
eters affecting the system of the fluid flow are examined and
illustrated.
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1. INTRODUCTION

More researchers have paid renewed interest and attentions to the
flow of reactive fluid because of their formidable operations in tech-
nical and manufacturing procedures as discussed extensively in [1] -
[6]. Also, the problems of variable viscosity property of a fluid and
energy transfer have been of vast interest and issues of discussion
among researchers due to its technological and industrial applica-
tions as in [6] - [14]. Some of the applications of flow over a convec-
tive surface as discussed in [6] can be established in well arranged
chemical reactors, geothermal containers, physical transformation
companies, convertible exhaust schemes to mention a few. Investi-
gations on fluid behaviour cannot be adequately described on the
basis of variable viscosity properties, convective cooling, thermal
radiation, heat source/sink, porosity, among the few properties.
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For instance, investigation showing the significant impact of vari-
able viscosity property in fluid flow is shown in [8] where Poiseuille
- Couette flow of a variable viscosity, incompressible, electrically
and thermally conducting nanofluids amidst two boundless parallel
surfaces under the impact of systematic transverse magnetic range
along with the hall current has been investigated. In addition to
that, [9] examined the flow and heat transfer of an electrically con-
ducting viscoelastic fluid over a continuously spreading sheet where
the fluid thickness and thermal conductivity are simulated to mod-
ify the role of temperature. Furthermore, on the behaviour of fluid
flow and thermal radiation, [10] recently investigated numerically,
the heat and mass transfer in a pressure induced flow of a reactive
third - grade fluid with Reynolds’ viscosity model through a fixed
cylindrical annulus.

Of recent, [7] investigated the consequence of heat source on a
variable viscosity reactive Couette fluid flow where both the heat
source and variable viscosity depend on temperature . Also, [15]
delivered a numerical study of an electrically conducting magne-
tohydrodynamic nonlinear convection flow of micropolar fluid over
a slendering stretching surface such that the significance reveal-
ing the influence of viscous dissipation, Joule heating, non-uniform
heat source or sink, temperature-dependent thermal conductivity
and thermal radiation are deemed. However, a further study in [16]
examined the effect of Arrhenius activation energy on magnetohy-
drodynamic mixed convection stagnation point flow of a micropolar
fluid over a variable thickened surface in the attendance of Brow-
nian motion. Other research studies on fluid viscosity are richly
discussed in [11] - [14], [17] - [25].

However, the effect of thermal radiation is highly significant in
fluid flow and thermal transfer as viscosity of fluid is sensitive to
the temperature variation as extensively discussed in [26]. Recently,
[2] also analysed the thermal transfer of a reactive hydromagnetic
fluid through parallel porous channels with respect to the effect
of internal energy and appreciable thermal radiation with convec-
tive boundary conditions obeying Newton’s law of cooling. Other
investigation showing relevance of thermal radiation on fluid flow
and thermal heat transfer can further be seen in [27] - [30]. Other
properties of fluid flow and heat transfer with convective boundary
conditions are illustrated in [2, 6, 11, 32, 33] and that of fluid flow
within porous materials are mentioned in [1, 6, 24, 26, 33, 34].
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Moreover, the assessment of the impact of thermal radiation on
a reactive non - Newtonian fluid within a channel is remarkably of
high importance in fluid motion and heat transfer as explained in
[6]. The importance is to ensure and predict the protection strategy
of resources and valuables at a period of operation of such fluids
especially in the design of heat exchangers, gas turbines and power
plants as highlighted in [6, 26]. Therefore, the present study is de-
signed to analyze the effect of variable viscosity that is temperature
dependent on a reactive fluid flow within a channel accross a con-
vective surface with the impact of internal energy and appreciable
thermal radiation. To the best of our knowledge, no effort has been
made to examine the effect of appreciable thermal radiation and
variable viscosity on the flow of a reactive heat source fluid over
a convective surface. The governing equations guiding the energy
heat transfer and the fluid motion are solved by applying the se-
ries solution of modified Adomian decomposition method which has
been established extensively in literature [2] - [5], [34] and [35] to
be an effective and efficient way of getting an approximate solution
that converge with few iterations.

2. MATHEMATICAL FORMULATION

Consider an incompressible steady flow of a reactive fluid with in-
ternal heat generation under the effect of appreciable thermal ra-
diation with variable viscosity depending on temperature over a
convective surface. The channel is at a distance 2z apart located at
y = z and y = −z. Also, the temperature dependent viscosity (µ)
and heat source (m) are stated accordingly in Arrhenius kinetics as
mentioned in [3, 13]:

µ = µ0e
E
RT and m = Q0

(
T − T0

)
(1)

where µ0 represents the fluid dynamic viscosity at the instance of
large temperature (i.e. as T −→ ∞), T is the non - dimensionless
fluid temperature, E represents the activation energy, R represents
universal gas constant, T0 stands for the wall temperature, Q0 is
the dimensional heat source. Hence, the differential equations reg-
ulating the flow system in dimensionless forms are stated thus:

− dp

dx
+

d

dy

(
µ
du

dy

)
= 0 (2)

k
d2T

dy2
+ µ

(
du

dy

)2

+QC0Ae
− E
RT0 +Q0

(
T − T0

)
− dqr

dy
= 0 (3)
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subject to the boundary conditions

du

dy
=

dT

dy
= 0 on y = 0 and

u = 0, k
dT

dy
= −h

(
T − T0

)
on y = ± z (4)

where p is the pressure, u is the non - dimensionless fluid motion, k
stands for thermal conductivity, Q represents the heat of reaction
term, C0 stands for initial concentration of the reactant species and
A is the reaction rate constant. In addition, h is the length, z is
the channel half width and qr denotes the radiative heat transfer.

Additionally, the impact of appreciable transfer of thermal heat
in the flow regime as expressed in [2], [27] - [31] with respect to
Rosseland approximation is given as:

qr = − 4σ

3k∗
d4T

dy4 (5)

Here, σ stands for Stefan - Boltzmann constant and k∗ represents
the mean absorption coefficient. The well established notion with
the temperature variation for the fluid flow is broadened in Taylor
series about the free - stream temperature (T∞), by setting aside
the higher order terms as done in [2, 27, 28] gives the following:

T 4 ≡ 4T 3
∞T − 3T 4

∞ (6)

such that
dqr

dy
= −16σT 3

∞
3k∗

d2T

dy2
(7)

With the introduction of equation (7) in equation (3), the energy
equation becomes

k
d2T

dy2
+ µ

(
du

dy

)2

+QC0Ae
− E
RT0 +Q0

(
T − T0

)
+

16σT 3
∞

3k∗
d2T

dy2
= 0

(8)

Moreover, the amount of entropy production in the flow system
controlled with respect to appreciable radiative heat flux and other
effect of viscous dissipation as discussed in [14] is given as:

Sm =
k

T 2
0

[(
dT

dy

)2

+
16σT 3

∞
3kk∗

(
dT

dy

)2
]

+
1

T0

(
du

dy

)2

(9)

However, we introduce the following dimensionless parameters in
equations (2), (4), (8) and (9) to further obtain non - dimensional
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boundary - valued problem.

y =
y

z
, x =

x

z
, u =

u

U
, θ =

E
(
T − T0

)
RT 2

0

, ε =
RT0
E

, Bi =
zh

k
,

Br =
Eµ0U

2

kRT 2
0

, G = − z2

µ0U

dp

dx
, µ =

µ

µ0

e
− E
RT0 , β =

Q0RT
2
0

QAEC0

e
E
RT0 ,

γ =
µ0U

2

QAz2C0

e
E
RT0 , α =

16σT 3
∞

3kk∗
and λ =

QEAz2C0

kRT 2
0

e
− E
RT0 (10)

Hence, the following non - dimensional boundary - valued prob-
lems with the introduction of equation (10) is hereby given as:

d

dy

(
µ
du

dy

)
+G = 0 (11)

d2θ

dy2
+

λ

1 + α

[
e

θ
1+εθ + µγ

(
du

dy

)2

+ βθ

]
= 0 (12)

subject to the boundary conditions

du

dy
=

dθ

dy
= 0 on y = 0 and

u = 0,
dθ

dy
= −Biθ on y = ±1. (13)

Moreso, the rate of entropy production is expressed as follows:

Ns =
SmE2z2

kR2T 2
0

= [1 + α]

(
dθ

dy

)2

+ µ
Br

Ω

[(
du

dy

)2
]

(14)

where µ = e−
θ

1+εθ .
Here, G represents the pressure gradient, u and θ are respectively

for fluid motion and temperature, U denotes the mean velocity,
Bi represents the convective cooling term named after Biot and
Br stands for Brinkman number. Also, ε, γ, α, λ, β and Ω
are parameters representing the activation energy, viscous heating,
thermal radiation, combustion named after Frank - Kamenettski,
heat source and wall temperature.

3. METHOD OF SOLUTION

The solutions to the coupled equations (11) and (12) governing
the fluid flow with the boundary conditions in (13) are secured by
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putting to use the established modified decomposition style formu-
lated by Adomian (mADM) on integrating as follows:

θ(y) = a0 −
λ

1 + α

∫ y

0

∫ y

0

[(
1 + γG2y2

)
e

θ
1+εθ + (βθ)

]
dY dY

(15)

u(y) = b0 −
∫ y

0

[
(Gy) e

θ
1+εθ

]
dY (16)

such that a0 = θ(0) and b0 = u(0) that will be determined by using
the boundary conditions together with the rapid convergence of the
series solution assumed as follows:

u(y) =
∞∑
n=0

un(y) and θ(y) =
∞∑
n=0

θn(y) (17)

such that the governing coupled equations (11) and (12) are repre-
sented as follows:

θ(y) = a0 −
λ

1 + α

∫ y

0

∫ y

0

[((
1 + γG2y2

) ∞∑
n=0

An

)

+

(
β
∞∑
n=0

θn(y)

)]
dY dY (18)

u(y) = b0 −G
∫ y

0

[
y

∞∑
n=0

An

]
dY (19)

such that the non - linear term is represented as

∞∑
n=0

An =
∞∑
n=0

e
θn(y)

1+εθn(y) (20)

whose components A0, A1, A2, . . are known as Adomian poly-
nomials.

Therefore, the couple equations (18) and (19) with respective
zeroth component are simultaneously solved as follows:
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θ0(y) = 0 (21)

u0(y) = b0 (22)

θ1(y) = a0 −
λ

1 + α

∫ y

0

∫ y

0

[(
1 + γG2y2

)
A0 + β θ0

]
dY dY (23)

u1(y) = −G
∫ y

0

[A0 y] dY (24)

θn+1(y) = − λ

1 + α

∫ y

0

∫ y

0

[(
1 + γG2y2

)
An + β θn

]
dY dY (25)

un+1(y) = −G
∫ y

0

[An y] dY for n ≥ 1 (26)

With few iterations using a software package to estimate the
solutions for the coupled equation to obtain:

θ(y) =
k∑

n=0

θn(y) and u(y) =
k∑

n=0

un(y) (27)

Additionally, the rate of entropy generation is obtained by using
the solutions of (27) in (14) and extensively discussed in the next
section with figures together with Bejan number as an alternative
to the irreversibility distribution ratio on domination of thermal
energy with respect to the presence of appreciable radiative flux
and local entropy generation noticeable on both lower and upper
plates.

4. RESULTS AND DISCUSSION

Table 1. Rapid convergence of the series solution for a0 and b0.
ε = β = λ = 0.1, γ = α = 0.5, G = Bi = 1.

n a0 b0
0 0 0
1 0.113889 0.5
2 0.128464 0.0555436
3 0.128984 0.0556997
4 0.128975 0.0556896
5 0.128974 0.0556889
6 0.128974 0.0556889

We discuss in table and figures, the thermodynamic survey of a
variable viscosity reactive hydromagnetic fluid flow with the effect
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of internal heat energy running through a convective surface under
the control of appreciable thermal radiation.

The table 1 illustrates the accelerated convergence of the series
solution for the limitation of constant values of a0 and b0 in equa-
tions (15) and (16) respectively which converge at the 4th iteration.
The convergence confirms the efficiency and accuracy of the series
solution of Adomian decomposition approach.
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{β ϵ  0.1, α γ  0.5, GBi  1}

Fig. 1. Effects of λ on u(y).
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Fig. 2. Effects of γ on u(y).

Figures 1 - 5 respectively display the variations in the parameters
of Frank - Kamenettski (λ), viscous heating (γ), heat source (β),
thermal radiation (α) and convective cooling term (Bi) on the fluid
motion. Generally, the utmost speed of the fluid flow is observed
at the centreline of the passage with increase in fluid motion with
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respect to the increasing values of Frank - Kamenettski parameter
(λ) in figure 1, viscous heating parameter (γ) in figure 2 and heat
source parameter (β) in figure 3. The enhancement of fluid motion
observed in figures 1 - 3 is due to increase in the viscosity associated
with rise in fluid motion. Meanwhile, the reverse is noticed in
figures 4 and 5 where a decrease in fluid motion is observed with
rising values of thermal radiation parameter (α) in figure 4 and
convective cooling term (Bi) in figure 5. The reduction in fluid
motion noticed in figures 4 and 5 is due to heat energy being spread
out from the centreline of the channel to both lower and upper
plates accordingly.
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Fig. 3. Effects of β on u(y).
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Fig. 4. Effects of α on u(y).
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Fig. 5. Effects of Bi on u(y).
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Fig. 6. Effects of λ on θ(y).
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Fig. 7. Effects of γ on θ(y).
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Fig. 8. Effects of β on θ(y).
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Fig. 9. Effects of α on θ(y).
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Fig. 10. Effects of Bi on θ(y).
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The fluid temperature profiles for variations in the parameters of
Frank - Kamenettski (λ), viscous heating (γ), heat source (β), ther-
mal radiation (α) and convective cooling term (Bi) are respectively
illustrated in figures 6 - 10. On a general note, the fluid tempera-
ture occurs at the maximum across the centreline of the flow channel
towards the upper and lower plates. The fluid temperature there-
fore, increases with rising values of Frank - Kamenettski parameter
(λ) in figure 6, viscous heating parameter (γ) in figure 7 and heat
source parameter (β) in figure 8. This is physically true for the
enhancement of fluid temperature due to their natural association
with heat and transfer within the fluid particles. However, at the
same time, the fluid temperature decreases with rising values of
thermal radiation parameter (α) in figure 9 and convective cooling
term (Bi) in figure 10. This is due to the absorption of heat energy
being spread out across the flow channel.
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Fig. 11. Effects of λ on Ns.
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Fig. 12. Effects of β on Ns.

The rate of entropy generation within the flow regime with varia-
tions in Frank - Kamenettski parameter (λ), heat source parameter
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(β), Brinkman number Br, thermal radiation parameter (α), con-
vective cooling term (Bi) and wall temperature parameter (Ω) are
respectively displayed in figures 11 - 16. The minimum irreversibil-
ity transfer occurs at the centreline and increases to the core region
of the channel and rises to the maximum value of the plate surfaces.
The rate of entropy generation increases with respect to rising val-
ues of Frank - Kamenettski parameter (λ) in figure 11, heat source
parameter (β) in figure 12 and Brinkman number Br in figure 13
while the contrary is noticed in the case of thermal radiation pa-
rameter (α) in figure 14, convective cooling term (Bi) in figure 15
and wall temperature parameter (Ω) in figure 16 where the rate of
entropy generation reduces with rising values of thermal radiation
parameter (α), convective cooling term (Bi) and wall temperature
parameter (Ω).
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Fig. 13. Effects of Br on Ns.
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Fig. 14. Effects of α on Ns.

However, in figures 17 - 20, the variations in heat source param-
eter (β), viscous heating parameter (γ), convective cooling term
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Fig. 15. Effects of Bi on Ns.
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Fig. 16. Effects of Ω on Ns.
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Fig. 17. Effects of β on Be.

(Bi) and thermal radiation parameter (α) are respectively illus-
trated against Bejan number. Bejan number increases with respect
to variations in the values of heat source parameter (β) in figure 17
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and viscous heating parameter (γ) in figure 18 while a decrease is
noticed in the variations of convective cooling term (Bi) in figure
19 and thermal radiation parameter (α) in figure 20.
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Fig. 18. Effects of γ on Be.
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Fig. 19. Effects of Bi on Be.
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Fig. 20. Effects of α on Be.
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5. CONCLUSION

The investigation on the thermodynamic survey of a variable vis-
cosity reactive hydromagnetic fluid flow with the influence of heat
source across the flow channel over a convective surface under the
influence of appreciable thermal radiation. The governing equa-
tions guiding the energy heat transfer and the fluid motion are
obtained seeking the series solution of modified Adomian decom-
position method. The results obtained indicate the significance of
all the thermophysical parameters. The revealed results will be of
great attention to lubrication companies in increasing the rate of
productivity of hydromagnetic materials used in engineering sys-
tem.
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