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NUMERICAL APPROXIMATIONS OF FOURTH-ORDER

PDES USING BLOCK UNIFICATION METHOD

M. I. MODEBEI1, R. B. ADENIYI AND S. N, JATOR

ABSTRACT In this paper, a continuous linear multistep
method is derived and used to formulate a block unification
method (BUM), which is applied to solve fourth-order PDEs
with appropriate initial and boundary conditions. Specifically,
the method is used to solve the fourth order PDEs by first con-
verting the PDEs into system of fourth-order ordinary differen-
tial equations (ODEs) via the method of lines, by replacing one
of the variables with a finite difference method. The convergence
properties of the method is discussed and some test problems are
presented to demonstrate the accuracy of the method.
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1. INTRODUCTION

Some physical processes in science and engineering are modeled
as fourth-order partial differential equations (PDEs); such as the
fourth-order time-dependent problem, the Cahn-Hilliard type equa-
tion, Boussinesq equation, the fourth-order KdV equation, the bi-
harmonic problem, and the Kuramoto-Sivashinsky equation. It
turns out that must of these equations cannot be solve analyti-
cally. Hence, numerical methods to solution of Partial differential
equations (PDEs) are of great interest to numerical analyst in re-
cent time, especially higher-order PDEs. This is as a result of
the fact that most physical problems in real life sense occur in
space and time, and are thus modeled as PDEs. Hence, PDEs
with higher-order spatial derivatives, are considered in this paper.
Wide range of numerical methods have been used to solve higher-
order PDEs with Dirichlet and Neumann boundary conditions that
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arise in engineering, physics and mathematics [8]. For example, the
Euler-Bernoulli equation is an approximate equation for a long and
slender beam, whose solution is a transverse displacement of the
beam from an initially horizontal position. This forms a fourth-
order parabolic PDE, and have been solved with the use of Sextic
spline method, [1, 2]. A typical fourth-order parabolic PDE is de-
scribed in [3] as follows:

ytt + yxxxx = G(x, t), (1)

subject to appropriate boundary conditions.
The method of line was used in [3] to solve problems describing

nonlinear wave phenomena, like the fourth-order ”good” Boussi-
nesq equation, Other method used include Quintic B-spline for the
numerical solution of the ”good” Boussinesq equation, B-splines
methods with redefined basis functions for solving fourth-order par-
abolic partial differential equations, just to mention, but few Ref-
erences such [17]-[19] have generally studied parabolic PDEs. The
standard form of the Boussinesq is described as in [14] as follows:

ytt = yxx + qyxxxx + y2xx (2)

subject to appropriate boundary conditions, where q = 1 or −1. In
[18] The ”good” Boussinesq equation is studied numerically using
an iterative implicit finite-difference scheme.
Two new two-level compact implicit variable mesh numerical

methods of order two in time and space, and of order two in time,
and three in space, was developed for the solution of 1D unsteady
quasi-linear biharmonic problem, was discussed in [9], and is of the
form

A(x, t, u, uxx)
∂4u

∂x4
+

∂u

∂t
= f(x, t, u, ux, uxx, uxxx) (3)

where (x, t) ∈ Ω ≡ {(x, t) : a < x < b, t > 0}.
In this work, continuous linear multistep method (CLMM) is

used to develop a block unification method (BUM) which is used
to solve general fourth order linear and nonlinear PDEs with initial
and boundary conditions via the method of line (MOL). The PDE
considered is of the form;

yxxxx = f(x, t, yx, yt, yxx, ytt, yxxx, yttt) (4)

with any of the initial-boundary conditions
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y(x, 0) = φ(x), yt(x, 0) = ϕ(x),
y(η0, t) = g0(t), y(η1, t) = g1(t),
yxx(η0, t) = p0(t), yxx(η1, t) = p1(t),
y(x, 0) = φ(x), yt(x, 0) = ϕ(x),
y(η0, t) = g0(t), y(η1, t) = g1(t),
yx(η0, t) = p0(t), yx(η1, t) = p1(t),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

where y(x, t) is the dependent variables, x and t are variables
such that η0 ≤ x ≤ η1, η1, η2 are finite real numbers, t ≥ 0,
φ(x), ϕ(x), gi(t), pi(t), i = 0, 1 are continuous functions. The
subscript notation denotes partial derivatives, e.g. yt = ∂y/∂t;
yx = ∂y/∂x, and so on.
In order to apply BUM to PDEs, the problem is first converted

into system of ODEs via the method of lines. The method of lines
approach is traditionally used for solving partial differential equa-
tions (PDEs), whereby the PDE is converted into a system of ODEs,
by replacing the appropriate derivatives using finite difference ap-
proximations (see Ramos and Vigo-Aguiar [15], and Brugnano and
Trigiante [16]). Using the approach in [13, 6], we demonstrate how
(1) is converted into a system of ODEs and solved by the BUM.
Thus, for real numbers L1, L2, L3, L4, and solution y(x, t) of (1),
where (x, t) is in the rectangle [L1, L2]× [L3, L4]. The t variable is
discretised with mesh spacing

Δt =
L4 − L3

M
, tm = L3 +mΔt, m = 0, 1, . . . ,M

, and noting that

Δx =
L2 − L1

N
, xn = L1 + nΔx, n = 0, 1, . . . , N

with the vector

y = [y1,1, y1,2, y2,1, . . . , yn−1,m−1]
T

and

G = [G1,1, G1,2, G2,1, . . . , Gn−1,m−1]
T

, where ym ≈ y(x, tm) and Gm ≈ G(x, tm); using the central differ-
ence method yields

ytt(x, tm) ≈ y(x, tm+1)− 2y(x, tm) + y(x, tm−1)

(Δt)2
.
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Then (1) has the following semi-discretized form

dy4m
dx4

= −
(
ym+1 − 2ym + ym−1

(Δt)2

)
+ Gm (6)

which can be written in the form

y(iv) = f(x, y, y′, y′′, y′′′) = Ay + g (7)

subject to the appropriate initial and boundary conditions

where y(j) = (y
(j)
1,1, y

(j)
1,2, y

(j)
2,1, . . . , y

(j)
n−1,m−1)

T , j = 1, 2, 3, A is an M −
1×M − 1, matrix arising from the semi-discretized system (6) and
solved by the BUM. Following the same procedure, we can rewrite
the general form (5) as follows:
A continuous linear multistep method (CLMM) is derived via a

block technique, which is used to formulate continuous block finite
difference methods (CBFDMs), [5], using Chebyshev polynomials
as basis functions. Thus, using multistep interpolation and colloca-
tion, a continuous FDM is derived and an additional k−1 methods
which are assembled and solved simultaneously to obtain approxi-
mations yn,m, for n = 1, . . . , N − 1 to solution the of (4) at points
xn, n = 1, . . . , N − 1, which is applied to solve fourth-order PDEs
using the method of line.

2. DERIVATION OF THE METHODS

The exact solution un,m(x, t) of (6) is approximated by seeking the
continuous solution of the form

p(x) =
k=r+s−1∑

i=0

ρiT
∗
i (x)

∼= u(x) (8)

with the 4th derivative given as

p(iv)(x) =

r+s−1∑
i=4

ρiT
∗(iv)
i (x) ∼= u(iv)(x) (9)

where x ∈ [a, b], ρi’s are constants to be determined. T ∗
i (x) in the

interval [xn, xn+k], i = 0(1)r+ s+1, are shifted Chebyshev polyno-
mials in the interval [0, k]. The parameters r and s are respectively
the number of interpolation points that satisfies 4 ≤ r ≤ μ and the
number of collocation points satisfying 0 < s ≤ μ+1, μ is the order
of the differential equation.
Interpolating (8) at the points xn+i; i = 0, 1, 2, . . . , r− 1 and collo-
cating (9) at the points xn+s; s = 0, 1, 2, . . . , s− 1.
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2.1 Specification of the Method

The method has the following specifications k = 5, r = 4, s =
6, T ∗

n(xn+j) for xn+j ∈ [xn, xn+5]. yield the system noting that

un+i,m 	 u(xn+i, tm) and u
(iv)
n+i,m 	 fn+i,m = f(xn+i, tm, un+i,m, . . . ,

u′′′
n+i,m). The interpolation (8) at the points xn+j j = 0(1)3 and

collocation (9) at the points xn+j j = 0(1)5 yields a system which
after solving, the values of the coefficients ρi, i = 0, 1, . . . 9 are
obtained. These values of are then substituted into (8) and after
some simplification, the approximate polynomial (8) adopts the
continuous form

p(x) =

3∑
i=0

αi(x)un+i,m + h4

5∑
i=0

βi(x)fn+i,m (10)

where the αi’s, and βi’s are continuous coefficients expressed as
functions of ξ and given as:

α0 =
1
48
(3 + 5ξ − 75ξ2 − 125ξ3) , α1 =

5
16
(−1 − ξ + 25ξ2 + 25ξ3)

α2 = − 5
16
(−3 + 7ξ + 35ξ2 + 25ξ3) , α3 =

5
48
(3 + 23ξ + 45ξ2 + 25ξ3)

β0 =
1

185794560
(36729 + 28779ξ − 1049700ξ2 − 695500ξ3 + 3543750ξ4

−708750ξ5 − 6562500ξ6 + 2812500ξ7 + 3515625ξ8 − 1953125ξ9)
β1 =

1
37158912

(−430479− 676299ξ + 10981980ξ2 + 16840300ξ3 − 5906250ξ4

+1968750ξ5 + 10237500ξ6 − 7312500ξ7 − 2109375ξ8 + 1953125ξ9)
β2 =

1
18579456

(−533547− 1478277ξ + 12637020ξ2 + 37650500ξ3 + 17718750ξ4

−17718750ξ5 − 4462500ξ6 + 9562500ξ7 + 703125ξ8 − 1953125ξ9)
β3 =

1
18579456

(30933− 129147ξ − 1474980ξ2 + 2535100ξ3 + 17718750ξ4

+17718750ξ5 − 4462500ξ6 − 9562500ξ7 + 703125ξ8 + 1953125ξ9)
β4 =

1
37158912

(−27279 + 15051ξ + 901980ξ2 − 309100ξ3 − 5906250ξ4

−1968750ξ5 + 10237500ξ6 + 7312500ξ7 − 2109375ξ8 − 1953125ξ9)
β5 =

1
185794560

(20601− 1899ξ − 646500ξ2 + 23500ξ3 + 3543750ξ4

+708750ξ5 − 6562500ξ6 − 2812500ξ7 + 3515625ξ8 + 1953125ξ9)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

where ξ = 1
h

(
2x
5
− 1
)

Evaluating p(x) in (10) at the points x = xn+4,m, xn+5,m, which
implies ξ = 3

5
, 1, the following 5-step discrete LMMs are obtained

un+4,m = 4un+3,m − 6un+2,m + 4un+1,m − un,m + h4
( −1
720

fn,m + 31
180

fn+1,m + 79
120

fn+2,m

+ 31
180

fn+3,m − 1
720

fn+4,m

)
un+5,m = −4un,m + 15un+1,m − 20un+2,m + 10un+3,m + h4

(− 1
180

fn,m + 11
16
fn+1,m + 101

36
fn+2,m

+97
72
fn+3,m + 1

6
fn+4,m − 1

720
fn+5,m

)
⎫⎪⎪⎬
⎪⎪⎭

(12)

From the transformation x = (5hξ+5)
2

, 2
5
dx = hdξ, (11) is differ-

entiated three times respectively and on each differentiation, p′(x),
p′′(x) and p′′′(x) in (10) are evaluated at the points x = xn+i,m,
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i = 0(1)5, which implies ξ = −1,−3
5
,−1

5
, 1
5
, 3
5
, 1, the following 5-

step discrete LMMs are obtained:

hu′
n,m = −11un,m

6
+ 3un+1,m − 3un+2,m

2
+ un+3,m

3
− h4

(− 937
100800

fn,m − 19
105

fn+1,m − 599
10080

fn+2,m

− 1
720

fn+3 +
3

2240
fn+4 − 1

3600
fn+5

)
hu′

n+1,m = −un,m − 1
2
un+1,m + un+2,m − 1

6
un+3,m + h4

(− 1
5400

fn,m + 2809
60480

fn+1,m + 43
1008

fn+2,m

− 229
30240

fn+3,m + 1
432

fn+4,m − 11
33600

fn+5,m

)
hu′

n+2,m = 1
6
un,m − un+1,m + 1

2
un+2,m + 1

3
un+3,m + h4

(
169

302400
fn,m − 311

10080
fn+1,m − 353

6048
fn+2,m

+ 1
135

fn+3,m − 7
2880

fn+4,m + 53
151200

fn+5,m

)
hu′

n+3,m = −1
3
un,m + 3

2
un+1,m − 3un+2,m + 11

6
un+3,m + h4

(− 41
50400

fn,m + 173
2880

fn+1,m + 11
60
fn+2,m

+ 61
10080

fn+3,m + 17
10080

fn+4,m − 11
33600

fn+5,m

)
hu′

n+4,m = −11
6
un,m + 7un+1,m − 19

2
un+2,m + 13

3
un+3,m + h4

(− 671
302400

fn,m + 169
540

fn+1,m + 12821
10080

fn+2,m

+ 7447
15120

fn+3,m + 509
60480

fn+4,m − 1
3600

fn+5,m

)
hu′

n+5,m = −13
3
un,m + 31

2
un+1,m − 19un+2,m + 47

6
un+3,m + h4

(− 31
5400

fn,m + 1663
2240

fn+1,m + 6847
2160

fn+2,m

+60863
30240

fn+3,m + 2473
5040

fn+4,m + 2041
302400

fn+5,m

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

h2u′′
n,m = 2un,m − 5un+1,m + 4un+2,m − un+3,m + h2

(
1411
20160

fn,m + 3091
4320

fn+1,m + 2831
30240

fn+2,m

+ 143
2520

fn+3,m − 1391
60480

fn+4,m + 23
6048

fn+5,m

)
h2u′′

n+1,m = un,m − 2un+1,m + un+2,m + h4
(− 73

30240
fn,m − 1601

20160
fn+1,m + 1

7560
fn+2,m

− 11
4320

fn+3,m + 11
10080

fn+4,m − 11
60480

fn+5,m

)
h2u′′

n+2,m = un+1,m − 2un+2,m + un+3,m + h4
(

11
60480

fn,m − 53
15120

fn+1,m − 773
10080

fn+2,m

− 53
15120

fn+3,m + 11
60480

fn+4,m

)
h2u′′

n+3,m = −un,m + 4un+1,m − 5un+2,m + 2un+3,m + h4
(− 1

720
fn,m + 10427

60480
fn+1,m + 9901

15120
fn+2,m

+ 107
1120

fn+3,m − 37
7560

fn+4,m + 11
60480

fn+5,m

)
h2u′′

n+4,m = −2un,m + 7un+1,m − 8un+2,m + 3un+3,m + h4
(− 179

60480
fn,m + 3469

10080
fn+1,m + 6421

4320
fn+2,m

+3791
3780

fn+3,m + 121
1344

fn+4,m − 23
6048

fn+5,m

)
h2u′′

n+5,m = −3un,m + 10un+1,m − 11un+2,m + 4un+3,m + h4
(− 11

30240
fn,m + 29689

60480
fn+1,m + 499

210
fn+2,m

+58271
30240

fn+3,m + 4561
4320

fn+4,m + 271
4032

fn+5,m

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

h3u′′′
n,m = −un,m + 3un+1,m − 3un+2,m + un+3,m − h3

(
−19151

60480
fn,m − 73967

60480
fn+1,m +

1261

6048
fn+2,m

− 7439

30240
fn+3,m +

5549

60480
fn+4,m − 883

60480
fn+5,m

)

h3u′′′
n+1,m = −un,m + 3un+1,m − 3un+2,m + un+3,m + h4

(
799

60480
fn,m − 14033

60480
fn+1,m − 10453

30240
fn+2,m

+
2683

30240
fn+3,m − 1717

60480
fn+4,m +

251

60480
fn+5,m

)

h3u′′′
n+2,m = −un,m + 3un+1,m − 3un+2,m + un+3,m + h4

(
− 67

12096
fn,m +

12721

60480
fn+1,m +

11009

30240
fn+2,m

− 547

6048
fn+3,m +

1517

60480
fn+4,m − 211

60480
fn+5,m

)

h3u′′′
n+3,m = −un,m + 3un+1,m − 3un+2,m + un+3,m + h4

(
127

60480
fn,m +

1763

12096
fn+1,m +

27851

30240
fn+2,m

+
14107

30240
fn+3,m − 2389

60480
fn+4,m +

251

60480
fn+5,m

)

h3u′′′
n+4,m = −un,m + 3un+1,m − 3un+2,m + un+3,m + h4

(
− 67

12096
fn,m +

12049

60480
fn+1,m +

22433

30240
fn+2,m

+
35569

30240
fn+3,m +

4873

12096
fn+4,m − 883

60480
fn+5,m

)

h3u′′′
n+5,m = −un,m + 3un+1,m − 3un+2,m + un+3,m + h4

(
799

60480
fn,m +

4783

60480
fn+1,m +

6511

6048
fn+2,m

+
18811

30240
fn+3,m +

84299

60480
fn+4,m +

19067

60480
fn+5,m

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

The formulae (13),(14) and (15) are the additional methods and
are considered for n = 0, 5, . . . , N − 5.
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Remark 1: The formulae (12),(13),(14) and (15) together form
the Block Unification Method (BUM) which is used to solve (5)
numerically with the appropriate boundary conditions.

3. ANALYSIS OF THE METHODS

3.1 Order of a Method

The formulae

u(x) =

k1∑
j=0

αj(x)un+j,m + h4

k2∑
j=0

βj(x)fn+j,m (16)

is associated with the linear difference operator L[y(x); h] defined
by

L[u(x); h] ≡hlu(x+ jh, t)−
[

k1∑
j=0

αju(x+ jh, t) + h4
k2∑
j=0

βju
(4)(x+ jh, t)

]

(17)

where k1 = 3, k2 = 5 l = 0(1)3.
Expanding (17) in Taylor series, the following linear combinations
of Ci are obtained

L[u(x); h] = C0u(x) + C1hu
′(x) + C2h

2u′′(x) + · · ·+ Cph
qu(p)(x) +O(hp+1)

(18)

where the constants Ci’s are constants.

Definition 1: The LMM (16) is of order p if C0 = C1 = C2 =
· · · = Cp+3 = 0, and Cp+4 
= 0 in which

L[y(x); h] = Cp+4h
p+4y(p+4)(x) +O(hp+5) (19)

Expanding each of the formulae in (12),(13),(14) and (15), the resid-
ual is the LTE given as;

L[y(x); h] = C10h
10y(10)(x) +O(h(11));with p = 6 (20)

where C0 = C1 = C2 = · · · = C10 = 0, and C9 
= 0, and C10 =
Cp+4. Here p is the order and τn+j = Cp+4, j = 0(1)5 is the error
constant (see [10, 11]). The following table shows the order and
error constants of each formulae in (12),(13),(14) and (15).
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Table 1. Order and error constants

Formulae Cp+4 Formulae Cp+4 Formulae Cp+4

τn+4,m
−1
3024

- - -
τn+5,m

−5
3024

- - -
τ ′n,m

−1
2880

τ ′′n,m
167

50400
τ ′′′n,m

−283
24192

τ ′n+1,m
−163
907200

τ ′′n+1,m
−1
6300

τ ′′′n+1,m
311

120960

τ ′n+2,m
23

113400
τ ′′n+2,m

1
43200

τ ′′′n+2,m
−11
5760

τ ′n+3,m
−13
50400

τ ′′n+3,m
−31

100800
τ ′′′n+3,m

151
120960

τ ′n+4,m
−487
907200

τ ′′n+4,m
−29
25200

τ ′′′n+4,m
−391
120960

τ ′n+5,m
−307
181440

τ ′′n+5,m
251

151200
τ ′′′n+5,m

89
8064

where the formulae τ
(r)
n+j,m, represent each LMM u

(r)
n+j,m, r =

0, . . . , 3; j = 0, . . . , 5. From (20), it follows that for all the formu-
lae, the order p = 6

3.2 Convergence Analysis

To establish the convergence, the method can be put in the block
form

GY − h4HF (Y ) + C + τ(h) = 0 (21)

where G is a 4N × 4N matrix defined by

G =

⎡
⎢⎣

G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

⎤
⎥⎦

and the entries of G are N ×N matrices given as

G11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 3/2 −1/3 0 0 0 0 0 · · · 0
5 −4 1 0 0 0 0 0 · · · 0
−3 3 −1 0 0 0 0 0 · · · 0
−4 6 −4 1 0 0 0 0 · · · 0
−15 20 −10 0 1 0 0 0 · · · 0
0 0 0 11/6 −3 3/2 −1/3 0 · · · 0
0 0 0 −2 5 −4 1 0 · · · 0
0 0 0 1 −3 3 −1 0 · · · 0
0 0 0 1 −4 6 −4 1 · · · 0
0 0 0 −15 20 −10 0 1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 11/6 −3 3/2 −1/3 0
0 0 0 · · · 0 −2 5 −4 1 0
0 0 0 · · · 0 1 −3 3 −1 0
0 0 0 · · · 0 1 −4 6 −4 1
0 0 0 · · · 0 −15 20 −10 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



NUMERICAL APPROXIMATIONS OF FOURTH-ORDER PDE . . . 55

G11 is the matrix of repeated coefficients of un+i,m, for i = 1(1)5,
in (12) and (13). G21 is the matrix of repeated coefficients of
hu′

n+i,m, for i = 1(1)5, in (13). G31 is the matrix of repeated
coefficients of h2u′′

n+i,m, for i = 1(1)5, in (14) and G41 is the matrix

of repeated coefficients of h3u′′′
n+i,m, for i = 1(1)5, in (15).

G22 = G33 = G44 = I, where I is an N × N identity matrix,
Gij = 0, are zero matrices for i = 1(1)4, j = 2(1)4, i < j.
Similarly, let H be a 4N × 4N matrix defined by

H =

⎡
⎢⎣

H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

⎤
⎥⎦

and the entries of B are N ×N matrices given as

H11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

19
105

599
10080

1
720

−3
2240

1
3600

0 0 0 · · · 0
3091
4320

2831
30240

143
2520

−1391
60450

23
6048

0 0 0 · · · 0
73967
60450

−1261
6048

7439
30240

−5549
60480

883
60480

0 0 0 · · · 0
31
180

79
120

31
180

−1
720

0 0 0 0 · · · 0
11
16

101
36

97
72

1
6

−1
720

0 0 0 · · · 0

0 0 0 937
100800

19
105

· · · 1
3600

0 · · · 0

0 0 0 1411
20160

3091
4320

· · · 23
6048

0 · · · 0

0 0 0 19151
60450

73967
60450

· · · 883
60480

0 · · · 0

0 0 0 −1
720

31
180

· · · 0 0 · · · 0

0 0 0 −1
180

11
16

· · · −1
720

0 · · · 0
...

...
...

. . .
. . .

. . .
. . .

...

0 0 0 0 · · · 0 937
100800

19
105

· · · 1
3600

0 0 0 0 · · · 0 1411
20160

3091
4320

· · · 23
6048

0 0 0 0 · · · 0 19151
60450

73967
60450

· · · 883
60480

0 0 0 0 · · · 0 −1
720

31
180

· · · 0

0 0 0 0 · · · 0 −1
180

11
16

· · · −1
720

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H11 is the matrix of repeated coefficients of fn+i,m, for i = 0(1)5,
in (12) and (13). H21 is the matrix of repeated coefficients of fn+i,m,
i = 0(1)5, for all hu′

n+i in (13). H31 is the matrix of repeated
coefficients of fn+i,m, i = 0(1)5, for all h2u′′

n+i,m, in (14) and H41

is the matrix of repeated coefficients of fn+i,m, i = 0(1)5, for all
h3u′′′

n+i,m (15).
Hij = 0N×N , i = 1(1)4, j = 2(1)4, i < j.

U = (um(x1), . . . , um(xN), hu
′
m(x1), . . . , hu

′
m(xN), h

2u′′
m(x1),

. . . , h2u′′
m(xN), h

3u′′′
m(x1), h

3u′′′
m(xN))

T

F (U) = (f1,m, . . . , fN,M)T
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C = (−hu′
0,m,−11u0,m

6
, 0 . . . , 0,−h2u′′

0,m, 2u0,m, 0, . . . , 0,−h3u′′′
0,m,

u0,m, u0,m,−u0,m,
1
6
u0,m,−1

3
u0,m,

11
6
u0,m, u0,m,

−u0,m, u0,m,−u0,m,−u0,m,−u0,m, u0,m, 0 . . . , 0)
T

τ(h) = (τ1,m . . . , τN,M , hτ ′1,m . . . , hτ ′N,M , h2τ ′′1,m . . . , h2τ ′′N,M ,

h3τ ′′′1,m . . . , h3τ ′′′N,M)T

where τ(h) is the local truncation error. We also define E as

E = U − U = (e1,m, . . . , eN,M , he′1,m, . . . , he
′
N,M , h2e′′1,m,

. . . , h2e′′N,M , h3e′′′1,m, . . . , h
3e′′′N,M)T

where

U = (u1,m, . . . , uN,M , hu′
1,m, . . . , hu

′
N,M , h2u′′

1,m, . . . , h
2u′′

N,M ,

h3u′′′
1,m, . . . h

3u′′′
N,M)T

Theorem 1: [4]. Let U be an approximation of the solution vector
U for the system obtained on a partition πN = {a = x0 < x1 <

x2 < · · · < xN−1 < xN = b}, and E = U − U . Define hre
(r)
i =

|hru(r)(xi) − hru
(r)
i | for r = 0(1)3, i = 1, . . . , N . Then the block

method (21) is a sixth-order convergent method. That is ||E||∞ =
O(h6).
The proof follows from [4]. Let the exact form of the system

be given as in (21) formed from (12),(13),(14) and (15), while the
approximate form is defined by the block

GÛ − h4H f(Û) + C = 0 (22)

subtracting (21) from (22), gives

G(Û − U)− h4H(f(Û − f(U)) = τ(h) (23)

Using e = Û − U , we can write (23) as

G e− h4H(f(Û)− f(U)) = τ(h) (24)

Using Jacobian matrix, we can approximate

f(Û) = f(U) + Jf (U)(Û − U) + o||Û − U || (25)
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where Jf as the approximate value f(U )−f(U)

U−U
= Jf(U). Without

lost of generality, the first derivative term can be used so that

f(U)− f(U) = Jf(U)(U − U) = Jf(U) e = Jf e (26)

where

Jf =

⎛
⎝ J11 · · · J14

...
...

J41 · · · J44

⎞
⎠

whose entries Jij are N ×N matrices written as

J11 =

⎛
⎜⎜⎝

∂f1,m
∂u1,m

· · · ∂f1,m
∂uN,M

...
...

∂fN,M

∂u1,m
· · · ∂fN,M

∂uN,M

⎞
⎟⎟⎠

;

J1,j+1 =

⎛
⎜⎜⎜⎝

∂f1,m

∂u
(j)
1,m

· · · ∂f1,m

∂u
(j)
N,M

...
...

∂fN,M

∂u
(j)
1,m

· · · ∂fN,M

∂u
(j)
N,M

⎞
⎟⎟⎟⎠ for j = 1, 2, 3

Ji,j+1 = hi

⎛
⎜⎜⎜⎜⎝

∂f
(i)
1,m

∂u
(j)
1,m

· · · ∂f
(i)
1,m

∂u
(j)
N,M

...
...

∂f
(i)
N,M

∂y
(j)
1,m

· · · ∂f
(i)
N,M

∂u
(j)
N,M

⎞
⎟⎟⎟⎟⎠ ; forj = 0, . . . , 3, i = 2, . . . , 4

Substituting (26) in (24), we get

G e− h4HJf e = τ(h) (27)

(G− h4H(Jf))e = τ(h)

Now, consider the matrix

ν = G− h4H Jf (28)

we claim that ν is invertible for sufficiently small h. First, we claim
that G is invertible. To see this, since Gii = I, for i = 3, 4 and
Gij = 0 for i = 1, 2, 3, 4; j = 3, 4; i 
= j, we thus write P as

A =

⎡
⎢⎢⎣
G11 0 0 0
G21 G22 0 0
G31 0 G33 0
G41 0 0 G44

⎤
⎥⎥⎦ (29)
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Observe that G11 contains nonzero diagonal submatrices which are
identical, so its determinant exists, hence its non singular. This is
true for G21, G31 and G41. Note also that Gii, i = 2, 3, 4 are identity
matrices. Therefore G has nonzero for all diagonal elements. It is
known that a matrix with nonzero main diagonal is invertible.

Thus, G is a matrix with nonzero diagonal, and so G−1 exists.
Now, (28) can be written as

|ν| = |G− h4H Jf | = |G||I − C| (30)

where C = h4H JfG
−1, then |λI − C| = 0 is a characteristic

polynomial of C, so that

|λI − C| = (λ− λ1) · · · (λ− λ4N )

where λi are eigenvalues of the matrix C. When λ = 1, we have

|I − C| = (1− λ1) · · · (1− λ4N)

for |I − C| 
= 0, then each λi 
= 0. If λ̂i is an eigenvalue of C, so
is h4λi, thus we need h4λi 
= 1. So we choose h such that h4 
∈{

1

λ̂i

∣∣λ̂i are nonzero eigenvector of HJFG
−1
}
For such h, |I −C| 
=

0, so that

|ν| = |G||I − h4H Jf | 
= 0 (31)

Hence ν is invertible. Then

ν e = τ(h)

e = ν−1τ(h)

||e|| = ||ν−1τ(h)||
≤ ||ν−1||||τ(h)||
≤ O(h−4)O(h10)

≤ O(h6)

This shows that the Method (21) is 6th order convergent.

3.3 Computational procedure

Assume the following boundary conditions are known (2)

u0 = α00, uN = α0N , u′
0 = α10, u′

N = β1N
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the vector of unknowns u is given by

u =
(
u1, . . . , uN−1, u

′
1, . . . , u

′
N−1,

u′′
0, . . . , u

′′
N , u

′′′
0 , . . . , u

′′′
N)

T
.

This makes a total of (N−1)+(N−1)+(N+1)+(N+1) = 4N
unknowns.
On the other hand, we have two formulae in (12) which for n =

0(5)N−5 make a total of 2N/5 formulas. Also there are six formulae
in (13) and taking n = 0(5)N −5 gives 6N/5 formulae. In (14) and
(15) similarly there are 6N/5 each. Therefore, the total number of
equations becomes 2N/5 + 6N/5 + 6N/5 + 6N/5 = 4N .
Hence we have a system with 4N equations and 4N unknowns,

whose solution provides a set of approximate values of the BVP in
(7). Now, the formulae (12), (13), (14) and (15) in the form (7)
to form a block and solved simultaneously using codes written in
Mathematica, enhanced by the feature NSolve[] for linear prob-
lems while nonlinear problems were solved by Newton’s method
enhanced by the feature FindRoot[] , as shown in the algorithm
below.

Algorithm 1 Block Algorithm for BUM

1 begin procedure ENTER Partitions a, b (integration inter-
val), N (number of steps), ua, u

′
a, ub, u

′
b (assumed boundary val-

ues), f
2 sol, discrete approximate solution of the BVP (12)-(15) in the
form (7)
3 Let n = 0, 5, N − 5, xn = a, h = b−a

N
4 Let sol={(xn, un)}.
5 Generate block system
6 Set timing and solve [System, variables] to get
un+j, u

′
n+j, u

′′
n+j, u

′′′
n+j, j = 1(1)N − 5 and CPU time in

seconds (s) for obtaining roots,
7 Let sol = {(xn+i, un+i)}i=1(1)N−5.
8 end procedure
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4. NUMERICAL EXAMPLES

In this section, some numerical examples are presented and error
comparisons are made between the method derived above and those
in existing literatures. The code used was based on Newton method
which uses the feature FindRoot or NSolve for linear problems in
Mathematica. In all examples, a uniform step-size was used and the
maximum absolute errors were computed as max|(yij − y(xi, tj))|,
0 ≤ i ≤ M , 0 ≤ j ≤ N . where yij is the numerical approximation
of the exact solution y(xi, tj) at the mesh point (xi, tj).

Problem 1. Consider the linear fourth-order parabolic equation
with constant coefficient discussed in [2]

ytt + yxxxx = (π4 − 1) sin πx cos t, 0 ≤ x ≤ 1, t ≥ 0

subject to the initial conditions

y(x, 0) = sin πx, yt(x, 0) = 0

and with appropriate boundary conditions

y(0, t) = y(1, t) = yxx(0, t) = yxx(1, t) = 0

with the exact solution y(x, t) = sin πx cos t

Here, the problem on semi-discretizing the time variable, becomes

ym+1 − 2ym + ym−1

(Δt)2
+

d4ym
dx4

= gm, 0 ≤ x ≤ 1, m = 1, . . .M − 1

(32)

where Δt = (L4 − L3)/M , tm = L3 + mΔt, m = 0, 1, . . . ,M ,
y = [y1(x), . . . , yM(x)]T , ym(x) ≈ y(x, tm), g = [g1(x), . . . , gm(x)]

T

and gm(x) ≈ g(x, tm) = (π4− 1) sinπx cos tm, which is expressed in
the form

y(4) = f(x, y, y′, y′′, y′′′) = Ay + g (33)

A is an (M − 1)× (M − 1) matrix arising from the discretized sys-
tem, and g is a vector of constants.
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Table 2. Problem 1. Maximum error with h = 0.05

Method k x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
BUM 10 4.88E-10 8.56E-10 1.28E-9 1.39E-9 1.58E-9

16 8.28E-10 1.50E-9 2.17E-9 2.43E-9 2.48E-9
Spline [2] 10 2.91E-6 1.73E-6 1.60E-6 2.23E-6 2.60E-7

16 4.47E-7 2.66E-7 1.37E-7 1.55E-7 1.57E-7

Table 2 shows the maximum errors for the BUM compared to
Spline method in [2]. For the BUM, the CPU time in seconds
for k = 10 is 0.71, and for k = 16 is 0.98. Clearly the proposed
method performed better and accurately when compared to the
exact solution. The graphical representation of the solutions are
shown in Figure .

Figure 1. Graphical representation for (32) showing
surface plots for the error (e), where e = |yn,m−y(xn, tm)|

Problem 2. Consider the following homogenous fourth-order par-
abolic equation:

120xytt + (120 + x5)yxxxx = 0,
1

2
≤ x ≤ 1, t ≥ 0

subject to the initial conditions

y(x, 0) = 0, yt(x, 0) = 1 +
x5

120

and with appropriate boundary conditions

y(1
2
, t) = 3841

3840
sin t, y(1, t) = 121

120
sin t,

yxx(
1
2
, t) = 1

48
sin t, yxx(

1
2
, t) = 1

6
sin t

}

The exact solution for this problem is y(x, t) =
(
1 + x5

120

)
sin t.
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Upon semi-discretization of the time variable, we have

ym+1 − 2ym + ym−1

(Δt)2
+

(120 + x5)

120x

d4ym
dx4

= gm,
1

2
≤ x ≤ 1, m = 1, . . .M − 1

(34)

where Δt, tm, m = 0, 1, . . . ,M , y, ym(x) ≈ y(x, tm), g and gm are
as expressed in Problem 1, which is put in the form

y(4) = f(x, y, y′, y′′, y′′′) = Ay + g (35)

A is as expressed in problem 1 and gm = 0.

The graphical representation of the solutions are shown in Figure
.

Figure 2. Graphical representation for (34) showing
surface plots for the numerical solution using BUM, the
analytic solution and the error (e), where e = |yn,m −
y(xn, tm)|

Problem 3. Consider the following homogenous fourth-order par-
abolic equation:

ytt = yxxxx = 0, 0 ≤ x ≤ 1, t ≥ 0

subject to the initial conditions

y(x, 0) = sin πx, yt(x, 0) = −π2 sin πx

and with appropriate boundary conditions

y(0, t) = 0, y(1, t) = 0,
yxx(0, t) = 0, yxx(1, t) = 0

}

The exact solution for this problem is y(x, t) = e−π2t sin πx.

Upon semi-discretization of the time variable, we obtain,

ym+1 − 2ym + ym−1

(Δt)2
− d4ym

dx4
= gm, 0 ≤ x ≤ 1, m = 1, . . .M − 1

(36)
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where Δt, tm, m = 0, 1, . . . ,M , y, ym(x) ≈ y(x, tm), g and gm are
as expressed in example 1, which is expressed in the form

y(4) = f(x, y, y′, y′′, y′′′) = Ay + g (37)

A is as expressed in problem 1 and gm = 0.

The graphical representation of the solutions are shown in Figure
.

Figure 3. Graphical representation for (40) showing
surface plots for the numerical solution using BUM, the
analytic solution and the error (e), where e = |yn,m −
y(xn, tm)|

Problem 4. Consider the following nonhomogenous fourth-order
parabolic equation:

ytt + (1 + x)yxxxx =

(
x3 + x4 − 6

7!
x7

)
cos t,

1

2
≤ x ≤ 1, t ≥ 0

subject to the initial conditions

y(x, 0) =
6

7!
x7, yt(x, 0) = 0

and with appropriate boundary conditions

y(0, t) = 0, y(1, t) = 6
7!
cos t,

yxx(0, t) = 0, yxx(1, t) =
1
20
cos t

}
The exact solution for this problem is y(x, t) = 6

7!
x7 cos t. Here, the

problem has the semi-discretized form

ym+1 − 2ym + ym−1

(Δt)2
+ (1 + x)

d4ym
dx4

= gm, 0 ≤ x ≤ 1, m = 1, . . .M − 1

(38)

where Δt, tm, m = 0, 1, . . . ,M , y, ym(x) ≈ y(x, tm), g and gm are
as expressed in example 1, gm =

(
x3 + x4 − 6

7!
x7
)
cos tm, which is

expressed in the form

y(iv) = f(x, y, y′, y′′, y′′′) = Ay + g (39)
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A is as expressed in Problem 1.

Table 3. Problem 4. Maximum error with h = 0.05

Method k x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5
BUM 10 0 7.21E-14 1.23E-13 1.22E-13 4.61 E-14

16 0 4.40E-13 2.35E-13 4.34E-14 9.57E-14
Spline [2] 10 7.19E-10 2.26E-10 7.32E-10 6.91E-10 7.31E-10

16 6.25E-10 2.22E-10 4.53E-10 4.41E-10 5.03E-10

Table 4 shows the maximum errors for k = 10, 16 and at t =
0.1(0.1)0.5 for the BUM compared to Spline method in [2]. For the
BUM, the CPU time in seconds for k = 10 is 0.75, and for k =
16 is 1.02. Evidently, the proposed method performed better and
accurately when compared to the exact solution and the method in
[2]. Figure shows the graphical representation of the solutions and
error.

Figure 4. Graphical representation for (38) showing
surface plots for the numerical solution using BUM, the
analytic solution and the error (e), where e = |yn,m −
y(xn, tm)|

Problem 5. Consider the ”good” Boussinesq equation:

ytt = yxx + y2xx − yxxxx, 0 ≤ x ≤ 1, t ≥ 0

with appropriate boundary conditions

y(0, t) = 0, y(1, t) = 0,
yxx(0, t) = 0, yxx(1, t) = 0, t > 0

}
The exact solution for this problem is

y(x, t) = −A sec h2

(√
A

6
(x− ct+ v0)

)
−
(
b+

1

2

)
.
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Here c is the velocity, A is amplitude of the pulse, b is an arbitrary
parameter and v0 is the initial position. Using the same theoretical
parameters as in [8]: A = 0.369, b = −1/2 and c = 0.868.
Here, semi-discretizing the time variable becomes

ym+1 − 2ym + ym−1

(Δt)2
− d2ym

dx2
− d2y2m

dx2
+

d4ym
dx4

= gm, 0 ≤ x ≤ 1, m = 1, . . .M − 1

(40)

where Δt, tm, m = 0, 1, . . . ,M , y, ym(x) ≈ y(x, tm), g and gm are
as expressed in example 1, which is expressed in the form

y(4) = f(x, y, y′, y′′, y′′′) = Ay + g (41)

A is as expressed in problem 1 and gm = 0.

Table 4. Problem 5. Maximum absolute error

Time Parameter BUM CPU (s.) Method in [8] Method in [12]
t = 0.5 h = 1

40 1.7274(-10) 0.61 7.8998(-07) 8.2943(-07)
t = 1.0 h = 1

60 1.7531(-12) 1.92 7.5071(-09) 7.3326(-09)
t = 1.5 h = 1

80 2.2691(-14) 2.21 5.7588(-11) 5.7588(-11)
t = 2.0 h = 1

100 1.6471(-16) 3.51 2.9068(-13) 2.9068(-13)

Table 4 shows the maximum errors for h and t for the BUM
and the methods in [8] and [12]. The parameter h = 1

2j
, j =

20, 30, 40, 50 is computed for v0 = 30, 40, 50, 60 respectively. The
proposed method shows a good performance for such problem as
compared to the other methods. The graphical representation of
the solutions are shown in Figure .

Figure 5. Graphical representation for (40) showing
surface plots for the numerical solution using BUM, the
analytic solution and the error (e), where e = |yn,m −
y(xn, tm)|

Verifying the numerical convergence rate, we determine the order
p of the derived block method. To see this, the step-size h is halved



66 M. I. MODEBEI, R. B. ADENIYI AND S. N, JATOR

and thus the ratios of the maximum errors Error = uh
i −u(xi) and

|uh/2
i − u(xi)| are estimated as

uh
i − u(xi)

u
h/2
i − u(xi)

=
Chp +O(hp+4)

C(h/2)p +O((h/2)p+4)
= 2p +O(h) (42)

so that

log2

∣∣∣∣∣ u
h
i − u(xi)

u
h/2
i − u(xi)

∣∣∣∣∣ = p+O(h) (43)

where C is a number depending on the exact solution u(xi). Table
5 shows the rate of convergence using problem 1.

Table 5. Rate of convergence (ROC)

N Error ROC
4 5.464× 10−8

8 7.432× 10−10 6.2
16 1.083× 10−11 6.1
32 1.814× 10−13 5.9
64 2.3.3× 10−15 6.3
128 3.549× 10−17 6.0

The column with the ROC in Table 5 agrees with the theoretical
order p of the derived scheme.

5. CONCLUSION

A block unification method based on the continuous linear mul-
tistep methods is proposed and applied via the method of lines
technique to solve fourth order PDEs. It is shown that the method
is very flexible, easy to derive using computer programs written in
Mathematica 11.0 and less ambiguouswithout any subroutine files.
The derived scheme can be applied to solve diverse kinds of para-
bolic PDEs with either Neumann or Dirichlet boundary conditions
as seen in the examples presented. The method shows a very high
accuracy when compared to the exact solution and with existing
methods.
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