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MODIFIED SPLITTING AND COMPOSITION

METHODS BY PHASE-FITTING FOR SIMULATING

BIOLOGICAL OSCILLATORS
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ABSTRACT. A class of modified splitting and composition
methods using the phase-fitting properties of the harmonic os-
cillators are adapted to the numerical simulation of some biolog-
ical oscillators. The new phase-fitted splitting and composition
methods are furnished with a fitting parameter ω. In this paper,
we present phase-fitted Lie-Trotter and Strang splitting methods
and a phase-fitted triple Jump composition method which are
generalization of their prototype methods. The result of the ex-
periments on some biological oscillators show the effectiveness
and competence of the modified methods over the prototype
methods.

Keywords and phrases: splitting and composition methods,
phase-fitting, oscillatory, genetic regulatory systems, biological os-
cillators.
2010 Mathematical Subject Classification: 65L05, 65L06

1. Introduction

Synchronization activities in large population of interacting com-
ponents are imminent in Science and are studied as physical, bi-
ological and chemical systems. In Biology, periodic fluctuations
are found at all levels of life either as a result of gene expression,
predator-prey interactions or degradation of the circadian clocks in
mammals, to mention a few. This interactions are purely dynamic
systems which gives rise to sustained rhythms and the biophysi-
cal oscillating networks of the interacting species are described by
coupled biological oscillator, which are studied with the numerical
modelling for qualitative analysis of the dynamical system, for more
example see literatures [6], [7], [8], [13], [15], [21].
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In most cases, biological oscillators are described mathematically
in form of systems of Ordinary Differential Equations (ODE) (see
[5], [6], [7], [8], [3]). To simulate and perform the qualitative anal-
ysis of these systems, biologist employ the standard Runge-Kutta
(RK) methods available in the MATLAB scientific computation
suites. Due to the fact that accuracy is of importance for biological
oscillators, standard integration methods require a very high com-
putational efforts and in most cases do not preserve the oscillatory
structure of the biological processes, this motivates the construc-
tion of special splitting methods with phase-fitting property, see
([4], [17], [19], [24]).

Splitting and composition approach have been identified with the
numerical solution of Hamiltonian systems and Partial Differential
Equations whose vector fields are separable in a manner of exactly
solvable parts (see [1, 2, 12]). Recently, the splitting methods have
been used in the effective simulation of Genetic Regulatory Net-
works (GRN), You et. al. [25] simulated some GRNs and obtained
some very good results. The purpose of this paper is to furnish
the standard splitting and composition methods with phase-fitting
property, such that if a good approximation of the dominant fre-
quency is known in advance, a phase-fitted splitting and composi-
tion methods with zero phase-lag are available.

The rest of the article is organized as follows: some standard split-
ting methods are presented and techniques for modifying the pro-
totype splitting methods are discussed in section 2. In section (4),
some classical biological oscillators are tested with the modified
methods derived in section 2. Finally, we give some concluding
remarks based on the numerical results in section 5.

2. Splitting methods for Biological Oscillators

Consider the initial value problem (IVP) of the autonomous system
of ordinary differential equations

ẏ = f(y), t > 0, (1)

where y : [0,+∞) → R
d, ”ẏ” represents the first derivatives of y

with respect to time, and f : R
d → R

d is a sufficiently smooth
function. Given the experimental observation of many biological
oscillators, we make the following assumptions: (i) The system (1)
has a stable limit cycle Γ0; (ii) The function f(y) satisfies f(y∗) = 0,
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that is, y∗ is an equilibrium point of the system (1); and (iii) The
equilibrium point y∗ lies inside the limit cycle Γ0 and there is no
other equilibrium point inside Γ0. Therefore, it follows that any
solution near the limit cycle is oscillatory.

The basic idea of splitting methods for time integration of the sys-
tem (1) is that, suppose we can split f in (1), in such a way that
the equation has a split structure

y′ = f [1](y) + f [2](y). (2)

Assuming that both systems y′ = f [1](y) and y′ = f [2](y) can be

integrated exactly (numerically) with solutions y(x) = φ
[1]
h (x0) and

y(x) = φ
[2]
h (x0), respectively at x = h, the time step, we define the

following standard splitting or composition method in the following
subsection.

2.1. Some standard splitting and composition methods.

Definition 2.1. The Lie-Trotter method (LT) defined by

Ψ
[LT ]
h = φ

[2]
h ◦ φ[1]

h

= φ
[1]
h ◦ φ[2]

h

(3)

is the simplest splitting method for system (1), based on (2) and it
is of order 1.

Definition 2.2. The Strang splitting method defined by

Ψ
[ST ]
h = φ

[1]
h/2 ◦ φ[2]

h ◦ φ[1]
h/2 (4)

is a symmetric splitting method for system (1), based on (2) and it
is of order 2.

Definition 2.3. The general s-stage splitting method for (1) based
on the splitting of vector field (2) is defined by

Ψh = φ
[1]
as+1h

◦ φ[2]
bsh

◦ φ[1]
ash

◦ . . . ◦ φ[2]
b2h

◦ φ[1]
a2h

◦ φ[2]
b1h

◦ φ[1]
a1h

, (5)

where a1, b1, . . . , as, bs, as+1 are positive constants satisfying some
appropriate conditions.

Definition 2.4. The Triple Jump (TJ) composition method defined
by

Ψ
[TJ ]
h = ΨST

γ3h
◦ΨST

γ2h
◦ΨST

γ1h
(6)
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where γ1 = γ3 =
1

2−2
1
3
and γ3 = − 2

1
3

2−2
1
3
is a symmetric composition

method for system (1), based on the Strang splitting method (4) and
it is of order 4.

For a detailed study of the theory of splitting and composition
methods, see literatures [12], [18], [12], [1].

2.2. Phase-fitted property for separable systems. In this sub-
section, we introduce a modified version of (5) given by

Ψh = φ
[1]
as+1(ν)h

◦φ[2]
bs(ν)h

◦φ[1]
as(ν)h

◦ . . .◦φ[2]
b2(ν)h

◦φ[1]
a2(ν)h

◦φ[2]
b1(ν)h

◦φ[1]
a1(ν)h

,

(7)
where a1(ν), b1(ν), . . . , as(ν), bs(ν), as+1(ν) are functions of ν = ωh
satisfying some appropriate order conditions.

In what follows, we consider the scalar autonomous initial value
problem of the form

ẏ = iωy, ω > 0, (8)

with the solution y(t) = Ceiωt. The system (8) can be further
reduced to a partitioned system of the form⎧⎨

⎩
q̇ = ωp,

ṗ = −ωq.
(9)

with the exact flow ϕt given by(
q(tn + h)

p(tn + h)

)
= R0(ν)

(
q(tn)

p(tn)

)
, (10)

where

R0(ν) =

(
cos ν sin ν

− sin ν cos ν

)
, ν = hω. (11)

For the exact flow, the phase-fitting quantities of (10) are

Pa(ν) := arccos
tr(R0(ν))

2
√

det(R0(ν))
= ν, Da(ν) :=

√
det(M(ν)) = 1.

(12)
To derive the phase-fitted splitting or composition methods which
share the same phase-fitting properties as the exact flow (10), it
necessary to split (8) in the form

y′ = f [1](y) + f [2](y) (13)
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such that

f [1] =

(
ωp

0

)
, f [2] =

(
0

−ωq

)
.

Obtaining the exact flows ϕ
[1]
t and ϕ

[2]
t and applying a specific split-

ting or composition method yields(
qn+1

pn+1

)
= R(ν)

(
qn

pn

)
. (14)

Definition 2.5 (Wu. et al. [23]). The quantities

P (ν) := ν − arccos
tr(R(ν))

2
√
det(R(ν))

D(ν) := 1−
√

det(R(ν))

(15)
are called the dispersion (or phase lag) and the dissipation (or am-
plification factor error) of the splitting or composition method, re-
spectively.

Definition 2.6. The Phase-lag order is p if

P (ν) = Cp+1(ν)ν
p+1 +O(νp+3),

and the dissipation order is q if

D(ν) = Cd+1(ν)ν
p+1 +O(νp+3).

The method is called zero-dispersive (phase-fitted) or zero-dissipative
if P (ν) = 0 and Q(ν) = 0, respectively.

Theorem 2.1. The Lie-Trotter (LT) splitting method is dispersive
of order 3.

Proof:

RLT (ν) =

(
1 ν

−ν 1− ν2

)
. (16)

Therefore

PLT (ν) = ν − arccos
(
1− ν2

2

)
= −ν4

24
+O(ν5).

(17)
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Theorem 2.2. The Strang (ST) splitting method is dispersive of
order 3.

Proof:

RST (ν) =

⎛
⎝ 1− ν2

2
ν(1− ν3

4
)

−ν 1− ν2

2

⎞
⎠ . (18)

Therefore

P ST (ν) = −ν4

24
+O(ν5). (19)

Theorem 2.3 (Zhang et al. [26]). For the method (7) with
s+1∑
i=1

ai =

1, the first to fourth order conditions are given as follows:

• Order one requires
s∑

i=1

bi = 1 +O(ν4)

• Order two requires in addition
s∑

i=1

(d2i − (di − bi)
2) = O(ν3)

• Order three requires in addition

⎧⎪⎪⎨
⎪⎪⎩

s∑
i=1

(d3i − (di − bi)
3) = O(ν2)

s∑
i=1

(2bidi − b2i )ci = O(ν2)

• Order four requires in addition

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s∑
i=1

(d4i − (di − bi)
4) = O(ν)

s∑
i=1

(d3i − (di − bi)
3)ci = O(ν)

s∑
i=1

(d2i − (di − bi)
2)c2i = O(ν)

where di =
i∑

j=1

(bj − aj) and ci =
i∑

j=1

aj, i = 1, 2, . . . , s.

The phase-fitted splitting or composition methods are presented in
the following section.

3. Construction of Phase-fitted splitting and
composition methods

3.1. Phase-fitted Lie-Trotter method. The modified Lie-Trotter
splitting method is given by

ΦLT
h (ν) = ϕ

[2]
b(ν)h ◦ ϕ[1]

a(ν)h, (20)



MODIFIED SPLITTING AND COMPOSITION METHODS. . . 85

where a(ν), b(ν) are functions of ν = ωh. Applying the splitting
method to (9), we obtain

(
pn+1

qn+1

)
= ΦLT

h (ν)

(
qn

pn

)
=
(
ϕ
[2]
b(ν)h ◦ ϕ[1]

a(ν)h

)( qn

pn

)

= ϕ
[2]
b(ν)h

(
qn + a(ν)νpn

pn

)
=

(
qn + a(ν)νpn

pn − b(ν)ν(qn + a(ν)νpn)

)

=

(
1 a(ν)ν

−b(ν)ν 1− a(ν)b(ν)ν2

)(
qn

pn

)
,

(21)

ΦLT
h (ν) =

(
1 a(ν)ν

−b(ν)ν 1− a(ν)b(ν)ν2

)
. (22)

det
(
ΦLT

h (ν)
)
= 1, (23)

For the Lie-Trotter splitting method to be phase-fitted, we impose
the following:

tr
(
ΦLT

h (ν)
)
= 2 cos(ν), (24)

which implies that

a(ν)b(ν) =
2− 2 cos(ν)

ν2
=

4 sin2(ν/2)

ν2
. (25)

Solving (32) and a(ν) = b(ν), we obtain

a(ν) = b(ν) =
2 sin(ν/2)

ν
.

The first order condition is verified as follows. Suppose y0 = y(t0),
as h → 0,

ϕ
[1]
h (y0) = y0 + h

∂ϕ
[1]
h (y0)

∂h

∣∣
h=0

+O(h2) = y0 + hf [1](y0) +O(h2),
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(ϕ
[2]
h ◦ ϕ[1]

h )(y0) = ϕ
[2]
h

(
ϕ
[1]
h (y0)

)
= ϕ

[2]
h

(
y0 + hf [1](y0) +O(h2)

)
=
(
y0 + hf [1](y0) +O(h2)

)
+ hf [2]

(
y0 + hf [1](y0) +O(h2)

)
+O(h2)

= y0 + hf [1](y0)

+ h
(
f [2](y0) + h

df [2]

dy
(y0)f

[1](y0)O(h2)
)

+O(h2)

= y0 + hf [1](y0) + hf [2](y0) +O(h2)

= y0 + hf(y0) +O(h2)

= ϕh(y0) +O(h2).

Thus from the result, we define the following:

Definition 3.1. The phase-fitted Lie-Trotter (PLT) method defined
by

Ψ
[PLT ]
h = φ

[2]
b(ν)h ◦ φ[1]

a(ν)h

= φ
[1]
a(ν)h ◦ φ[2]

b(ν)h

(26)

with

a(ν) = b(ν) =
2 sin(ν/2)

ν
= 1− 1

24
ν2 +

1

1920
ν4 +O(ν6) (27)

is the simplest phase-fitted splitting method for system (8) and it is
of order 1.

3.2. Phase-fitted Strang splitting method. Similarly, we ap-
ply the technique for the strang splitting as follows:

ΦST
h (ν) = ϕ

[2]
a(ν)h/2 ◦ ϕ[2]

b(ν)h ◦ ϕ[1]
c(ν)h/2, (28)

where a(ν), b(ν) and c(ν) are functions of ν = ωh. The splitting
method (28) is applied to (9) to obtain(

pn+1

qn+1

)
= ΦST

h (ν)

(
qn

pn

)
=
(
ϕ
[2]
a(ν)h/2 ◦ ϕ[2]

b(ν)h ◦ ϕ[1]
c(ν)h/2

)( qn

pn

)

(29)

=

(
1− b(ν)c(ν)ν2 −a(ν)b(ν)c(ν) + (a(ν) + c(ν))ν

−b(ν)ν 1− a(ν)b(ν)ν2

)(
qn

pn

)
,
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ΦST
h (ν) =

(
1− b(ν)c(ν)ν2 −a(ν)b(ν)c(ν) + (a(ν) + c(ν))ν

−b(ν)ν 1− a(ν)b(ν)ν2

)
.

(30)

det
(
ΦST

h (ν)
)
= 1, (31)

For Strang splitting method to be phase-fitted, we impose the fol-
lowing:

tr
(
ΦST

h (ν)
)
= 2− b(ν)(a(ν) + c(ν))ν2 = 2 cos(ν), (32)

and from (30), observe that

1

2
(a(ν) + c(ν))ν − 1

4
a(ν)b(ν)c(ν)ν3 = sin(ν)

and if we impose the condition that a(ν) = c(ν), we solve the
equations for a(ν), b(ν) and c(ν) to obtain

a(ν) = c(ν) =
2 sin ν

ν(cos ν + 1)

b(ν) =
sin ν

ν

Hence, we define the following:

Definition 3.2. The phase-fitted Strang (PStrang) splitting method
defined by

Ψ
[PST ]
h = φ

[1]
a(ν)h/2 ◦ φ[2]

b(ν)h ◦ φ[1]
c(ν)h/2 (33)

with

a(ν) = c(ν) =
2 sin ν

ν(cos ν + 1)
= 1 +

1

12
ν2 +

1

120
ν4 +O(ν6)

b(ν) =
sin ν

ν
= 1− 1

6
ν2 +

1

120
ν4 +O(ν6)

(34)

is a symmetric phase-fitted splitting method for system (8) and it
is of order 2.

3.3. Phase-fitted Triple-Jump composition method. The idea
for the derivation for the Trip-Jump composition follows similarly
from the derivation of the Lie-Trotter and Strang Splitting methods.
However, to obtain the result we use the strang splitting method
derived in subsection 3.2 as the base method.
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Definition 3.3. The phase-fitted Triple Jump (PTJ) composition
method defined by

Ψ
[PTJ ]
h = ΨST

γ3(ν)h
◦ΨST

γ2(ν)h
◦ΨST

γ1(ν)h
(35)

where

γ1(ν) = γ3(ν) =
1

2− 21/3
− ( 1

108
+ 1

108
22/3 + 1

54
21/3

)
ν2

+
(

5
216

+ 1537
90720

22/3 + 1067
45360

21/3
)
ν4 +O(ν6)

γ2(ν) = − 21/3

2 − 21/3
+
(

1
54

+ 1
54
22/3 + 1

27
21/3

)
ν2

− ( 31
1080

+ 253
11340

22/3 + 94
2835

21/3
)
ν4 +O(ν6)

is a symmetric composition method for system (8), based on split-
ting method (4) and it is of order 4.

Remark 3.1. The splitting and composition methods presented in
subsection 3 reduce to the corresponding standard splitting and com-
position methods presented in subsection 2.1 as ν → 0. For a theory
of the higher order conditions of splitting and composition methods,
see Hairer [12], Blanes [1].

4. Numerical modelling and efficiency of some
biological oscillators

In this section, we apply the methods to some biological oscillators
that have appeared in the literature. It is instructive to also note
that for models which do not have equilibrium at the origin, a
suitable transformation is employed to address that problem (see
[25]).

4.1. Lotka Volterra Model. Lotka [14]. Consider the mutual
interactions of between two species, the prey X1 and the predator
X2. Let X1(t) and n2(t) denote the population of X1 and X2,
respectively. The number nA of the food items A is assumed to be
unchanged by consumption during the time scale of interest, (see
[12]). The Lotka Volterra problem which models this process is
given by

Ẋ1 = (k2X2 − k1nA)X1, Ẋ2 = (k3 − k2X1)X2. (36)
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The vector field of the equation (36) is split into

f [1](y) =

(
(k2X2 − k1nA)X1

0

)
, f [2](y) =

(
0

(k3 − k2X1)X2

)

(37)
The values for the parameters used to solve the problem are taken
as follows:

k1 = k2 = k3 = 1, nA = 2.

The exact solution of y′ = f [1](y) on [0, h] is

X1(h) = exph(X2(0)−2) X1(0), X2(h) = X2(0). (38)

The exact solution of y′ = f [2](y) on [0, h] is

X1(0) = X1(0), X2(0) = exph(1−X1(0)) X2(0). (39)

Combining these two flows (38) and (39) using (5) gives the de-

sired method. The system is integrated for initial values {X1(0) =
2, X2(0) = 2} on the interval [0, 100] with stepsizes h = 1/2j, j =
2, 3, 4, 5 and the fitting frequency was taken as ω = 2π

4.62
. The effi-

ciency curves are presented in Fig. 1.

0 0.05 0.1 0.15 0.2 0.25
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

stepsize (h)

Accuracy Plot for Lotka−Volterra model

 

 
Heun
RK4
LT
Strang
TJ
PLT
PStrang
PTJ

Figure 1. Accuracy plot for Lotka-Volterra model
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4.2. Genetic regulatory systems. Proteins are essential func-
tional units in a cell system. Most of the cell decisions in response to
environmental conditions, developmental stage of the cell, stress are
determined by protein expression levels. With principles of dogma
of molecular biology, systems biologists have developed many mod-
els which describes patterns from the dynamical interactions be-
tween the elements in a network (see [3]). In what follows, we
briefly introduce some standard models for gene regulation mecha-
nisms.

mRNA-protein networks
An N -gene regulated network can be described by the following
system of ordinary differential equations (see [16]):

ṙ(t) = −Γr(t) + F (p(t))

ṗ(t) = −Mp(t) +Kr(t)
(40)

where r(t) = (r1(t), . . . , rN(t)) and p(t) = (p1(t), p2(t), . . . , pN(t))
are N -dimensional vectors representing the concentrations of mR-
NAs and proteins at time t, respectively, F (p(t)) = (F1(p1(t)), . . . , FN(p(t))),
Γ = diag(γ1, . . . , γN), M = diag(μ1, . . . , μN) and K = (κ1, . . . , κN )
are diagonal matrices. The variables r and p are the concentrations
of mRNA and the corresponding protein respectively; Γ and M ,
positive constants, are the degradation rates of mRNA and protein,
respectively, K is a positive constant; and F (p(t)), the regulatory
function determining the cooperativity of two genes.

A natural decomposition of (40) is of the form:

f [1](z) =

( −Γ 0

K −M

)
z, f [2](z) =

(
F (p(t))

0

)
. (41)

The genetic regulatory system is simulated with the approach of
You et al. [25]. We use the transformation x(t) = r(t)− r∗, y(t) =
p(t) − p∗ to translate the steady state of the system to the origin
and (40) becomes

ẋ(t) = −Γx(t) + F ′(p∗)y(t) +G(y(t))

ẏ(t) = Kx(t)−My(t)
(42)

where F ′(p∗) is the jacobian matrix of F (p) at the point p∗ and
G(y(t)) = F (p∗+y(t)−F ′(p∗)y(t)−F (p∗). Therefore, we have the
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vector field split as

f [1](z) =

( −Γ F ′(p∗)
K −M

)
z, f [2](z) =

(
G(y(t))

0

)
. (43)

4.2.1. One-gene auto-repression model. Xiao and Cao [22]. We
consider the one-gene regulatory network for N = 1 in (40). The
model was simulated with the parameters given in You et al. [25],

γ = 1, α = 3, μ = 1.5, κ = 5, θ = 1,

using stepsizes h = 1/2j, j = 0, 1, 2, 3 and the fitting frequency was

taken as ω =
√
935
20

. The efficiency curves are presented in Fig. 2.

0.2 0.4 0.6 0.8 1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Accuracy plot for One−gene Auto−repression model

stepsize (h)

 

 
Heun
RK4
LT
Strang
TJ
PLT
PStrang
PTJ

Figure 2. Accuracy plot for one-gene auto-
repression model

4.2.2. The repressilator. Elowitz and Leibler [5]. Here, we simulate
the repressilator model given in Elowitz and Leibler [5] for param-
eters

α = 216.404, α0 = 0.2164, β = 0.2, n = 2.
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We solve the system on the interval 0 ≤ t ≤ 100 using stepsizes
h = {1

5
, 1
10
, 1
20
, 1
50
} and the fitting frequency was taken as ω = 0.51.

The efficiency curves is presented in Fig. 3.
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Accuracy plot for Repressilator model
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Figure 3. Efficiency curve for repressilator model.

4.3. Goodwin model. Goodwin [10], Gonze and Abou-Jaoudé
[9]. Lastly, consider the Goodwin model, a simple and widely used
model for molecular oscillations (and especially circadian) for de-
layed negative feedback loops. The model is given by

Ẋ = k1F (Z)− k2X

Ẏ = k3X − k4Y

Ż = k5Y − k6Z.

(44)

The variables X, Y and Z can be interpreted as the concentration
of a given gene mRNA, the corresponding protein, and a transcrip-
tional inhibitor, respectively. The feedback loop is achieved by the
repression exerted by the inhibitor to the mRNA synthesis and is
described by a Hill function:

F (Z) =
Kn

Kn + Zn
.
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In fact. Griffith [11] demonstrated that limit-cycle oscillations can
be obtained only if the Hill coefficients n is larger than 8. For n ≤ 8,
the model displays damped oscillations.

For parameters

k1 = k3 = k5 = 1, k2 = k4 = k4 = 0.1, k = 1, n = 10.,

we solve the system on the interval 0 ≤ t ≤ 100 using stepsizes h =
1/2j, j = 0, 1, 2, 3 and the fitting frequency was taken as ω = 2π

40
.

The efficiency curves is presented in Fig. 4.
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Figure 4. Efficiency curve for Goodwin model.

In Fig. 1 of the accuracy plot on the Lotka-Volterra model (36),
Heun’s method yields the least accurate results, while the numer-
ical results of the strang and the Lie-Trotter splitting methods
coincide. The phase-fitted Lie-Trotter and the Strang splitting
methods, though of order 2 yield more accurate results than the
Runge-Kutta methods for larger step sizes. But the Phase-fitted
triple jump method yields the most accurate result for the model
(36). In the one-gene auto-repression model, Fig. 2 shows that
all the splitting and composition methods performs better than the
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Heun and Runge-Kutta method. In fact, for larger stepsizes, the re-
sults obtained blow out completely. But the result shows that, the
Phase-fitted splitting and composition methods yields more accu-
rate results than the standard splitting and composition methods.
Unfortunately, for the repressilator model, Fig. 3 shows that the
effect of the phase-fitting properties is not pronounced as the stan-
dard splitting and composition methods coincide exactly as their
phase-fitting counterparts. But, the Strang splitting methods out-
performs the Runge-Kutta methods for larger stepsizes. In this
problem, the Triple-Jump methods yield the most accurate results.
Lastly, in Fig. 4 for the Goodwin model (44), the phase fitted triple
jump yields the most accurate results.

5. Conclusion

In this paper we have discussed the derivation of phase-fitted split-
ting and composition methods for the numerical simulation of bio-
logical oscillators. The derivation of such methods has been done
using the phase-fitting properties of the harmonic oscillators. Three
practical methods namely, phase-fitted Lie-Trotter, phase-fitted Strang
and phase-fitted triple jump splitting and composition methods
were derived. Numerical experiments were reported for the sim-
ulation of the Lotka-Volterra model, genetic regulatory systems
and the goodwin model. We observed that the new phase-fitted
methods gives a more satisfactory result than the classical meth-
ods in the MATLAB ODE solvers. We note that the coefficients of
the methods depends on the fitting frequency ω which can be esti-
mated, although the fitting frequency is usually unknown, we refer
the reader to Vigo-Aguiar and Ramos [20]. As a future research, we
may extend the concept of phase-fitting by combining a case where
a numerical methods solved a vector field, while the exact solution
of the other vector field can be evaluated.
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