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SECOND REFINEMENT OF GENERALIZED JACOBI
ITERATIVE METHOD FOR SOLVING LINEAR

SYSTEM OF EQUATIONS

T. K. ENYEW1, G. AWGICHEW, E. HAILE AND G. D. ABIE

ABSTRACT. The Jacobi and Gauss-Seidel algorithms are among the
stationary iterative methods for solving linear system of equations.
In this paper, we present the new method which is called second-
refinement of generalized Jacobi (SRGJ) method for solving linear sys-
tem of equations. This new method is the fastest method to converge
to the exact solution as compared with Jacobi (J), refinement of Jacobi
(RJ), generalized of Jacobi and refinement of generalized Jacobi (RGJ)
method by considering strictly diagonally dominant (SDD), symmetric
positive definite (SPD) and M-matrices. It is verified by checking the
number of iterations and rate of convergence.
The SRGJ method can be applied to solve ODE and PDE problems
when finite difference method results system of linear equations with
its coefficient matrices are strictly diagonally dominant (SDD) or sym-
metric positive definite matrices (SPD) or M-matrices.
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1. INTRODUCTION

In this paper, we consider second-refinement of generalized Jacobi it-
erative method (SRGJ). It is a refinement of refinement of general-
ized Jacobi iterative method (RRGJ), hence here after we call second-
refinement of generalized Jacobi iterative method (SRGJ). In many ap-
plication one face with the problem of large and sparse linear systems
of the form

Ax = b (1)
where A = (ai j) is nonsingular real matrix of order n, b is a given n di-
mensional real vector and x is an n dimensional vector to be determined.
Iterative methods, based on splitting A into A= Tm−Em−Fm, where Tm
is a banded matrix with band width 2m + 1, aii 6= 0 and Em and Fm are
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strictly lower and upper triangular part of Tm−A respectively, can com-
pute successive approximations to obtain more accurate solutions to a
linear system at each iteration step n. Second-refinement of generalized
Jacobi (SRGJ) iterative method is used to accelerate the convergence of
basic Jacobi iterative method. It has been proved that, if A is strictly
diagonally dominant (SDD) or irreducibly diagonally dominant (IDD),
then the associated Jacobi iteration converges for any initial guess. The
Jacobi iteration (J) for first degree is

x(n+1) = D−1(L+U)x(n)+D−1b (2)

2. PRELIMINARY

Let A = (ai j) be an nxn matrix and Tm = (ti j) be a banded matrix of
bandwidth 2m + 1 defined as :

ti j =

{
ai j, |i− j| ≤ m
0, otherwise

We consider the decomposition A = Tm−Em−Fm where−Em and−Fm
are the strict lower and upper part of the matrix A−Tm, respectively.

Tm =


a1,1 ... a1,m+1

... . . . . . .

am+1,1
. . . an−m,n

. . . . . . ...
an,n−m ... an,n

,

Em =

 −am+2,1
... . . .

−an,1 ... −an−m−1,n

,

Fm =


−a1,m+2 ... −a1,n

. . . ...
−an−m−1,n


Definition 1: (varga [10]). For n x n real matrices A, M, and N, A =
M - N is a regular splitting of the matrix A if M is nonsingular with
M−1 ≥O, and N ≥O. Similarly, A = M - N is weak regular splitting of
the matrix A if M is nonsingular with M−1 ≥ O and M−1N ≥ O.
The following definitions, lemmas and theorems are important for our
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study used by Young [13], Varga [10], Datta [2], Hackbusch [3] and
Saad [8].
Definition 2: If a matrix A is strictly diagonally dominant or irreducibly
diagonally dominant, then it is nonsingular.
Definition 3: A complex matrix A ∈ Cnxn is reducible if and only if
there exist a permutation matrix P (i.e., P is obtained from the identity I
by a permutation of the rows of I) and an integer k ∈ {1, ...,n−1} such
that

PAPT =

(
A11 A12
O A22

)
Where A11 is kxk and A22 is (n-k)x(n-k) . If A is not reducible, then A
is said to be irreducible.
Definition 4: An nxn marix A = (ai j) is said to be strictly diagonally
dominant (SDD) if

|aii|>
n

∑
j=1, j 6=1

|ai j|

Definition 5: If an nxn marix A = (ai j) is said to be diagonally domi-
nant (DD) if

|aii| ≥
n

∑
j=1, j 6=1

|ai j|

Definition 6: A is irreducibly diagonally dominant (IDD) if A is irre-
ducible and diagonally dominant, with strict inequality holding in defi-
nition 2 for at least one i.
Definition 7: An nxn matrix A = (ai j) is said to be symmetric positive
definite (SPD) if A is symmetric, (A = AT ) and positive definite xT Ax >
0 for all x 6= 0.
Definition 8: A matrix is said to be an M-matrix if it satisfies the fol-
lowing four properties:

(1) aii > 0 for i = 1,...,n
(2) ai j ≤ 0 for i 6= j, i, j = 1,...,n
(3) A is nonsingular
(4) A−1 ≥ O

Alternatively, A matrix A ∈ Rn,n, n is said to be an M-matrix if A can be
written as A = sI - B, where B≥ O and s≥ ρ(B).
Definition 9: The spectral radius matrix A is the largest absolute value
of the eigenvalues of A: ρ(A) := max{|λ | : λ ∈ σ(A)}.
Lemma 1: The spectral radius satisfies the following rules

• ρ(kA) = |k|ρ(A) for all k ∈C and A ∈Cnxn.
• ρ(Ak) = (ρ(A))k for all k ∈ N and A ∈Cnxn.
• ρ(A) = ρ(AH) = ρ(AT ) for all A ∈Cnxn.
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Theorem 1: A linear iteration Φ(x,b) = Mx+Nb with the iteration
matrix M = M[A] is convergent if and only if ρ(M)< 1.
Theorem 2: Let A = M - N be a regular splitting of the matrix A.Then
ρ(M−1N)< 1 if and only if A is nonsingular and A−1 ≥ O.
Theorem 3: Let A = (ai j), B = (bi j) be two matrices such that A ≤ B
and bi j ≤ O for all i 6= j. Then if A is an M-matrix, so is the matrix B.

3. GENERALIZED JACOBI (GJ) ITERATIVE METHOD

The system of linear equation (1) is solved by different iterative meth-
ods. One of them is GJ iterative method. This method was first proposed
by D.K. Salkuyeh [9].
If equation (1) can be written as (Tm−Em−Fm)x = b
⇒ x(n+1) = T−1

m (Em +Fm)x(n)+T−1
m b

x(n+1) = T−1
m (Em +Fm)x(n)+T−1

m b (3)

This scheme is called Generalized Jacobi (GJ) iterative method for m =
0, 1, 2, .... If m = 0, then GJ = J.

4. REFINEMENT OF GENERALIZED JACOBI (RGJ) METHOD

Generalized Jacobi (GJ) iterative method is a few modification of Jacobi
iterative method and refinement of generalized Jacobi (RGJ) iterative
method is similarly a few modification of generalized Jacobi iterative
method. It is a method with a few computations. This method was first
introduced by V. B. Kumar Vatti and G. G. Gonfa [11]. Equation (1)
with A = Tm−Em−Fm can be written as:
⇒ (Tm−Em−Fm)x = b
⇒ Tmx = (Em +Fm)x+b
⇒ Tmx = (Tm−A)x+b, where Em +Fm = Tm−A
⇒ Tmx = Tmx+b−Ax
⇒ x = x+T−1

m (b−Ax)
⇒ x(n+1) = x̃(n+1)+T−1

m (b−Ax̃(n+1)) where x̃(n+1) = Tm
−1(Em +

Fm)x(n)+Tm
−1b

⇒ x(n+1) = Tm
−1(Em +Fm)x(n)+Tm

−1b+T−1
m [b−A

(Tm
−1(Em +Fm)x(n)+Tm

−1b)]
⇒ x(n+1)=Tm

−1(Em+Fm)x(n)+Tm
−1b+T−1

m [b−(Tm−Em−Fm)(Tm
−1

(Em +Fm)x(n)+Tm
−1b)] After simplification, we get:

⇒ x(n+1) = [Tm
−1(Em +Fm)]

2x(n)+(I +Tm
−1(Em +Fm))Tm

−1b

x(n+1) = [Tm
−1(Em +Fm)]

2x(n)+(I +Tm
−1(Em +Fm))Tm

−1b (4)



SECOND REFINEMENT OF GENERALIZED JACOBI ITERATIVE METHOD . . . 121

Equation (4) is called refinement of generalized Jacobi (RGJ) iterative
method for m = 0, 1, 2, .... If m = 0, then RGJ = RJ.

5. SECOND-REFINEMENT OF GENERALIZED JACOBI (SRGJ)
METHOD

In this paper we need to introduce second-refinement of generalized Ja-
cobi (SRGJ) iterative method.
By taking equation x(n+1) = x̃(n+1)+T−1

m (b−Ax̃(n+1)) substitute equa-
tion (4) on x̃(n+1). We get
x(n+1) = [Tm

−1(Em+Fm)]
2x(n)+(I+Tm

−1(Em+Fm))Tm
−1b+T−1

m [b−
(Tm−Em−Fm)([Tm

−1(Em +Fm)]
2x(n)+(I +Tm

−1(Em +Fm))Tm
−1b)].

After simplifying we get:
⇒ x(n+1) = [Tm

−1(Em +Fm)]
3x(n) + (I + T−1

m (Em +Fm) + (T−1
m (Em +

Fm))
2)T−1

m b
∴ x(n+1) = [Tm

−1(Em + Fm)]
3x(n) + (I + T−1

m (Em + Fm) + (T−1
m (Em +

Fm))
2)T−1

m b (5)
The above equation is called second refinement of generalized Jacobi
(SRGJ) method for m = 0,1,2,.... If m = 0, then SRGJ = SRJ.

6. CONVERGENCE OF SECOND-REFINEMENT OF GENERALIZED
JACOBI (SRGJ) METHOD

Theorem 4: If A is a strictly diagonally dominant or an irreducibly
diagonally dominant matrix, then the associated Jacobi iterations con-
verge for any x(0).

See the proof in R. S. Varga [10]
Theorem 5: If A and 2D - A are symmetric and positive definite matri-
ces, then the Jacobi method is convergent for any initial guess.
Proof: Let A and 2D - A be SPD. We know x∗Ax> 0 and x∗(2D−A)x>
0, where A = D−L−LT .
⇒ D−1(L+LT )x = λx ⇒ (L+LT )x = λDx ⇒ x∗(L+LT )x = λx∗Dx
⇒ x∗Dx−x∗Ax = λx∗Dx⇒ x∗Ax = (1−λ )x∗Dx⇒ 1−λ > 0⇒ λ < 1
∴ λ < 1...............~
And we consider x∗(2D− A)x > 0 ⇒ 2x∗Dx− x∗Ax > 0 ⇒ x∗Ax <
2x∗Dx⇒ (1−λ )x∗Dx < 2x∗Dx⇒ 1−λ < 2⇒ λ >−1
∴ λ >−1...........~~
From ~ and ~~, we get −1 < λ < 1. where λ is the eigenvalues of
D−1(L+LT ).
Hence, ρ(D−1(L+LT ))< 1.
Theorem 6: (Salkuyeh [9] ): If A is an M-matrix, then the Jacobi iter-
ative method is convergent for any initial guess x0.
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Proof: Given A is M-matrix. Let A = M - N. ⇒ A = D− L−U ⇒
M = D and N = L +U ⇒ A ≤ M ⇒ by theorem 8 M is M-matrix.
⇒M−1 > 0. On the other hand N ≥ 0.
∴ A = M−N is a regular splitting of the matrix A. Having in mind that
A−1 ≥ 0 and theorem 7 we deduce that ρ(GJ)< 1.
Theorem 7: Let A be an SDD matrix. Then for any natural number
m < n the generalized Jacobi (GJ) iterative method is convergent for
any initial guess x(0).

See the proof in D. K. Salkuyeh [9]
Proof: Let M = (Mi j) and N = (Ni j) be nxn matrices with M being
SDD. Then (see Jin and etal, 2005, Lemma 1), ρ(M−1N)≤ ρ =maxiρi,

.............~, where ρi =
∑

n
j=1 |Ni j|

|Mii|−∑
n
j=1, j 6=i |Mi j| . Now, let M = Tm and N = Em+

Fm in the GJ method. Obviously, in this case the matrix M is SDD.
Hence M and N satisfy relation (~). Having in mind that the matrix
A is an SDD matrix, it can be easily verified that ρi < 1. Therefore
ρ(M−1N)≤ ρ < 1 and this completes the proof.
Theorem 8: If A and 2Tm−A are symmetric and positive definite ma-
trices, then the Generalized Jacobi (GJ) iterative method converges for
any initial guess x(0).
Proof: Let A and 2Tm−A be SPD.
We know that x∗Ax > 0 and x∗(2Tm−A)x > 0, where A = Tm−Em−ET

m
⇒ T−1

m (Em +ET
m)x = λx ⇒ (Em +ET

m)x = λTmx ⇒ x∗(Em +ET
m)x =

λx∗Tmx⇒ x∗Tmx−x∗Ax = λx∗Tmx⇒ x∗Ax = (1−λ )x∗Tmx⇒ 1−λ >
0⇒ λ < 1
∴ λ < 1...............~
And we consider x∗(2Tm−A)x > 0 ⇒ 2x∗Tmx− x∗Ax > 0 ⇒ x∗Ax <
2x∗Tmx⇒ (1−λ )x∗Tmx < 2x∗Tmx⇒ 1−λ < 2⇒ λ >−1
∴ λ >−1...........~~
From ~ and ~~, we get −1 < λ < 1. where λ is the eigenvalues of
T−1

m (Em +ET
m).

Hence, ρ(T−1
m (Em +ET

m))< 1.
Theorem 9: Let A be an M-matrix. Then for a given natural number
m < n, the GJ method is convergent for any initial guess x(0).
Proof: (Salkuyeh [9]). Let Mm = Tm and Nm = Em + Fm in the GJ
method. Obviously, in this case we have A ≤Mm. Hence by Theorem
3, we conclude that the matrix Mm is an M-matrix. On the other hand
we have Nm ≥ O. Therefore, A = Mm−Nm is a regular splitting of the
matrix A. Having in mind that A−1 ≥ 0 and Theorem 2 we deduce that
ρ(B(m)

GJ )< 1.
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Theorem 10: If A is strictly diagonally dominant matrix, then the re-
finement of generalized Jacobi method converges for any choice of the
initial approximation x(0).
Proof: (Vatti and et al [11] ). Assuming x̄ is the real solution of (1), as
A is SDD by Theorem 7, generalized Jacobi method is convergent. Let
x(n+1)→ x̄ (exact solution). Then we have ||x(n+1)− x̄||∞ ≤ ||x(n+1)−
x̄||∞ + ||T−1

m ||∞||(b−Ax(n+1))||∞. From the fact ||x(n+1)− x̄||∞→ 0, we
have ||b−Ax(n+1)||∞→ 0. Therefore, ||x(n+1)− x̄||∞→ 0. Hence refine-
ment of generalized Jacobi method is convergent.
Theorem 11: If A and 2Tm−A are SPD matrix, then the refinement of
generalized Jacobi iterative method is convergent for any initial guess
x(0).
Proof: Using equation (3) and Theorem 8, we have ρ(T−1

m (Em+ET
m))<

1.
Theorem 12: Let A = (ai j) be an M-matrix. Then for a given natural
number m < n, the refinement of generalized Jacobi method converges
for any choice of initial approximation x(0).
Proof: It follows from Theorem 9. See Vatti and et al [11].
Theorem 13: If A is a strictly diagonally dominant or an irreducibly
diagonally dominant matrix, then the second-refinement of generalized
Jacobi iterations converge for any x(0).
Proof: Let X be the real solution of (1). Given that A is SDD, using
theorem 4, 7, and 10, the J,GJ and RGJ methods are convergent and
hence x(n+1)→ X (exact Solution). As we mentioned above by theorem
10, x̃(n+1) = [Tm

−1(Em+Fm)]
2x(n)+(I+Tm

−1(Em+Fm))Tm
−1b is con-

vergent. So x̃(n+1)→ X .
x(n+1)= x̃(n+1)+T−1

m (b−Ax̃(n+1)) or x(n+1)−X = x̃(n+1)−X+T−1
m (b−

Ax̃(n+1)). Then,∥∥∥x(n+1)−X
∥∥∥= ∥∥∥x̃(n+1)−X +T−1

m (b−Ax̃(n+1))
∥∥∥

≤
∥∥∥x̃(n+1)−X

∥∥∥+∥∥∥T−1
m (b−Ax̃(n+1))

∥∥∥
⇒
∥∥∥x(n+1)−X

∥∥∥≤ ∥∥∥x̃(n+1)−X
∥∥∥+∥∥T−1

m
∥∥∥∥∥(b−Ax̃(n+1))

∥∥∥
→‖X−X‖+

∥∥T−1
m
∥∥‖b−AX‖ = 0+

∥∥T−1
m
∥∥‖b−b‖= 0+0 = 0

Then, x(n+1)→ X
⇒ ρ[(T−1

m (Em +Fm))
3] = (ρ(T−1

m (Em +Fm)))
3 < 1

Therefore, the SRGJ iterative method is convergent.
Theorem 14: If A and 2Tm− A are SPD matrices, then the second-
refinement of generalized Jacobi (SRGJ) iterative method is convergent
for any initial guess x(0).
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Proof: Using equation (3) and Theorem 8, we have ρ(T−1
m (Em+ET

m))<
1. Let X be the exact solution of (1). Then the generalized Jacobi itera-
tive method can be written as
X = [I−T−1

m (Em +ET
m)]
−1T−1

m b if x(n+1)→ X . Using equation (5):
x(n+1) = [Tm

−1(Em +Fm)]
3x(n)+(I +T−1

m (Em +Fm)+
(T−1

m (Em+Fm))
2)T−1

m b. Now using equation (4) and the exact solution
X, we have:
⇒ X = [Tm

−1(Em +Fm)]
3X +(I +T−1

m (Em +Fm)+
(T−1

m (Em +Fm))
2)T−1

m b
⇒ X = (I− (T−1

m (Em +Fm))
3)−1[I +T−1

m (Em +Fm)+
(T−1

m (Em +Fm))
2]T−1

m b
= [I +(T−1

m (Em +Fm))
3 +(T−1

m (Em +Fm))
6 + ...][I +T−1

m (Em +Fm)+
(T−1

m (Em +Fm))
3]T−1

m b = [I +T−1
m (Em +Fm)+(T−1

m (Em +Fm))
2 +

(T−1
m (Em +Fm))

3 +(T−1
m (Em +Fm))

4 + ....]T−1
m b

= [I−T−1
m (Em +Fm)]

−1T−1
m b

∴ X = [I−T−1
m (Em +Fm)]

−1T−1
m b is consistent to (1) and generalized

Jacobi method. On the other hand,
x(n+1) = [Tm

−1(Em +Fm)]
3x(n)+(I +T−1

m (Em +Fm)+
(T−1

m (Em +Fm))
2)T−1

m b
= [Tm

−1(Em +Fm)]
6x(n−1)+(I +T−1

m (Em +Fm)+ (T−1
m (Em +Fm))

2 +
(T−1

m (Em +Fm))
3 +(T−1

m (Em +Fm))
4 +(T−1

m (Em +Fm))
5)T−1

m b
= [Tm

−1(Em +Fm)]
9x(n−2)+(I +T−1

m (Em +Fm)+ (T−1
m (Em +Fm))

2 +
(T−1

m (Em +Fm))
3 + ...+(T−1

m (Em +Fm))
8)T−1

m b
=
.
.
.
= [Tm

−1(Em+Fm)]
3n+3x(0)+(I+T−1

m (Em+Fm)+(T−1
m (Em+Fm))

2+
(T−1

m (Em +Fm))
3 + ...+(T−1

m (Em +Fm))
3n+2)T−1

m b
We are given that A is SPD then ρ(T−1

m (Em +ET
m))< 1.

Thus lim
n→∞

[Tm
−1(Em +Fm)]

3n+3 = 0.

⇒ lim
n→∞

x(n+1)= lim
n→∞

[Tm
−1(Em+Fm)]

3n+3+∑
∞
k=0[Tm

−1(Em+Fm)]
nT−1

m b

= 0+[I−T−1
m (Em +Fm)]

−1T−1
m b = [I−T−1

m (Em +Fm)]
−1T−1

m b→ X
⇒ ρ[(T−1

m (Em +Fm))
3] = [ρ(T−1

m (Em +Fm))]
3 < 1.

Therefore, the second-refinement of generalized Jacobi (SRGJ) iterative
method is convergent.
Theorem 15: If A is an M-matrix, then the second-refinement of gen-
eralized Jacobi iterative method is convergent for any initial guess x(0).
Proof: We are given that A is an M-matrix. We want to show that
SRGJ iterative method is convergent. From theorem 9 we can see that
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GJ iterative method is convergent.
⇒ (T−1

m (Em +Fm)< 1. Using theorem 1 and 12,
ρ(BRGJ) = ρ([T−1

m (Em +Fm)]
2) = [ρ(T−1

m (Em +Fm))]
2 < 1.

ρ(BRGJ)< 1.
Using theorem 12, ρ(BSRGJ) = ρ([T−1

m (Em + Fm)]
3) = [ρ(T−1

m (Em +
Fm))]

3 < 1.
∴ ρ(BSRGJ)< 1.
∴ SRGJ iterative method is convergent if A is an M-matrix.
Theorem 16:The second-refinement of generalized Jacobi method con-
verges faster than the generalized Jacobi and refinement of generalized
Jacobi method when generalized Jacobi method is convergent.
Proof: We can write equation (3) by x(n+1) = Gx(n)+C, (4) by x(n+1) =
G2x(n)+B and (5) by x(n+1) = G3x(n)+K where G = T−1

m (Em +Fm),
C = T−1

m b, B = [I+T−1
m (Em+Fm)]T−1

m b and K = [I+T−1
m (Em+Fm)+

(T−1
m (Em +Fm))

2]T−1
m b. Given that, ‖G‖< 1.

Let X be the exact solution of (1). ⇒ X = GX +C, X = G2X +B and
X = G3X +K.
Let us consider generalized Jacobi method:
⇒ x(n+1) = Gx(n)+C⇒ x(n+1)−X = Gx(n)−X +C
⇒ x(n+1)−X = G(x(n)−X)+GX +C−X
⇒ x(n+1)−X = G(x(n)−X)

⇒
∥∥∥x(n+1)−X

∥∥∥= ∥∥∥G(x(n)−X)
∥∥∥≤ ‖G‖∥∥∥x(n)−X

∥∥∥
≤
∥∥G2

∥∥∥∥∥x(n−1)−X
∥∥∥≤ ...≤ ‖Gn‖

∥∥∥x(1)−X
∥∥∥

⇒
∥∥∥x(n+1)−X

∥∥∥≤ ‖Gn‖
∥∥∥x(1)−X

∥∥∥= ‖G‖n
∥∥∥x(1)−X

∥∥∥
Now let us consider refinement of generalized Jacobi method:
⇒ x(n+1) = G2x(n)+B⇒ x(n+1)−X = G2x(n)−X +B
⇒ x(n+1)−X = G2(x(n)−X)+G2X +B−X
⇒ x(n+1)−X = G2(x(n)−X)

⇒
∥∥∥x(n+1)−X

∥∥∥= ∥∥∥G2(x(n)−X)
∥∥∥≤ ∥∥G2

∥∥∥∥∥x(n)−X
∥∥∥

≤
∥∥G4

∥∥∥∥∥x(n−1)−X
∥∥∥≤ ...≤

∥∥G2n
∥∥∥∥∥x(1)−X

∥∥∥
⇒
∥∥∥x(n+1)−X

∥∥∥≤ ∥∥G2n
∥∥∥∥∥x(1)−X

∥∥∥= ‖G‖2n
∥∥∥x(1)−X

∥∥∥
Again let us consider second-refinement of generalized Jacobi method:
⇒ x(n+1) = G3x(n)+K⇒ x(n+1)−X = G3x(n)−X +K
⇒ x(n+1)−X = G3(x(n)−X)+G3X +K−X
⇒ x(n+1)−X = G3(x(n)−X)

⇒
∥∥∥x(n+1)−X

∥∥∥= ∥∥∥G3(x(n)−X)
∥∥∥≤ ‖G‖∥∥∥x(n)−X

∥∥∥
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≤
∥∥G6

∥∥∥∥∥x(n−1)−X
∥∥∥≤ ...≤

∥∥G3n
∥∥∥∥∥x(1)−X

∥∥∥
⇒
∥∥∥x(n+1)−X

∥∥∥≤ ∥∥G3n
∥∥∥∥∥x(1)−X

∥∥∥= ‖G‖3n
∥∥∥x(1)−X

∥∥∥
According to the coefficients of the above inequalities, we have ‖G‖3n <

‖G‖2n < ‖G‖n since ‖G‖< 1.
Therefore, the second-refinement of generalized Jacobi method con-
verges faster than the generalized Jacobi method and refinement of gen-
eralized Jacobi method.

7. NUMERICAL EXAMPLES

Example 7.1: Consider the following system of linear equations whose
coefficient matrix is both SDD and SPD with tolerance 0.0001.

6x1 +2x2 +2x3 = 5
2x1 +8x2 +2x3 = 6
2x1 +2x2 +10x3 = 7

Let us consider spectral radius and solution

TABLE 1. Spectral Radius

Method J GJ RGJ SRGJ
Spectral radius 0.5146 0.2972 0.0884 0.0263

Table 1 shows that the SRGJ method has small spectral radius than J, GJ
and RGJ whereas Table 2 shows that the second- refinement of general-
ized Jacobi (SRGJ) iterative method is much better than generalized Ja-
cobi (GJ) method and refinement of generalized Jacobi (RGJ) method.
We think that it is almost half of faster than generalized Jacobi (GJ)
method.

Example 7.2: Consider the following system of linear equations whose
coefficient matrix is SDD but not SPD with tolerance 0.0001.

6x1 +4x2− x3 = 9
3x1 +7x2 +2x3 = 12
−4x1 +3x2 +8x3 = 7

Let us consider the spectral radius and solution:
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TABLE 2. Numerical results of example 7.1 and com-
parison between GJ, RGJ and SRGJ.

G
J

R
G

J
SR

G
J

n
x 1

(n
)

x 2
(n
)

x 3
(n
)

x 1
(n
)

x 2
(n
)

x 3
(n
)

x 1
(n
)

x 2
(n
)

x 3
(n
)

0
0

0
0

0
0

0
0

0
0

1
0.

69
23

0.
42

31
0.

61
54

0.
45

41
0.

52
22

0.
45

71
0.

51
66

0.
49

32
0.

51
05

2
0.

45
41

0.
52

22
0.

45
71

0.
49

58
0.

50
20

0.
49

63
0.

49
96

0.
50

02
0.

49
92

3
0.

51
66

0.
49

32
0.

51
03

0.
49

96
0.

50
02

0.
49

92
0.

50
00

0.
50

00
0.

50
00

4
0.

49
58

0.
50

20
0.

49
63

0.
50

00
0.

50
00

0.
50

00
5

0.
50

14
0.

49
94

0.
50

10
6

0.
49

96
0.

50
02

0.
49

97
7

0.
50

01
0.

49
99

0.
50

01
8

0.
50

00
0.

50
00

0.
50

00

TABLE 3. Spectral radius

Method J GJ RGJ SRGJ
Spectral radius 0.7937 0.4844 0.2346 0.1136

Table 3 shows that the SRGJ has small spectral radius than J, GJ and
RGJ whereas Table 4 shows that the second- refinement of generalized
Jacobi (SRGJ) iterative method is much better than generalized Jacobi
(GJ) method and refinement of generalized Jacobi (RGJ) method. We
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TABLE 4. Numerical results of example 7.2 and com-
parison between GJ, RGJ and SRGJ.

G
J

R
G

J
SR

G
J

n
x 1

(n
)

x 2
(n
)

x 3
(n
)

x 1
(n
)

x 2
(n
)

x 3
(n
)

x 1
(n
)

x 2
(n
)

x 3
(n
)

0
0

0
0

0
0

0
0

0
0

1
0.

59
80

1.
35

29
0.

36
76

0.
78

20
1.

16
90

0.
73

57
0.

90
10

1.
08

24
0.

86
01

2
0.

78
20

0.
16

90
0.

73
57

0.
95

02
1.

03
98

0.
93

56
0.

98
84

1.
00

93
0.

98
47

3
0.

90
10

1.
08

24
0.

86
01

0.
98

84
1.

00
93

0.
98

47
0.

99
87

1.
00

11
0.

99
82

4
0.

95
02

1.
03

98
0.

93
56

0.
99

73
1.

00
22

0.
99

64
0.

99
99

1.
00

01
0.

99
98

5
0.

97
64

1.
01

93
0.

96
99

0.
99

94
1.

00
05

0.
99

92
1.

00
00

1.
00

00
1.

00
00

6
0.

98
84

1.
00

93
0.

98
47

0.
99

99
1.

00
01

0.
99

98
7

0.
99

44
1.

00
45

0.
99

25
1.

00
00

1.
00

00
1.

00
00

8
0.

99
73

1.
00
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0.

99
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0.

99
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1.
00
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0.

99
82

10
0.

99
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1.
00

05
0.

99
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0.

99
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1.
00
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01
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13
0.

99
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1.
00

01
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99
99

14
1.

00
00

1.
00

00
1.

00
00

can also compare the iteration number, i.e, GJ at 14, RGJ at 7 and SRGJ
at 5. So our new method is better than others.

Example 7.3: Consider the following system of linear equations whose
coefficient matrix is SPD but not SDD with tolerance 0.0001.

6x1 +4x2 +3x3 = 13
4x1 +5x2 +2x3 = 11
3x1 +2x2 +2x3 = 7



SECOND REFINEMENT OF GENERALIZED JACOBI ITERATIVE METHOD . . . 129

Let us consider the spectral radius and solution:

TABLE 5. Spectral radius

Method J GJ RGJ SRGJ
Spectral radius 1.4900 12.8739 165.7364 2133.6854

The iterative solution of the above equation diverges from the exact so-
lution. The system has no solution when we apply Generalized Jacobi
method, refinement of generalized Jacobi method and second refine-
ment of generalized Jacobi method. Since the eigenvalues of iteration
matrix is greater than one. We know that the Jacobi method to be con-
vergent the matrix should satisfy the following conditions:

(1) A must be SPD, and
(2) 2Tm−A must be SPD

Example 7.4: Consider the following system of linear equations whose
coefficient matrix is SDD but not PD and SPD with tolerance 0.0001.

5x1 +3x2 + x3 = 9
4x1−6x2 + x3 =−1
2x1 + x2 +4x3 = 7

Let us consider the spectral radius and solution:

TABLE 6. Spectral radius

Method J GJ RGJ SRGJ
Spectral radius 0.6227 0.2939 0.0863 0.0254

Table 6 shows spectral radius of the methods whereas Table 7 shows that
the Second- Refinement of Generalized Jacobi (SRGJ) iterative method
is much better than Generalized Jacobi (GJ) method and Refinement of
Generalized Jacobi (RGJ) method. We can also conclude that SRGJ
method minimizes iteration number to half as compared to GJ method.

Example 7.5: Consider the following system whose coefficient matrix
is an M-matrix (or 2-cyclic matrix ), which arises from the discretization
of the Poissons equation ∂ 2T

∂x2 +
∂ 2T
∂y2 = f , on the unit square as considered

by Vatti and Genanew [11], Datta [2] and Dafchahi [1], with tolerance
0.00001. Now consider AX = b where m = 1, X = (x1 x2 x3 x4 x5 x6)

T

and b = (1 0 0 0 0 0)T or
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TABLE 7. Numerical results of example 7.4 and com-
parison between GJ, RGJ and SRGJ.

G
J

R
J

SR
J
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x 1

(n
)

x 2
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x 3
(n
)

x 1
(n
)
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(n
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(n
)

x 2
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)

x 3
(n
)

0
0

0
0
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0
0

0
0
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99
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1.
00

00
1.

00
00

1.
00

00
5

1.
00

00
1.

00
04

1.
00

20
6

0.
99

97
0.

99
98

1.
00

00
7

1.
00

00
1.

00
00

1.
00

01
8

1.
00

00
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00
00

1.
00

00


4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 0 0 −1
−1 0 0 4 −1 0
0 −1 0 −1 4 −1
0 0 −1 0 −1 4




x1
x2
x3
x4
x5
x6

=


1
0
0
0
0
0


Let us consider the spectral radius and solution:
(b).
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TABLE 8. Spectral radius

Method J GJ RGJ SRGJ
Spectral radius 0.6036 0.3867 0.1496 0.0578

TABLE 9. (a) Numerical results of example 7.5 and
comparison between GJ, RGJ and SRGJ.

GJ, for m = 1
n x1

(n) x2
(n) x3

(n) x4
(n) x5

(n) x6
(n)

0 0 0 0 0 0 0
1 0.2679 0.0714 0.0179 0 0 0
2 0.2679 0.0714 0.0179 0.0772 0.0408 0.0147
3 0.2917 0.0897 0.0261 0.0772 0.0408 0.0147
4 0.2917 0.0897 0.0261 0.0850 0.0483 0.0186
5 0.2944 0.0926 0.0278 0.0850 0.0483 0.0186
6 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193
7 0.2948 0.0931 0.0281 0.0860 0.0495 0.0193
8 0.2948 0.0931 0.0281 0.0861 0.0497 0.0194
9 0.2948 0.0932 0.0281 0.0861 0.0497 0.0194

10 0.2948 0.0932 0.0281 0.0861 0.0497 0.0195
11 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195

RGJ Iterative method, for m = 1
n x1

(n) x2
(n) x3

(n) x4
(n) x5

(n) x6
(n)

0 0 0 0 0 0 0
1 0.2679 0.0714 0.0179 0.0772 0.0408 0.0147
2 0.2917 0.0897 0.0261 0.0850 0.0483 0.0186
3 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193
4 0.2948 0.0931 0.0281 0.0861 0.0497 0.0194
5 0.2948 0.0932 0.0281 0.0861 0.0497 0.0195
6 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195

(c).

SRGJ Iterative method, for m = 1
n x1

(n) x2
(n) x3

(n) x4
(n) x5

(n) x6
(n)

0 0 0 0 0 0 0
1 0.2917 0.0897 0.0261 0.0772 0.0408 0.0147
2 0.2944 0.0926 0.0278 0.0860 0.0495 0.0193
3 0.2948 0.0932 0.0281 0.0861 0.0497 0.0194
4 0.2948 0.0932 0.0282 0.0861 0.0497 0.0195
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Table 8 shows spectral radius of the methods whereas Table 9(a)-(c)
shows that the second- refinement of generalized Jacobi (SRGJ) iter-
ative method is much better than generalized Jacobi (GJ) method and
refinement of generalized Jacobi (RGJ) method. So our new method is
better than the others.

4. CONCLUDING REMARKS

Since the rate of convergence of stationary iterative process depends
on spectral radius of the iterative matrix, any reasonable modification
of iterative matrix that will reduce the spectral radius and increases the
rate of convergence of that method. We can give the general conclusion
by using table:

TABLE 10. Summary for Example 7.1. to 7.3.

Examples
7.1 7.2 7.3

Number Spectral Number Spectral Number Spectral
Methods of Radius of Radius of Radius

Iterations Iterations Iterations
J 15 0.5146 37 0.7937 - 1.4900

RJ 8 0.2649 18 0.6294 - 2.2202
SRJ 5 0.1362 12 0.5000 - 3.3082
GJ 8 0.2972 14 0.4844 - 12.874

RGJ 4 0.0884 7 0.2346 - 165.74
SRGJ 3 0.0263 5 0.1136 - 2133.7

TABLE 11. Summary for Example 7.4. to 7.5.

Examples
7.4 7.5

Number Spectral Number Spectral
of Radius of Radius

Iterations Iterations
J 23 0.6227 19 0.6036

RJ 12 0.3879 10 0.3643
SRJ 8 0.2415 7 0.2199
GJ 8 0.2939 11 0.3867

RGJ 4 0.0863 6 0.1496
SRGJ 3 0.0254 4 0.0578

In this paper, we found for m = 1 that second-refinement of gener-
alized Jacobi iterative method for solving linear system of equations
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which uses to minimize the number of iteration almost by half as com-
pared to generalized Jacobi iterative method and the rate of convergence
of second-refinement of generalized Jacobi is more than the others and
it has smallest spectral radius. This means that the new method that
we found is much fastest than Jacobi and refinement of Jacobi method.
More over one can find for m = 2, 3, ...
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