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FINITE ELEMENT METHOD FOR SECOND ORDER

NONLINEAR PARABOLIC INTERFACE PROBLEMS

MATTHEW O. ADEWOLE

ABSTRACT. Parabolic interface problems are frequently en-
countered as models of real life situations and in scientific com-
puting. In this paper, we present the error analysis of a sec-
ond order nonlinear parabolic interface problem with Finite Ele-
ment Method-Backward Difference Scheme (FEM-BDS). Quasi-
uniform triangular elements are used for the spatial discretiza-
tion and a three-step linearized scheme is proposed for the time
discretization. The stability of the scheme is established and an
almost optimal convergence rate is obtained. We also establish
that the discrete solution reproduce the maximum principle un-
der certain conditions. Numerical experiments are presented to
support the theoretical results. It is assumed that the solution
is of low regularity across the interface and the interface cannot
be fitted exactly.
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1. INTRODUCTION

Nonlinear parabolic interface problems appear in various branches
of material science, population growth, nonlinear problems of heat
and mass transfer, biochemistry, multiphase flow in porous media,
etc. often when two or more different materials are involved with
different conductivities, diffusion constants or densities [8, 14, 22,
25]. The solutions of interface problems may have higher regular-
ities in each individual material region than in the entire physical
domain because of the discontinuities across the interface [19] and
as a result of this, achieving higher order accuracy may be difficult.
Many contributions have been made towards the development

of conforming finite element method (FEM) for linear parabolic
interface problems eg. [2, 3, 11, 15, 16, 17] to mention recent works.
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In this work, we study the nonlinear parabolic equation

ut −∇ · (a(x, u)∇u) + b(x, u)u = f(t, x) in Ω× (0, T ] (1)

with initial and boundary conditions{
u(x, 0) = u0(x) in Ω
u(x, t) = 0 on ∂Ω × [0, T ]

(2)

and interface conditions⎧⎨
⎩

[u]Γ = 0[
a(x, u)

∂u

∂n

]
Γ

= g(t, x)
(3)

where 0 < T <∞ and Ω is a convex polygonal domain in R
2 with

boundary ∂Ω. Ω1 ⊂ Ω is an open domain with smooth boundary
Γ = ∂Ω1, Ω2 = Ω \ Ω̄1 is another open domain contained in Ω with
boundary Γ ∪ ∂Ω, see Figure 1. The symbol [u] is a jump of a
quantity u across the interface Γ and is defined as the difference
of the limiting values from each side of the interface. n is the unit
outward normal to the boundary Γ.

Fig. 1. A polygonal domain Ω = Ω1 ∪ Ω2 with interface Γ.

Semilinear parabolic interface problem has been discussed in [25].
With time discretization based on implicit Euler scheme, the au-
thors obtained a convergence rate of optimal order in H1(Ω) norm.
They assumed that Ω is a convex polygon in R

2 with C2 bound-
ary and the mesh can be fitted exactly to the arbitrary interface,
however, it is very difficult to generate a grid which exactly follows
the actual interface in practice. Convergence of the finite element
solution of a class of nonlinear parabolic interface problems was
studied in [28]. The author focused on the fully discrete approxi-
mation and used a linearized 2-step backward difference scheme for
the time discretization while piecewise linear interpolation was used
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to approximate the interface. With the assumption that the coef-
ficient a(u) is positive and smooth with respect to u ∈ R but not
continuous across the interface, the author proved a convergence
rate of almost optimal order in the L2-norm.
In [21], we studied the finite element solution of a class of nonlin-

ear parabolic interface problems. We obtained regularity estimates
which were used to establish convergence rates of almost optimal
order in H1(Ω)-norm for both semi and full discretizations of the
problem. Implicit Euler scheme was used for the time discretization
and the implementation was based on predictor-corrector method
due to the nonlinear terms. This made the scheme computation-
ally time consuming. Anti-symmetric interior penalty discontinu-
ous Galerkin method was proposed in [26] for the solution of nonlin-
ear parabolic interface problem. Again the time discretization was
based on a second-order linearized backward difference scheme. Use
was made of over-penalyzed method to improve the L2-norm error
to optimal order with the assumption that the diffusion coefficient is
only continuous on each sub-domain and the interface could be fit-
ted exactly (using triangles with curved edges). In [4], we analyzed
a semidiscrete scheme for a class of nonlinear parabolic interface
problems and we presented the solution of a second-order nonlinear
parabolic interface problem with nonlinear source term on a quasi-
uniform triangular elements in [5]. A four-step linearized implicit
scheme was proposed for the time discretization and convergence
rate of almost optimal order in L2-norm was obtained because the
mesh could perfectly match the interface.
The discretization of (1)−(3) results to a system of nonlinear al-

gebraic equations as a result of a(x, u) and b(x, u). To avoid this
difficulty, we propose a linearized 3-step time discretization scheme
for the problem. Earlier work on this subject had focused on the
convergence in much weaker norm, ie, L2-norm however, in this
work, we establish the stability of the scheme and show that al-
most optimal order of convergence in the H1(Ω)-norm could be
obtained when the mesh cannot exactly fit the interface. In terms
of matrices arising in the scheme, we show that the scheme pre-
serves the maximum principle under certain conditions. Numerical
experiments are presented to support the theoretical results.
For our analysis, we impose the following
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Assumption 1:

(1) Ω is a bounded convex polygonal domain in R
2, the interface

Γ and the boundary ∂Ω are piecewise smooth, Lipschitz
continuous and 1-dimensional.

(2) g(t, x) ∈ L2(0, T ;H2(Γ)) ∩H1(0, T ;H1/2(Γ)),
f(t, x) ∈ H1(0, T ;H−1(Ω)). Functions a(x, ξ) : Ω× R → R

and b(x, ξ) : Ω × R → R are measurable with respect to
x ∈ Ωi (i = 1, 2), and satisfy

ai(x, ξ) ≥ μ1, bi(x, ξ) ≥ μ1, ‖ai(x, 0)‖L∞(Ω) ≤ μ2,

‖bi(x, 0)‖L∞(Ω) ≤ μ3,

|ai(x, ξ)− ai(x, ψ)|+ |bi(x, ξ)− bi(x, ψ)| ≤ μ4‖ξ − ψ‖L2(Ωi),

for ξ, ψ ∈ R, x ∈ Ωi, t ∈ R
+ with positive constants μ1, μ2

and μ3 independent of t, x, ξ, ψ.

In this study, we use the standard notations and properties of
Sobolev spaces as contained in [1]. Other tools used in this paper
are the linear theories of interface and non-interface problems, as
well as approximation properties of linear interpolation and projec-
tion operators.

We shall need the following space

X = H1(Ω) ∩H2(Ω1) ∩H2(Ω2)

which is equipped with the norm

‖v‖X = ‖v‖H1(Ω) + ‖v‖H2(Ω1) + ‖v‖H2(Ω2) ∀ v ∈ X

The weak form of (1)−(3) is:
Find u(t) ∈ H1

0 (Ω), t ∈ (0, T ] such that

(ut, v) + A(u : u, v) = (f, v) + 〈g, v〉Γ ∀ v(t) ∈ H1
0 (Ω), t ∈ (0, T ]

(4)
where

(φ, ψ) =

∫
Ω

φψ dx, 〈φ, ψ〉Γ =

∫
Γ

φψ ds,

A(ξ : φ, ψ) =

∫
Ω

[a(x, ξ)∇φ · ∇ψ + b(x, ξ)φψ] dx.

For (4), we have the following regularity estimates
Lemma 1: Suppose the conditions of Assumption 1 are satisfied
for every a : Ω × R → R, b : Ω × R → R, f : R+ × Ω → R and
g ∈ H1(0, T ;H1/2(Γ)), there exists a constant C depending on μ1,
μ2, μ3, μ4, T and Ω such that

‖u‖L2(0,T ;X) ≤ C
(
‖g‖H1(0,T ;H1/2(Γ)) + ‖u0‖X + ‖f‖H1(0,T ;L2(Ω))

)
,
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for u(t) ∈ X ∩H1
0 (Ω).

Proof: It follows from [21].
This paper is organized as follows. In Section 2, we describe a

finite element discretization of the problem and state some auxil-
iary results. In Section 3, we give the discrete version of (4) then
establish the stability and convergence rate of almost optimal order
of the scheme. Discrete maximum principle of the scheme is estab-
lished in Section 4 and conclusion is made in Section 5. Throughout
this paper, C is a generic positive constant (which is independent
of the mesh parameter h and the time step size k) and may take
on different values at different occurrences.

2. FINITE ELEMENT DISCRETIZATION

We adopt the standard finite element discretization used in [2, 9].
Th denotes a partition of Ω into disjoint triangles K (called ele-
ments) such that no vertex of any triangle lies on the interior or
side of another triangle. The domain Ω1 is approximated by a do-
main Ωh

1 with a polygonal boundary Γh whose vertices all lie on
the interface Γ. Ωh

2 represents the domain with ∂Ω and Γh as its
exterior and interior boundaries respectively.
Let hK be the diameter of an elementK ∈ Th and h = maxK∈Th hK .

Let T �
h denote the set of all elements that are intersected by the

interface Γ;
T �
h = {K ∈ Th : K ∩ Γ �= ∅}

K ∈ T �
h is called an interface element and we write Ω�

h =
⋃

K∈T �
h
K.

The triangulation Th of the domain Ω satisfies the following condi-
tions

• Ω̄ =
⋃

K∈Th

K̄

• If K̄1, K̄2 ∈ Th and K̄1 �= K̄2, then either K̄1 ∩ K̄2 = ∅ or
K̄1 ∩ K̄2 is a common vertex or a common edge.

• Each K ∈ Th is either in Ωh
1 or Ωh

2 , and has at most two
vertices lying on Γh.

• For each element K ∈ Th, let rK and r̄K be the diameters
of its inscribed and circumscribed circles respectively. It is
assumed that, for some fixed h0 > 0, there exist two positive
constants C0 and C1, independent of h, such that

C0rK ≤ h ≤ C1r̄K ∀ h ∈ (0, h0)

Let Sh ⊂ H1
0 (Ω) denote the space of continuous piecewise linear

functions on Th vanishing on ∂Ω.
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The FE solution uh(x, t) ∈ Sh is represented as

uh(x, t) =

Nh∑
j=1

αj(t)φj(x) ,

where each basis function φj , (j = 1, 2, . . . , Nh) is a pyramid func-
tion with unit height. For the approximation gh of g, let {zj}nh

j=1 be
the set of all nodes of the triangulation Th that lie on the interface
Γ and {ψj}nh

j=1 be the hat functions corresponding to {zj}nh
j=1 in the

space Sh, then

gh(x, t) =

nh∑
j=1

βj(t)ψj(x) .

We recall some existing results which will be used in our analysis.
Lemma 2: Let Ω�

h be the union of all interface elements, f ∈ H2(Ω)
and g ∈ H2(Γ), we have

‖v‖H1(Ω�
h)

≤ Ch1/2‖v‖X ∀ v ∈ X (5)

|〈g, vh〉Γ − 〈gh, vh〉Γh
| ≤ Ch3/2‖g‖H2(Γ)‖vh‖H1(Ω�

h)
∀ vh ∈ Sh (6)

|(f, φ)− (f, φ)h| ≤ Ch2‖f‖H2(Ω)‖φ‖H1(Ω) ∀ φ ∈ Sh (7)

Proof: See [24] for (5), See [9] for (6) and [27, Chapter 6] for (7).
For u ∈ H1(Ω), the boundary value of u (ie u|∂Ω) is defined on

H1/2(∂Ω) the trace space ofH1(Ω). Similarly, the trace space on the
interface Γ is H1/2(Γ). The trace operator from H1(Ω) to H1/2(∂Ω)
is continuous and satisfies the embedding

‖z‖L2(∂Ω) ≤ ‖z‖H1/2(∂Ω) ≤ c0‖z‖H1(Ω) ∀ z ∈ H1(Ω) (8)

See [1, 12, 6] for more information on trace operator.
Let Ph : X ∩H1

0 (Ω) → Sh be the elliptic projection of the exact
solution ν in Sh defined by

Ah(u : Phν, φ) = A(u : ν, φ) ∀ φ ∈ Sh, t ∈ [0, T ] (9)

It follows that there exists C > 0, such that

‖Phν‖H1(Ω) ≤ C‖ν‖H1(Ω) ∀ ν ∈ H1(Ω)

For this projection, we have
Lemma 3: Let a(x, u) and b(x, u) satisfy Assumption 1. Assume
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that u ∈ X ∩H1
0 and let Phu be defined as in (9), then

‖Phu− u‖H1(Ω) ≤ Ch

(
1 +

1

| logh|

)1/2

‖u‖X

‖Phu− u‖L2(Ω) ≤ Ch2
(
1 +

1

| log h|

)
‖u‖X

‖(Phu− u)t‖H1(Ω) ≤ Ch

(
1 +

1

| logh|

)1/2

(‖u‖X + ‖ut‖X)

‖(Phu− u)t‖L2(Ω) ≤ Ch2
(
1 +

1

| log h|

)
(‖u‖X + ‖ut‖X)

Proof It can be proved in the similar version to [5, Lemmas 2.5
and 2.5] but with little modification due to different assumptions
on a(x, u) and b(x, u).
Remark 1: The term | log h| in Lemma 3 is due to the fact that
the mesh cannot perfectly fit the interface. However, with the as-
sumption that the interface can be fitted exactly using interface
elements with curved edges, optimal convergence rate is possible
(see [23] for example).

3. ERROR ESTIMATE

In this section, we establish the stability of the proposed fully
discrete scheme and obtain almost optimal order error estimate in
H1(Ω)-norm.
The interval [0,T] is divided into M equally spaced (for simplicity)
subintervals:

0 = t0 < t1 < . . . < tM = T

with tn = nk, k = T/M being the time step. Let

un = u(x, tn) and gn = g(x, tn) .

For a given sequence {wn}Mn=0 ⊂ L2(Ω), we have the backward
difference quotient defined by

∂3wn =
11wn − 18wn−1 + 9wn−2 − 2wn−3

6k
, n = 3, 4, 5, . . . ,M

The fully discrete finite element approximation to (4) is defined as
follows: Let U0

h = Phu0, find U
n
h ∈ Sh, such that

(∂3Un
h , vh)h + Ah(3U

n−1
h − 3Un−2

h + Un−3
h : Un

h , vh)

= (f(tn, x), vh)h + 〈gnh , vh〉Γh
∀ vh ∈ Sh, n = 4, 5, . . . ,M (10)
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where Ah(η : φ, ψ) and (ψ, vh)h are defined as

Ah(η : φ, ψ) =
∑
K∈Th

∫
K

[a(x, η)∇φ · ∇ψ + b(x, η)φψ] dx

(ψ, φ)h =
∑
K∈Th

∫
K

ψφ dx

∀ φ, ψ ∈ H1(Ω), t ∈ [0, T ] and are obtained by numerical quad-
rature. See [10] for information on numerical integration on finite
elements.
(10) is zero-stable. To see this, we obtain the first characteristic

polynomial

ρ(y) =
11

6
y3 − 3y2 +

3

2
y − 1

3
.

The roots of this polynomial have modulli less than one and the
roots with modulus one are simple. See Lambert [20] for more
information on zero-stability.

The analysis of this work is done with the assumption that
∂4u

∂t4
exists. It can be shown using Taylor expansion that{

‖Un
h − 2Un−1

h + Un−2
h ‖L2(Ω) ≤ (Δt)2λ0

‖Un
h − 3Un−1

h + 3Un−2
h − Un−3

h ‖L2(Ω) ≤ (Δt)3λ1,
(11)

where λ0, λ1 ≥ 0. We have the following stability estimate:
Lemma 4: Suppose the conditions of Assumption 1 are satisfied
for a, b, f and g. Let k

h2 be sufficiently small, there exists a constant
C independent of h ∈ (0, 1) and k such that, for the solution of (10),

‖Un
h ‖2H1(Ω) ≤ C‖U2

h‖2H1(Ω)

+ C

∫ tn

t2

[
‖g‖2H1/2(Γ) + h2‖g‖2H2(Γ) + ‖f‖2L2(Ω) + k2

]
dt

n = 3, 4, 5, . . . ,M. (12)

Proof: Take vh = ∂3Un
h in (10),

‖∂3Un
h ‖2L2(Ω) +

μ1

k
‖Un

h ‖2H1(Ω)

≤
(
λ0k

3
+
λ1
2

)
μ1k‖Un

h ‖H1(Ω) +
μ1

k
‖Un−1

h ‖H1(Ω)‖Un
h ‖H1(Ω)

+ ‖f(tn, x)‖L2(Ω)‖∂3Un
h ‖L2(Ω) + C‖gn‖H1/2(Γ)‖∂3Un

h ‖H1(Ω)

+ Ch2‖gn‖H2(Γ)‖∂3Un
h ‖H1(Ω)
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We use (5), (6), (8) and (11) to obtain the last inequality. By inverse
estimate [7, Theorem 4.5.11] and Young’s inequality, we obtain, for
k
h2 sufficiently small,

‖Un
h ‖2H1(Ω) ≤ (1 + Ck)‖Un−1

h ‖2H1(Ω)

+ Ck
[
‖gn‖2H1/2(Γ) + h2‖gn‖2H2(Γ) + ‖f(tn, x)‖2L2(Ω) + k2

]
(12) follows by iteration on n.
Remark 2: The scheme (10) is not self-starting. The initial
two values can be obtained using lower-order time discretization
schemes:

(∂1U1
h , vh)h + Ah(U

0
h : U1

h , vh)

= (f(t1, x, U
0
h), vh)h + 〈g1h, vh〉Γh

∀ vh ∈ Sh (13)

(∂2U2
h , vh)h + Ah(2U

1
h − U0

h : U2
h , vh)

= (f(t2, x, 2U
1
h − U0

h), vh)h + 〈g2h, vh〉Γh
∀ vh ∈ Sh, (14)

where

∂1w1 =
w1 − w0

k

∂2w2 =
3w2 − 4w1 + w0

2k

However, this doesn’t affect the stability of the scheme. In fact,
using (13)−(14) together with (10), (12) becomes

‖Un
h ‖2H1(Ω) ≤ C‖U0

h‖2H1(Ω)

+ C

∫ tn

t0

[
‖g‖2H1/2(Γ) + h2‖g‖2H2(Γ) + ‖f‖2L2(Ω) + k2

]
dt

n = 1, 2, 3, . . . ,M.

The main result below establishes the convergence of the scheme
(10) to the exact solution in H1(Ω)-norm.
Theorem 1: Let un and Un

h be the solutions of (4) and (10) re-
spectively at tn. Suppose that the conditions of Assumption 1 are

satisfied for every a, b, f , g and
∂4u

∂t4
is defined for Ω × [0, T ].

There exists a positive constant C independent of h ∈ (0, h0) and
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k ∈ [0, k0) such that

‖un − Un
h ‖H1(Ω) ≤ C

2∑
i=0

‖ui − U i
h‖H1(Ω)

+

[
k3 + h

(
1 +

1

| log h|

)1/2
]
C(u, g, f),

n = 3, 4, 5, . . .

Proof: Let zn = Phu
n−Un

h . From (4) and (10) using (9), we have

(∂3zn, vh)h + Ah(3U
n−1
h − 3Un−2

h + Un−3
h ; zn, vh)

= (∂3(Phu
n − un), vh)h + (∂3un − unt , vh) + (∂3un, vh)h − (∂3un, vh)

+ (f(tn, x), vh)− (f(tn, x), vh)h + 〈gn, vh〉Γ − 〈gnh , vh〉Γh

+ Ah(3U
n−1
h − 3Un−2

h + Un−3
h : Phu

n, vh)− Ah(u
n : Phu

n, vh)

After a simple calculation using Young’s inequality with vh = ∂3zn,
we have

‖∂3zn‖2L2(Ω) +
μ1

2k
‖zn‖2H1(Ω)

≤ 3μ1

k

2∑
j=0

{
‖zn−j−1‖2H1(Ω) + ‖zn−j − zn−j−1‖2H1(Ω)

}
+ B1 +B2 +B3 (15)

where

B1 = (∂3(Phu
n − un), ∂3zn)h + (∂3un − unt , ∂

3zn) + (∂3un, ∂3zn)h

−(∂3un, ∂3zn),

B2 = (f(tn, x), ∂
3zn)− (f(tn, x), ∂

3zn)h + 〈gn, ∂3zn〉Γ
−〈gnh , ∂3zn〉Γh

+ μ1λ1k
3‖zn‖L2(Ω)‖∂3zn‖L2(Ω),

B3 = Ah(3U
n−1
h − 3Un−2

h + Un−3
h : Phu

n, ∂3zn)

−Ah(u
n : Phu

n, ∂3zn).

B1 ≤ ε‖∂3(Phu
n − un)‖2L2(Ω) +

3

4ε
‖∂3zn‖2L2(Ω) + ε‖∂3un − unt ‖2L2(Ω)

+Cεh2‖∂3un‖2X (16)

use is made of inverse estimate and (7) to obtain the last inequality.
Using Lemma 2 with the fact that Dαzn = 0 for |α| = 2, we have

B2 ≤ Ch2‖f(tn, x)‖H2(Ω)‖∂3zn‖H1(Ω) + Ch2‖gn‖H2(Γ)‖∂3zn‖H1(Ω)

+ μ1λ1k
3‖zn‖L2(Ω)‖∂3zn‖L2(Ω).
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By inverse estimate,

B2 ≤ Ch‖f(tn, x)‖H2(Ω)‖∂3zn‖L2(Ω) + Ch‖gn‖H2(Γ)‖∂3zn‖L2(Ω)

+ μ1λ1k
3‖zn‖L2(Ω)‖∂3zn‖L2(Ω)

≤ Cεh2‖f(tn, x)‖2H2(Ω) +
3

4ε
‖∂3zn‖2L2(Ω) + Cεh2‖gn‖H2(Γ)

+ μ2
1λ

2
1k

6ε‖zn‖2L2(Ω). (17)

By Assumption 1

B3 ≤ |a(x, 3Un−1
h − 3Un−2

h + Un−3
h )− a(x, un)|

×‖Phu
n‖H1(Ω)‖∂3zn‖H1(Ω) dx

≤ μ4‖(3Un−1
h − 3Un−2

h + Un−3
h )− un‖L2(Ω)

×‖Phu
n‖H1(Ω)‖∂3zn‖H1(Ω) dx

≤ μ4λ1k
3‖Phu

n‖H1(Ω)‖∂3zn‖H1(Ω)

+ μ4‖Phu
n − un‖L2(Ω)‖Phu

n‖H1(Ω)‖∂3zn‖H1(Ω)

+ μ4‖zn‖L2(Ω)‖Phu
n‖H1(Ω)‖∂3zn‖H1(Ω)

≤ C‖zn‖2L2(Ω)‖un‖2H1(Ω) +
3

4
‖∂3zn‖2H1(Ω)

+ Ch4
(
1 +

1

| log h|

)2

‖un‖2X‖un‖2H1(Ω) + Ck6‖un‖2H1(Ω) (18)

Substitute (16)−(18) into (15), with ε = 6 and k
h2 sufficiently small,

μ1

2k
‖zn‖2H1(Ω) ≤ 3μ1

k

2∑
j=0

{
‖zn−j−1‖2H1(Ω) + ‖zn−j − zn−j−1‖2H1(Ω)

}
+ 6‖∂3(Phu

n − un)‖2L2(Ω) + 6‖∂4un − unt ‖2L2(Ω)

+ Ch4
(
1 +

1

| log h|

)2

‖un‖2X‖un‖2H1(Ω)

+ Ch2
(
‖gn‖2H2(Γ) + ‖f(tnx)‖2H2(Ω) + ‖∂3un‖2X

)
+ C

(
k6 + ‖un‖2H1(Ω)

)
‖zn‖2L2(Ω) + Ck6‖un‖2H1(Ω) ,

therefore,

(1− c2k) ‖zn‖2H1(Ω) ≤ C
2∑

j=0

{
‖zn−j−1‖2H1(Ω) + ‖zn−j − zn−j−1‖2H1(Ω)

}
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+ C
[
k‖∂3(Phu

n − un)‖2L2(Ω) + k‖∂3un − unt ‖2L2(Ω)

]
+ Ch4k

(
1 +

1

| log h|

)2

‖un‖2X‖un‖2H1(Ω)

+ Ch2k
(
‖gn‖2H2(Γ) + ‖f(tnx)‖2H2(Ω) + ‖∂3un‖2X

)
+ Ck7‖un‖2H1(Ω)

where c2 = C
(
k6 + ‖un‖2H1(Ω)

)
.

For 0 < k < min

{
1,

1

c2

}
, there is a C > 0 such that

(1− c2k)
−1 ≤ C, and therefore

‖zn‖2H1(Ω) ≤ C

2∑
j=0

{
‖zn−j−1‖2H1(Ω) + ‖zn−j − zn−j−1‖2H1(Ω)

}

+ C
[
k‖∂3(Phu

n − un)‖2L2(Ω) + k‖∂3un − unt ‖2L2(Ω)

]

+ Ch4k

(
1 +

1

| log h|

)2

‖un‖2X‖un‖2H1(Ω)

+ Ch2k
(
‖gn‖2H2(Γ) + ‖f(tnx)‖2H2(Ω) + ‖∂3un‖2X

)
+ Ck7‖un‖2H1(Ω),

for n = 3, . . . ,M . By iteration on n, we have

‖zn‖2H1(Ω) ≤ C
2∑

i=0

‖zi‖2H1(Ω) + C
n∑

j=3

2∑
i=0

‖zj−i − zj−i−1‖2H1(Ω)

+ Ck

n∑
j=3

‖∂3(uj − Phu
j)‖2L2(Ω) + Ck7

n∑
j=3

‖uj‖2H1(Ω)

+ Ch4k

(
1 +

1

| log h|

)2 n∑
j=3

‖uj‖2X‖uj‖2H1(Ω)

+ Ch2
n∑

j=3

(
‖gj‖2H2(Γ) + ‖f(tj, x)‖2H2(Ω) + ‖∂3uj‖2X

)

+ Ck

n∑
j=3

‖∂3uj − ujt‖2L2(Ω)
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Using the discrete version of Gronwall’s inequality, we obtain

‖zn‖2H1(Ω) ≤ C

2∑
i=0

‖zi‖2H1(Ω) + Ck

n∑
j=3

‖∂3(uj − Phu
j)‖2L2(Ω)

+ Ch4k

(
1 +

1

| log h|

)2 n∑
j=3

‖uj‖2X‖uj‖2H1(Ω)

+ Ch2
n∑

j=3

(
‖gj‖2H2(Γ) + ‖f(tj, x)‖2H2(Ω) + ‖∂3uj‖2X

)

+ Ck

n∑
j=3

‖∂3uj − ujt‖2L2(Ω) + Ck7
n∑

j=3

‖uj‖2H1(Ω)

After a simple calculation, we have

‖zn‖2H1(Ω) ≤ C
2∑

i=0

‖zi‖2H1(Ω) + Ck6
∫ tn

t2

‖u‖2H1(Ω) dt

+ C

∫ tn

t2

‖(u− Phu)t‖2L2(Ω) dt+ Ck6
∫ tn

t2

‖∂
4u

∂t4
‖2L2(Ω) dt

+ Ch4
(
1 +

1

| log h|

)2 ∫ tn

t2

‖u‖2X‖u‖2H1(Ω) dt

+Ch2
∫ tn

t2

[
‖ut‖2X + ‖g‖2H2(Γ) + ‖f‖2H2(Ω)

]
dt

By triangle inequality and Lemma 3,

‖un − Un
h ‖2H1(Ω)

≤ 2‖un − Phu
n‖2H1(Ω) + 2‖zn‖2H1(Ω)

≤ C

2∑
i=0

‖zi‖2H1(Ω) + Ch2
(
1 +

1

| log h|

)
‖un‖X

+Ck6
(
‖u‖2H1(Ω) +

∫ tn

t2

‖∂
4u

∂t4
‖2L2(Ω)dt

)

+ Ch4
(
1 +

1

| log h|

)2 ∫ tn

t2

[
‖u‖2X‖u‖2H1(Ω) + ‖u‖2X + ‖ut‖2X

]
dt

+Ch2
∫ tn

t2

[
‖ut‖2X + ‖g‖2H2(Γ) + ‖f‖2H2(Ω)

]
dt.
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It is obvious that

h4
(
1 +

1

| lnh|

)2

≤ h2
(
1 +

1

| lnh|

)
⇔ 0 < h < 0.58857838891.

The result follows taking U0
h = Phu0.

3.1. Example

Here, we present examples to verify Theorem 1. Globally continu-
ous piecewise linear finite element functions based on triangulation
described in Section 2 are used. The mesh generation and compu-
tation are done with FreeFEM++ [18].
Example 1: We consider (1)−(3) on the domain Ω = (−1, 1) ×
(−1, 1) where Ω1 is the region 4x2 +16y2 < 1, Ω2 = Ω \Ω1 and the
interface Γ is the ellipse 4x2 + 16y2 = 1 and therefore Γ �= Γh.
For the exact solution, we choose

u =

⎧⎪⎨
⎪⎩

1

8
(1− 4x2 − 16y2)t exp(sin t) in Ω1 × (0, T ]

1

2
(1− x2)(1− y2)(1− 4x2 − 16y2) sin t in Ω2 × (0, T ]

The source function f , interface function g and the initial data u0
are determined from the choice of u with b = 0 and

a =

⎧⎨
⎩

5 in Ω1 × (0, T ]

1

1 + u2
in Ω2 × (0, T ]

Errors in H1-norm at t = 3 for various step size h time step k are
presented in Table 1. The data indicate that

‖Error‖H1(Ω) � 1.07457×10−9+1.50469h0.9823 when k is constant

and

‖Error‖H1(Ω) � 4.32100× 10−2 + 1.14347× 10−3k3.2045

when h is constant

where h = h
(
1 + 1

| log h|

)1/2

.
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Table 1. Error estimates in H1−norm for Example 1.

h Error (k = 0.001)
0.1124 2.118326186× 10−1

0.05807 1.073763139× 10−1

0.02994 5.369577398× 10−2

0.02063 3.593520624× 10−2

k Error (h = 2.429× 10−2)
0.025 4.321003490× 10−2

0.020 4.321003060× 10−2

0.010 4.321002696× 10−2

0.005 4.321002653× 10−2

4. DISCRETE MAXIMUM PRINCIPLE (DMP)

Here, we investigate the DMP of the proposed scheme and show
that the DMP is preserved under certain assumptions.

With vh = φi in (10), we have

M
11
6
un − 3un−1 + 3

2
un−2 − 1

3
un−3

k
+Kun = ln (19)

where

Mij =

∫
Ω

φjφi dx Kij =

∫
Ω

[an∇φj · ∇φi + bnφjφi] dx

lni =

∫
Ω

f(tn, x)φi dx +

∫
Γh

gh(tn, x)φi ds

an = a(x, 3un−1−3un−2+un−3), bn = b(x, 3un−1−3un−2+un−3) .

Let A = M+
6

11
kK, (19) becomes

Aun = M

[
18

11
un−1 − 9

11
un−2 +

2

11
un−3

]
+

6

11
kln (20)

Let Ωij := supp φi ∩ supp φj. If meas(Ωij) > 0 then for regular
meshes [13, pp 157],∫

Ω

φiφj dx ≤ meas(Ωij) ≤ ch2 ,

∫
Ω

∇φi · ∇φj dx ≤ −K0

with some constants K0 > 0 independent of i, j, h and i �= j.
Lemma 5: Suppose a(x, u) and b(x, u) satisfy Assumption 1 for
(x, u) ∈ Ω×R. Let α = μ4‖un‖L2(Ω)+μ2 and β = μ4‖un‖L2(Ω)+μ3.
Let

h < min

{
1,

√
αK0

cβ

}
and k ≥ 11ch2

6(αK0 − βch2)
(21)

then

Aij ≤ 0 , (i �= j, i, j = 1, 2, . . . , Nh). (22)



150 MATTHEW O. ADEWOLE

Proof: From Assumption 1, it is not difficult to see that

|a(x, u)| ≤ μ4‖u‖L2(Ω) + ‖a(x, 0)‖L∞(Ω)

and |b(x, u)| ≤ μ4‖u‖L2(Ω) + ‖b(x, 0)‖L∞(Ω).

The remaining part of the proof follows the same argument as [2,
Lemma 4.1] We define the following

unmin := min{un1 , un2 , . . . , unNh
}, unmax := max{un1 , un2 , . . . , unNh

}

f
(n−1,n)
min := inf

x ∈ Ω
ρ ∈ ((n− 1)k, nk)

f(ρ, x) , f (n−1,n)
max := sup

x ∈ Ω
ρ ∈ ((n− 1)k, nk)

f(ρ, x)

for n = 1, 2, . . . ,M .
Theorem 2: Let the discretization be as in Section 2 and let

(1) Aij ≤ 0 (i �= j, i, j = 1, 2, . . . , Nh)
(2) Mii ≥ 0 (i = 1, 2, . . . , Nh)

then the scheme (10) satisfies

min

{
0,

18

11
un−1
min − 9

11
un−2
max +

2

11
un−3
min

}

+
6

11
kmin

{
0, f

(n−1,n)
min + min

Γ((n−1)k,nk)

gh

}

≤ uni ≤ (23)

max

{
0,

18

11
un−1
max −

9

11
un−2
min +

2

11
un−3
max

}
6

11
kmax

{
0, f (n−1,n)

max + max
Γ((n−1)k,nk)

gh

}

where Γ((n−1)k,nk) := Γh × [(n− 1)k, nk], n = 3, . . . ,M .
Proof: It follows the same argument as [2, Theorem 4.2].
Remark 3: Following the same argument as above, it is not diffi-
cult to obtain from (13) and (14),

min
{
0, u0min

}
+ kmin

{
0, f

(0,1)
min + min

Γ(0,k)

gh

}
≤

u1i ≤ max
{
0, u0max

}
+ kmax

{
0, f (0,1)

max +max
Γ(0,k)

gh

}
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min

{
0,

4

3
u1min −

1

3
u0max

}
+

2

3
kmin

{
0, f

(1,2)
min + min

Γ(k,2k)

gh

}
≤ u2i

≤ max

{
0,

4

3
u1max −

1

3
u0min

}
+

2

3
kmax

{
0, f (1,2)

max + max
Γ(k,2k)

gh

}
We have the following result as a consequence of Theorem 2 and
Remark 3.
Theorem 3: Let the condition of Theorem 2 hold and let
f(t, x) ≥ 0, g(t, x) ≥ 0 and u0 ≥ 0. Then the discrete solution
satisfies

uni ≥ 0 ∀ n = 0, 1, . . . ,M , i = 1, 2, . . . , Nh

4. Numerical Experiment

Here, we give an example to verify Theorem 3. Globally continu-
ous piecewise linear finite element functions based on triangulation
described in Section 2 are used.
Example 2: We consider the nonlinear problem (1)−(3) on Ω ×
(0, T ], where Ω = (−1, 1)× (−1, 1), 0 < T <∞ and the interface Γ
is a circle centered at (0, 0) with radius 0.5. Ω1 = {(x, y) : x2+y2 <
0.25}, Ω2 = Ω \ Ω1. We choose

f =

{
x2 + y2 in Ω1 × (0, T ]

1 in Ω2 × (0, T ]
, a =

⎧⎪⎨
⎪⎩

u2

1 + u2
in Ω1 × (0, T ]

1

1 + u2
in Ω2 × (0, T ]

u0 = 0 in Ω , g = exp(−t) on Γ× (0, T ]

By Theorem 3, u ≥ 0 (see Figure 2).

Fig. 2. The solution of Example 2 at t = 5 with k = 0.01 and
h = 0.0475216.
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4. CONCLUDING REMARKS

In this paper, we investigate the convergence of finite element so-
lution for a nonlinear parabolic interface problem with time dis-
cretization based on three-step linearized scheme. Under certain
conditions, the scheme was shown to be numerically stable and
that higher order convergence in time could be obtained. The dis-
crete solution is usually required to reproduce certain properties of
the exact solution, we therefore show that the scheme preserves the
maximum principle under certain conditions.
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