
Journal of the Vol. 39, Issue 2, pp. 183-209, 2020

Nigerian Mathematical Society c©Nigerian Mathematical Society

BAYESIAN ESTIMATION OF TIME-VARYING

PARAMETERS IN THE PRESENCE OF

DISCOUNTED EVOLUTION VARIANCE
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ABSTRACT. Considerable attention has been devoted in liter-
ature to the estimation of linear models with constant location
parameters. However, many phenomena in real life situations
exhibit a non-linear time-varying pattern, indicating a need to
adopt a Bayesian dynamic model and deal with the complexity
involved in estimating the resulting time-varying parameters. In
this paper, we present a novel application involving the estima-
tion of time-varying parameters in dynamic state space models
in the presence of discounted evolution variance. A conceptual
derivation of the posterior distribution of time-varying param-
eters was done, with the application of a proposed discount-
ing technique examined with simulated and crude oil exporta-
tion data. The results showed substantial time-variation in the
slope parameters associated with the studied location parame-
ters, thereby highlighting the empirical relevance and advantage
of the discounting method as well as its computationally less in-
tensive approach.
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1. Preliminary

Dynamic state space models have gained tremendous popularity
and application in many fields including Space Science, Physics,
Mathematical Economics, Time Series Analysis and Biostatistics.
They are suitable for modeling a wide array of data (univariate and
multivariate) in the presence of non-stationarity, structural changes
and irregular patterns [1,2]. A model is generally said to be dynamic
every time its variables (or parameters) are indexed by time or
appear with different time lags [3]. Dynamic time series models
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have been described in different ways in literature. Authors like
[4,5] presented autoregressive models where the dynamic structure
appears on the endogenous variable as

yt = αyt−1 + et (1)

where yt is the observed time series, α is the slope parameter, yt−1 is
the lagged value of the observed time series, and et is the stochastic
error term. If the dynamic structure appears on the exogenous
variable, it is known to be a distributed lag model [6] given as

yt = α + θ0xt + θ1xt−1 + θ2xt−2 + ...+ θnxt−n + et (2)

where yt is the value at period t of the dependent variable y. α is
the intercept term and θi is the lag weight to be estimated. Other
forms of autoregressive distributed lag models where the dynamic
structure appears on either the endogenous or exogenous variables
were estimated in [5]. The dynamic structure can also appear on
the error process of the model (e.g MA and ARMA models of [7]
given as

yt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q (3)

where µ is the mean of the series and ε are white noise error terms.

The first Bayesian approach to time series analysis and forecast-
ing stem from [8] and is based on the dynamic linear model (also
known as state space models) [9] in which the dynamic structure
affects the location parameters in the model. Introducing time-
varying parameters into dynamic models can lead to different levels
of complexities. For instance, many phenomena in macro econo-
metrics exhibit a time-varying pattern, indicating a need to reduce
the resulting complexity in the estimation of the evolution vari-
ance through appropriate estimation algorithms and proper choice
of discount values (λ) which many previous studies have failed to
effectively address. This is the main focus of this present work.

Analysis of data that vary over time (or space) poses a great
deal of challenge to Data Scientists and Econometricians. In recent
times, estimation of time-varying parameters in econometric models
has become more relevant especially as the length of the observed
time series increases and the series itself is subject to changes in
the dynamic structure. Particular examples can be found in world
economic time series where key quarterly or monthly indicators are
commonly available from the 1950s and cover periods of different
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economic situations. For example, since the 1950s, there have been
periods of strong economic growth in the 1950s and 1960s, peri-
ods with oil crises in the 1970s, periods of major monetary policy
changes in the 1980s, rapid changes of financial markets in the 1990s
and the collapse of the financial and banking systems around the
years 2008 and 2009 [10,11]. Although not all economic structures
are subject to change due to some erratic developments [13], it is
expected that the dynamic properties of longer time series require
parameters that are allowed to change over time. [9].

The works of researchers like [1], [12] and [2] provides a Bayesian
alternative to the classical approaches to modeling time series data
by Bayesian state space models. For instance, it has been argued
severally in literature that the parameters in econometric models
cannot, in general, be expected to remain constant and hence mod-
els with time-varying parameters should be considered in almost
all circumstances [13, 14]. The difficulty in estimating such models
is however often exacerbated by the fact that the Statistician (or
Econometrician) would have only some ideas regarding the most
likely value that a parameter may assume [11]. Some of the ratio-
nales behind the ideals of such models are fully documented in [15]
and [1]. One distinguishing novelty of this present work is the use
of discount factors for estimating the volatility of the state evo-
lution variance in dynamic state space time series models. This
study would be a knowledge base to data scientists, modelers and
researchers in the area of Bayesian dynamic model estimation. Our
attempt to make use of the recursive forward filtering backward
sampling technique within the Kalman filter framework in the pres-
ence of discounted evolution variance enhances a fast and efficient
Markov chain Monte Carlo (MCMC) sampling of the time-varying
state parameters which is applicable to many fields.

Essentially, this paper presents the mathematical formulation of
the dynamic state space model for time series analysis, its imple-
mentation, computational guidelines, tuning of the discounting pa-
rameters as well as its practical forecasting applications in helping
the research community to better understand its use and impor-
tance in estimating the evolution variance of the state space model.
We then applied the model to the time series modeling of crude oil
export in Nigeria. In the long run (after the COVID-19 pandemic),
drop in crude oil prices may impact the economic stability and sus-
tainability of many countries, especially those depending on crude
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oil exports like Nigeria. Previous analysis of crude oil export data
in Nigeria were done with classical parametric Autoregressive Inte-
grated Moving Average (ARIMA) and Seasonal Autoregressive In-
tegrated Moving Average (SARIMA) or fractional integration mod-
els [16–19]. The weakness of these models lie in the fact that they
can not estimate the necessary time-varying parameters which were
estimated in the present study. After this non-exhaustive introduc-
tory section, the rest of this paper is structured as follows: Section
2 is on the model specification and Bayesian methodology involved
in estimating time-varying parameters. Section 3 deals with the
empirical analyses and applications of the methods in this study.
Section 4 is on discussion of results and some empirical insights,
while Section 5 concludes the study.

2. Model Specification and Methodology

The proposed dynamic (state space) model specification takes the
following form:

yt = Xtθt + vt vt ∼ N(0, V ), (4)

θt = Gtθt−1 + wt wt ∼ N(0,Wt), (5)

θ0 ∼ N(m0, C0).

Equation (4) is known as the observation equation while equation
(5) is the evolution equation. Gt is a known matrix of order p× p
that determines how the observation and state equations evolve in
time . We assume that all vt’s are independent from the wt’s. Since
each parameter at time t only depends on results from time t−1, the
state parameters are time-varying and constitute a Markov chain.
Xt is a matrix of observed explanatory variables of a known order.
It is assumed that information decays arithmetically through the
addition of future evolution error variance which is estimated via
discounting.
Parameters of interest to be estimated in the model are the time-

varying parameter θt, the error variances V and Wt, and the one-
step-ahead forecasts error ft. V is assumed to be distributed inverse-
gamma apriori and is estimated using the Bayesian framework dis-
cussed in the next section, while we estimate Wt using the proposed
discounting method. In contrast to the Box-Jenkins methodology,
which still plays an important role in time series analysis [7], this
specified Bayesian dynamic model approach allows for structural
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analysis of univariate as well as multivariate problems. The differ-
ent components of time series, such as the trend and seasonal terms
can be modeled explicitly. They do not have to be removed prior
to the main analysis as is the case in the Box-Jenkins methodology.

2.1. Estimating Time-Varying Parameters: Recursive For-
ward Filtering Backward Sampling (RFFBS) Approach.
In this section, we consider a procedure for estimating dynamic

state space models. This approach makes use of the RFFBS algo-
rithm within the Kalman filter framework to improve the efficiency
of the Gibbs sampling. The main idea of this procedure is to make
use of the Markov’s property of the specified model and the struc-
ture of the state transition equation so that

P (St|St+1, Dn) = P (S7|S6, Dt, νt+1, ..., νn) (6)

where St denotes the state variable at time t and νj is the 1-step-
ahead prediction error. This recursive method allows us to draw the
state vectors jointly. Due to the Markovian structure of the time-
varying parameter θt, it is estimated by computing the predictive
and filtering distributions of θt recursively starting from the prior
θ0 ∼ N(m0, C0). Consider a vector of unknown regression slope pa-
rameters θt = (θ1, ..., θp), the Gibbs sampling algorithm employed
proceeds by sampling recursively the conditional posterior distribu-
tion where the most recent values of the conditioning parameters
are used. Assume that the observed response is represented by
y = (y1, y2, ..., yT ) where T denotes the size of the series, the model
is estimated by simulating the distribution of the parameters of
interest, given the data.
Following the Bayesian paradigm, the specification of the model is

complete only after specifying the prior distribution of all the un-
known quantities of interest in the model [20]. We assign a distribu-
tion to θt at time t=0, conditional on all the information available
before any observation is made. Let D0 be the set containing all
this information, then the prior distribution is θ0|D0 ∼ N(m0, C0)
where m0 and C0 are known vector and matrix respectively. Next,
an update is made for θ1 and D0 which is also normally distributed.
Based on this update, the one step-ahead forecast follows from the
conditional distribution y|θ0, D0. Once the value of y1 at time t = 1
is known, the posterior distribution of θ1 is obtained recognizing
that the information available at time t = 1 is D1 = y1, D0. The
inference is made in this recursive fashion for every time t. The
Kalman filter was used to calculate the mean and variance of the
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unobserved state θt, given the observations yt. It is a recursive al-
gorithm i.e the current best estimate is updated whenever a new
observation is obtained. The filter prediction and update algorithm
requires a few basic calculations of which only the conditional means
and variances of the filtering and prediction density is stored in each
step of the iteration [?, 21].
To describe the filtering procedure, let

mt = E(θt|Dt) (7)

be the optimal estimator of θt based on Dt and let

Ct = E((θt −mt)(θt −mt)
T |Dt) (8)

be the mean square error matrix ofmt. Let θt−1|y1:t−1 ∼ N(mt−1, Ct−1),
where y1:t−1 denote all observations up to time t−1. Then the one-
step-ahead predictive density θt|y1:t−1 is Gaussian with parameters:

E(θt|y1:t−1) = mt−1 ≡ At (9)

V ar(θt|y1:t−1) = Ct−1 +Wt ≡ Rt (10)

The one-step-ahead predictive density of yt|y1:t−1 is Gaussian with
parameters:

ft = E(yt|y1:t−1) = XtAt (11)

Qt = V ar(yt|y1:t−1) = XtRtX
′

t + V (12)

The filtering density of θt given y1:t is Gaussian with parameters:

mt = E(θt|y1:t) = At +RtX
′

tQ
−1
t et (13)

Ct = V ar(θt|y1:t) = Rt −RtX
′

tQ
−1
t XtR

′
t (14)

where et = yt − ft is the forecast error.

2.2. RFFBS Algorithm and Gibbs Sampler. Let θT = [θ0, θ1, ..., θt],
θt was estimated from the conditional density p(θt|yT ) which is de-
noted by

p(θt, yT ) = p(yT |θT )p(θT )

where p(yT |θT ) and p(θT ) are given by

p(yT |θT ) =
T∏
t=1

p(yt|θt)
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and

p(θT ) = p(θ0)
T∏
t=1

(θt|θt−1)

. p(yt|θt) and p(θt|θt−1) were derived from the measurement and
evolution equations (5) specified above to give

p(yt|θt) = (2πV )−
1
2 exp

(
− 1

2V
(yt − xtθt)2

)
where we

p(θt|θt−1) = (2π)−
k
2 |Wt|−

1
2 exp

(
− 1

2
(θt−Gtθt−1)

′W−1
t (θt−Gtθt−1)

)
.

Since the probability distribution of update is proportional to the
product of the time series measurement likelihood and the predicted
state,

p(θt|y1:t) =
p(yt|θt)p(θt|θt−1, y1:t−1)

p(yt|y1:t−1)
(15)

∝ p(yt|θt)p(θt|θt−1, y1:t−1)

The denominator, p(yt|y1:t−1) is constant relative to θt and thereby
ignored. The posterior distribution was used to update the prior re-
cursively until convergence is achieved. The new Recursive Forward
Filtering Backward Sampling (RFFBS) algorithm adopted in this
work is to allow for the implementation of a fast MCMC approach
to the specified dynamic linear model. The forward filtering step is
the standard Kalman filtering analysis which gives p(θt|Dt) at each
t, for t = 1, ..., n. The backward sampling step uses the Markov’s
property specified in equation (6) above to sample θ∗n from p(θn|Dn)
and then for t = 1, ..., n − 1, sample θ∗t from p(θt|Dt, θ

∗
t+1) in or-

der to generate samples from the posterior parameter structure. In
particular, we denote

p(θ0, ..., θT |DT ) =
T∏
t=0

p(θt|θt+1, ..., θT , DT )

and note that, by the Markov’s property,

p(θt|θt+1, ..., θT , DT ) = p(θt|θt+1, DT )

then, the RFFBS algorithm proceeds as follows:
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(1) Sample from p(θTDT ) using the filtering density above. This
distribution is N(ht, Ht) where:

ht = mt + CtG
′
tR
−1
t+1(θt+1 − at+1) (16)

Ht = Ct − CtG
′
tR
−1
t+1GtC

′
t (17)

(2) Sample from p(θT−1|θT , DT ).
(3) Given (θt|Dt), obtain Wt = Ct(1− λ)/λ.
(4) Proceed recursively in this manner for t+ 1, t+ 2, and so on

.
(5) Sample from p(θ0, ..., θT |DT ).

Since we sampled from t = T to t = 0, recursively, this procedure
is referred to as recursive backward sampling.

2.3. Posterior Estimation of Unknown Observation Vari-
ance (V) with Independent Priors. In the simulation excercise
for estimating the static observational variance, V , the following
Gibbs sampler of [10] was adopted with slight modifications:

(1) Choose an arbitrary starting point π(0) = (π
(0)
1 , ..., π

(0)
p ) and

set i = 0.
(2) Given π(i) = (π

(i)
1 , ..., π

(i)
p ),

(a) generate π
(i+1)
1 from the conditional posterior distribu-

tion π(π
(i+1)
1 |π(i)

2 , ..., π
(i)
p ),

(b)generate π
(i+1)
2 from π(π

(i+1)
2 |π(i+1)

1 , π
(i)
3 , ..., π

(i)
p )

(c)generate π
(i+1)
3 from π(π

(i+1)
3 |π(i+1)

1 , π
(i+1)
2 , π

(i)
4 , ..., π

(i)
p ,

(d)generate π
(i+1)
4 , ..., π

(i+1)
p in the same way as before.

(3) Set i = i+ 1 and go to (2).

The Gibbs Sampling (GS) algorithm is an example of MCMC
method described earlier. What is done in the GS algorithm is to
break the joint posterior into conditional posteriors for which the
analytical form of its density is known, we then sample sequentially
and repeatedly from these conditionals. After a number of draws,
we expect the joint sequence of conditional draws to converge to the
desired joint posterior densities for all parameters. Each sequence
of draws is then interpreted as the marginal posterior for a given
parameter. The procedures and implementations of the Gibbs sam-
pling algorithm are fully documented in [20] and [1]
.

Consider the observational equation specified in (4) above

yt = Xtθt + vt, vt ∼ N(0, V ), (18)
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and assume a normal prior for the parameter θ and inverse gamma
prior for the parameter V , to sample from V |θ we impose a gamma
prior on V −1 and derive the posterior hyperparameters. Let V −1 ∼
Gamma(a0, b0), then

V −1|θ ∼ Gamma(a0 +
T

2
, b0 +

1

2

T∑
t=1

(yt −Xtθt)
2)

Starting with

p(y|θ,X) = (2π)−
n
2 exp(− 1

2V
(y −Xθ)′(y −Xθ)) (19)

the priors are given as follows:

θ ∼ N(µ0, V0) (20)

, and

V ∼ IG(ν0, τ0) (21)

µ0 is the prior mean for θ and V0 is the prior variance- covariance
matrix for θ with

E(V ) =
τ0

ν0 − 1
(22)

,

V (V ) =
τ 20

(ν0 − 1)2(ν0 − 2)
(23)

We chose the form given in [22] where ν0 and τ0 are the shape
and scale parameters respectively. Using Bayes rule to combine the
priors (22) and (23) above with the likelihood via conjugate analysis
and dropping all unrelated terms to the parameters of interest yields
the following posterior kernels:

p(θ, V |y,X) ∝ (V )
−n−2ν0−2

2 exp(− 1

2V
(2τ0))

× exp
(
−1

2
(

1

V
(y −Xθ)′(y −Xθ) + (θ − µ0)

′V −10 (θ − µ0))

)
(24)

First, obtain the posterior density of θ, conditional on V while
treating σ2 as a constant.
This leaves us with the posterior kernel:

p(θ|V, y,X) ∝

exp(−1

2
(

1

V
(y −Xθ)′(y −Xθ) + (θ − µ0)

′
(V0)

−1(θ − µ0))). (25)



192 O. O. AWE AND A. A. ADEPOJU

Let

V1 = (V −10 +
1

V
X ′X)−1

and

µ1 = V1(V
−1
0 µ0 +

1

V
X ′Xb) = V1(V

−1
0 µ0 +

1

V
X ′y)

Then from (25),

1

σ2
(y −Xθ)′(y −Xθ) + (θ − µ0)

′
V −10 (θ − µ0)

=
1

V
y′y + θ′

1

V
X ′Xθ − 1

V
y′Xθ − θ′ 1

V
X ′y + θ′V −10 θ

− µ
′

0V
−1
0 θ − θ′V −10 µ0 + µ

′

0V
−1
0 µ0

= θ′(V −10 +
1

V
X
′
X)θ − θ′(V −10 µ0 +

1

V
X
′
y)

− (µ
′

0V
−1
0 +

1

V
y′X)θ +

1

V
y
′
y + µ

′

0V
−1
0 µ0

= θ
′
V −11 θ − θ′V −11 µ1 − µ

′

1V
−1
1 θ

+ µ
′

1V
−1
1 µ1 − µ

′

1V
−1
1 µ1 +

1

V
y′y + µ

′

0V
−1
0 µ0

= (θ − µ1)
′V −11 (θ − µ1)− µ′1V −11 µ1V

−1
1 µ1 +

1

V
y′y

+ µ′0V
−1
0 µ0.

Therefore, the conditional posterior kernel in (25) can be written
as :

p(θ|V, y,X) ∝

exp(−1

2
(θ− µ1)

′V −11 (θ− µ1)exp(−
1

2
(

1

V
y′y+ µ′0V

−1
0 µ0− µ′1V −11 µ1))

(26)
Since none of the terms in the second exponent include θ, we

simplify the full conditional distribution in (26) to

p(θ|V, y,X) ∝ exp(−1

2
(θ − µ1)

′V −11 (θ − µ1)) (27)

Therefore, we have again,the kernel of a multivariate normal density
, and we can say that

θ|V, y,X ∼ N(µ1, V1)

where

V1 = (V −10 +
1

V
X ′X)−1
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and

µ1 = V1(V
−1
0 µ0 +

1

V
X ′y)

to sample from.

Posterior Inference on V

In order to derive the conditional posterior density for V , we
return to our original expression for the joint posterior given in
(25). Ignoring terms that are not related to V , we have :

p(V |θ, y,X) ∝ (V )
−n−2ν0−2

2 exp(− 1

2V
(2τ0 + (y −Xθ)′(y −Xθ)))

(28)
Comparing this expression with the kernel of the inverse gamma
prior specified in (21), we have the kernel of another inverse gamma
density: Hence

V |θ, y,X ∼ IG(ν1, τ1) (29)

where

ν1 =
2ν0 + n

2
and

τ1 =
2τ0 + (y −Xθ)′(y −Xθ)

2

2.4. Estimation of Evolution Variance (Wt) with Discount
Values. Consider the evolution equation in (5) above,

θt = Gtθt−1 + wt, wt ∼ N(0,Wt) (30)

where Wt is the evolution variance and other parameters are as
defined earlier. Let

V (θt−1|Dt−1) = V (Gtθt−1|Dt−1)

= GtCt−1G
T
t

= Ct−1

so that
V ar(θt|Dt−1) = Ct−1 +Wt

The prior distribution for θt−1 is

θt−1|Dt−1 ∼ N(mt−1, Ct−1)

where Dt−1 = (y1, y2, ..., yt−1) and the prior distribution for θt is

θt|Dt−1 ∼ N(mt−1, Qt)
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where

Qt = Ct−1 +Wt

Therefore,

Wt = Qt − Ct−1 (31)

We introduce the discount factor as a quantity λ such that

Qt = Ct−1/λ (32)

can be interpreted as the percentage of information that passes from
time t− 1 to t.

The idea of discounting is adopted in order give a natural in-
terpretation to, and represent Wt as a proportion of the filtering
distribution variance Ct while allowing it to vary through time and
model changes in volatility [9, 21]. If Ct is large then there is high
uncertainty in moving from θt−1 to θt. Since Wt represents this
uncertainty, it is necessary to model it as proportional to the fil-
tering variance Ct. Therefore, we select the appropriate discount
values from the grid λ ∈ [0.01, 0.99] using the algorithm of [23].
As far as one-step-ahead forecasts are concerned, there is no need
to refer to Wt explicitly in the model estimation since Qt = Pt/λ
where (Pt = Ct−1). We examined multiple granularities of λ in the
Gibbs sampler to see which one worked best. We then used the
best discount value for the final estimate of the evolution variance
Wt. This is what is referred to as discounted evolution variance.

2.5. MCMC Diagnostics. A critical issue for users of MCMC
methods is how to determine when it is safe to stop sampling and
use the samples to estimate characteristics of the distribution of in-
terest. In this section, we detail the MCMC diagnostic tools used.
The convergence diagnostics of [24] is used to compare values in
the early part of the Markov chain to those in the latter part of
the chain in order to detect failure of convergence. The statistic
is constructed as follows: Two sub-sequences of the Markov chain
θ are taken out, with θt1 : t = 1, ..., n1 and θt2 : t = na, ..., n where
1 ≤ n1 ≤ na < n.
Let n2 = n−na+1 and define θ̄1 = 1

n1

∑n1

t=1 θ
t and θ̄2 = 1

n2

∑n
t=na θ

t

.Geweke test statistics was used to test whether the mean estimates
have converged by comparing means from the early and latter part
of the Markov chain. Assuming the ratios n1

n
and n2

n
are fixed,
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n1+n2

n
< 1 , then the following statistic converges to standard nor-

mal distribution as n approaches ∞ we have

Zn =
θ̄1 − θ̄2√

ŝ1(θ)/n1 + ŝ2(θ)/n2

(33)

where ŝ1(θ) and ŝ2(θ) respresents spectral density estimates at zero
frequencies. This is a two-sided test and large absolute value Z −
score indicates rejection of the null hypothesis of non-stationarity.
Effective sample size on the other hand, relates to autocorrelation
and measures mixing of the Markov chain. Most often, large dis-
crepancy between the effective sample size and the simulation sam-
ple size indicates poor mixing. Effective Sample Size (ESS) is de-
fined as

ESS =
n

η
=

n

1 + 2
∑∞

k=1 ρk(θ)
(34)

where n is the total sample size and ρk(θ) is the autocorrelation at
lag k for θ. The quantity η is autocorrelation time. The Bayesian
process for estimating it is to first find a cut off point k after which
the autocorrelations are very close to zero and then sum all the ρk
to that point. The cut off point k is such that ρk < 0.01 or ρk < 2sk
where sk is the standard deviation defined as

sk = 2
√

(
1

n
(1 + 2

k−1∑
j=1

ρ2k(θ))) (35)

Very low values of ESS often indicate poor mixing of the Markov
chain while computing the parameters.

3. Empirical Applications and Data Analyses

The application of the methods in this study is first undertaken
with a simulation exercise of the dynamic Bayesian regression model
to examine its estimation against the possibility of determining
structural changes and corresponding best choice of models and
discount values.

3.1. Simulation Study. In our simulation study, a simulated re-
sponse variable (yti) was regressed on nine simulated covariates
(xti, i = 1, ..., 9) with various adjustments to the simulated inter-
cepts, slopes and variances of the model against the possibility of
various structural changes, with emphasis on the role of discount
values in model selection and estimation.
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3.1.1. Data Generating Process. Using the R statistical software
package, we simulated the response variable yt as a simple random
walk, or Brownian motion:

yt|yt−1 ∼ N(yt−1, σ
2
y). (36)

where the initial value y1 is chosen as 2. The simulation experiment
involve time varying intercepts, slopes and variances.

Let A = diag(at) and b = {bt}, we allowed ε to have a time-
varying variance, giving

xj = Ay + b+ ε (37)

for j = 1, ..., 9 and ε ∼MVN(0,Σj) where Σj is a diagonal covari-
ance matrix with arbitrary variances for each point in time.
σ2
y = 2 having time-varying slopes for sample sizes varying from

20, 30, 40, 50, 60, 70, 80, 90 and 100. The models were run with
12000 iterations each with a burn-in of 2000 samples. In other
words, we drew M = 10, 000 samples after the initial 2,000 sam-
ples were discarded. Figure 1 shows the plot of the simulated data
considered for the time varying intercepts, slopes and variances. In
the simulation experiment, we adjust covariates 2, 5 and 9 to follow
increasing order of sudden jumps in order to detect their peculiar
behaviour with respect to the choice of the best models and dis-
count values. It was observed that all the models converged well as
the absolute value of their Geweke Convegence Diagnostics (GCD)
fell below the 1.96 threshold with sufficient Effective Sample Sizes
(ESS) generated by our algorithm. Figure 2 is a plot of estimated
slopes obtained from simulated data. It shows that the method
used here is able to detect sudden jumps, regime shifts and struc-
tural breaks as characterized in the trend trajectory shown in the
diagram. Figure 3 shows clearly that the chain mixes well.

3.2. More results and insights from the simulation exper-
iments. We consider moving dynamic regressions in the spirit of
[25] to test the constancy of the behaviour of the estimated parame-
ters along the years for time-varying intercepts, slopes and variances
in the simulation experiment. Tables 1 to 9 represent simulation
experiments with varying sample sizes such as n= 20, 30, . . . ,
100 in order to verify if optimal discount values respond to varia-
tions in the input coefficients of the models. In Table 1 (n=20) x9
is the best regressor (with the minimum Mean Squared Predicted
Error (MSPE) value of 0.116), while x6 is the regressor with the
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Figure 1. Plot of Simulated Data

highest volatility rate (with the minimum λ of value 0.340). In Ta-
ble 2 (n=30) x9 is the best regressor (with the minimum MSPE of
value 0.180), x6 is also the regressor with the highest volatility rate
(with the minimum λ of value 0.520). In Table 3 (n=40) x9 is the
best regressor (with the minimum MSPE of value 0.180), x6 is the
regressor with the highest volatility rate (with the minimum λ of
value 0.540).

Table 1. Dynamic Regression, n=20

Model Regressor MSPE V GCD ESS λ
1 x1 5.042 1.603 0.993 3122 0.460
2 x2 0.229 0.031 -1.380 9042 0.970
3 x3 5.175 1.921 -1.142 4981 0.610
4 x4 3.972 1.382 -2.732 3413 0.530
5 x5 0.309 0.058 0.684 8777 0.980
6 x6 2.921 122.565 0.996 6685 0.340
7 x7 1.457 0.586 1.031 8369 0.720
8 x8 6.377 2.560 2.003 3649 0.480
9 x9 0.116 83.071 1.016 10139 0.570

The plots of the estimated time-varying slopes of simulated data
(not shown) indicates that lower discount values are associated with
more volatile relationship between the response and predictor (re-
gressor) variables.
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Table 2. Dynamic Regression, n=30

Model Regressor MSPE V GCD ESS λ
1 x1 6.432 2.789 -1.128 5599 0.660
2 x2 0.232 0.053 0.939 4007 0.580
3 x3 6.412 2.135 -1.856 5430 0.660
4 x4 5.510 1.456 -1.043 4570 0.640
5 x5 0.225 0.056 1.023 5156 0.650
6 x6 3.216 0.912 0.670 3299 0.520
7 x7 5.133 1.224 -0.225 4071 0.560
8 x8 6.640 2.891 0.892 5054 0.610
9 x9 0.180 0.033 0.785 4980 0.650

Table 3. Dynamic Regression, n=40

Model Regressor MSPE V GCD ESS λ
1 x1 5.433 2.396 0.705 5279 0.660
2 x2 0.192 0.047 -0.998 4750 0.630
3 x3 5.244 1.791 -0.505 5751 0.680
4 x4 4.550 1.222 -0.565 4762 0.630
5 x5 0.181 0.050 0.439 5794 0.690
6 x6 2.935 0.925 -0.701 3684 0.540
7 x7 5.072 1.608 0.741 4415 0.600
8 x8 5.691 2.590 -0.792 5212 0.620
9 x9 0.180 0.045 -1.023 4450 0.590

In Table 4 (n=50), x9 is the best regressor (with the minimum
MSPE of value 0.229), x5 is the regressor displaying the highest
volatility rate (with the minimum of value 0.560). In Table 5
(n=60), x6 is the best regressor (with the minimum MSPE of 3.12),
x9 is the regressor with the highest volatility rate (with the mini-
mum λ of value 0.41). In Table 6 (n=70), x9 is the best regressor
(with the minimum MSPE of 2.90), and the highest volatility rate
(with the minimum λ of value 0.42).
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Table 4. Dynamic Regression, n=50

Model Regressor MSPE V GCD ESS λ
1 x1 4.626 781.082 0.983 8573 0.670
2 x2 0.312 2.842 0.997 6653 0.640
3 x3 4.630 84.824 1.009 7573 0.670
4 x4 4.067 1.151 0.732 5035 0.640
5 x5 0.275 88.484 1.015 7468 0.560
6 x6 3.170 65.715 1.050 7094 0.570
7 x7 4.389 1.480 1.028 6623 0.620
8 x8 4.944 2.335 -0.434 5219 0.640
9 x9 0.229 0.054 -0.735 5105 0.620

In Table 7 (n=80), x9 is the best regressor (with the minimum
MSPE value of 2.53), and also the highest volatility rate (with the
minimum λ of value 0.42) . In Table 8 (n=90), x9 is the best re-
gressor (with the minimum MSPE value of 2.25), and the highest
volatility rate (with the minimum λ of value 0.41). In Table 9
(n=100), x2 is the best regressor (with the minimum MSPE value
of 0.09), x9 is the covariate with the lowest Discount Factor indi-
cating highest volatility rate (with the minimum λ value of 0.26).
Form all the tables, it was seen that in all but one of the models, the
model involving x9 was the best with the minimum mean square
prediction error. It also has the highest frequency of being the re-
gressor with lowest discount factor (in 5 tables). It is so because
x9 has the highest rate of sudden jump in the simulation excercise.
Some new insights can be gathered here. We observe that the use
of discount values is both parsimonious and efficient and plays an
important role in fast convergence of the MCMC technique used.
Also, from the experiment, we notice that dynamic linear models
respond well to sudden jumps, regime shifts and structural changes
and generally, we observe that simulated data with the same sea-
sonal behaviour have the same range of discount values. Generally,
there is also decreased flunctuations in discount values as the sam-
ple size increases. Notice that similar simulated covariates exhibit
the same range of discount values as revealed in Tables 1-9.
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Table 5. Dynamic Regression, n=60

Model Regressors MSPE V GCD ESS λ
1 x1 3.95 8017.79 1.01 10477 0.67
2 x2 3.54 0.23 -0.05 2540 0.43
3 x3 4.35 1.53 0.67 5906 0.68
4 x4 3.69 1.19 -0.02 5086 0.64
5 x5 3.59 0.25 1.31 2813 0.44
6 x6 3.12 1.16 1.67 4693 0.59
7 x7 4.43 1.62 0.94 5699 0.67
8 x8 4.35 2.08 -0.28 5389 0.65
9 x9 3.39 0.20 0.62 2577 0.41

Table 6. Dynamic Regression, n=70

Model Regressors MSPE V GCD ESS λ
1 x1 4.13 1.73 -1.08 5371 0.66
2 x2 3.03 0.19 0.99 2691 0.43
3 x3 5.50 1.74 -0.04 5833 0.67
4 x4 4.00 9.53 1.01 9868 0.62
5 x5 3.07 0.21 0.95 3651 0.44
6 x6 3.64 1.22 -0.63 4514 0.58
7 x7 4.60 233.20 1.01 8468 0.65
8 x8 4.57 545.90 1.01 7097 0.63
9 x9 2.90 0.19 1.04 2850 0.42

Table 7. Dynamic Regression, n=80

Model Regressors MSPE V GCD ESS λ
1 x1 3.91 1.68 1.11 6486 0.67
2 x2 2.64 1.80 1.00 3559 0.44
3 x3 5.01 7.34 1.03 7290 0.67
4 x4 3.79 1.41 1.02 5861 0.63
5 x5 2.69 0.18 1.55 2872 0.44
6 x6 3.40 1.16 0.67 4374 0.59
7 x7 4.39 1.50 1.62 5203 0.65
8 x8 4.34 2.03 0.99 6476 0.65
9 x9 2.53 0.15 0.57 2826 0.42
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Table 8. Dynamic Regression, n=90

Model Regressors MSPE V GCD E SS λ
1 x1 3.56 1.51 -0.60 5840 0.67
2 x2 2.35 30.91 1.00 3401 0.44
3 x3 4.72 2.26 1.03 7281 0.67
4 x4 3.61 1.31 -0.16 5366 0.64
5 x5 2.39 4.85 1.01 3618 0.44
6 x6 3.26 2.98 1.02 5156 0.59
7 x7 4.31 1.46 1.43 5455 0.65
8 x8 4.06 2.04 0.99 6256 0.66
9 x9 2.25 0.13 -0.62 2517 0.41

Table 9. Dynamic Regression, n=100

Model Regressor MSPE V GCD ESS λ
1 x1 2.52 0.93 -0.12 4541 0.58
2 x2 0.09 7.60 1.01 9023 0.73
3 x3 0.10 0.05 0.27 6301 0.70
4 x4 2.62 2.15 0.98 6894 0.58
5 x5 24.23 0.07 -0.13 8470 0.81
6 x6 2.45 1.00 -0.55 5369 0.63
7 x7 3.60 1.65 0.99 9109 0.78
8 x8 2.25 0.61 0.38 4900 0.60
9 x9 1.51 0.02 1.08 1281 0.26

Figure 2. Time-Varying Slope Parameters: Simu-
lated Data



202 O. O. AWE AND A. A. ADEPOJU

Figure 3. Trace Plot: Simulated Data.

3.3. An Econometric Application. This section involves an econo-
metric application involving the predictors of Nigerian Crude Oil
export using the proposed model and method outlined in Section
3. The data used in this research are Nigerian economic indicators
sourced from the Central Bank of Nigeria (www.cbn.org). The data
includes annual time-series data on Nigerian Oil-Export , GDP,
Capital Expenditure, Consumer Price Index, Exchange Rate and
Lending Rate of the pre-global recession period (1960-2009). GDP
and export data were logged before analysis.
First, we estimate the Bayesian dynamic model to examine the pre-
dictive effect of each macroeconomic variable on oil-export in the
presence of discounted evolution variance. It was discovered that
lending rate performed better than other variables in the study in
terms of predictive performance, given the low values of MSPE.
However, we find that GDP performed better in predicting oil-
export when combined with lending rate. In the tables showing the
various model results (Tables 10 and 11), the discount values λ rep-
resents the level of fluctuation of the relationships between export
and its predictors. More so, discount values tend to increase with
the inclusion of additional regressors into the model as revealed
in Table 11. High values of λ represents more smoothly changing
fluctuation (volatility), while lower discount values represent more
volatile relationships. Also, lower values of MSPE indicates a better
predictive performance, while higher values indicate a lower predic-
tive performance of the variables in the models. Table 10 shows
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the dynamic regression of Oil-Export on selected related macroe-
conomic variables.

Table 10. Dynamic Linear Regression of Oil-Export on Selected
Macroeconomic Variables

Model Regressor MSPE V GCD ESS λ
1 GDP 0.139 7.375 0.985 8422 0.56
2 CE 0.224 0.050 1.174 6981 0.69
3 CPI 0.155 0.029 0.360 5131 0.59
4 EXRT 0.734 0.039 -0.506 5316 0.61
5 LR 0.129 0.027 1.433 2284 0.32

Figure 4. Time-Varying Slopes of Oil Export vs
GDP, λ = 0.56.

Figure 5. Time-Varying Slope of Oil Export vs
Capital Expenditure, λ = 0.69
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Figure 6. Time-Varying Slopes of Oil Export vs
Consumer Price Index, λ = 0.59

Figure 7. Time-Varying Slopes of Oil Export vs
Exchange Rate, λ = 0.61

Table 11.Dynamic Regression of Oil Export on Various Economic
Variables

Model Regressor MSPE V GCD ESS λ
1 LR +GDP 0.122 0.014 1.164 2007 0.45
2 LR +CE 0.313 0.089 -1.012 7141 0.82
3 LR +CPI 0.198 0.027 1.039 2996 0.54
4 LR +EXRT 1.488 0.619 0.574 10754 0.99
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Figure 8. Time-Varying Slopes of Oil Export vs
Lending Rate, λ = 0.32

4. Discussion of Results and Policy Recommendations

There are quite a number of interesting results from this appli-
cation. Table 10 shows the dynamic regression of oil export on its
predictors. It was discovered that lending rate, among others, has
the lowest predictive error of 0.129. This implies that increased
oil export led to greater revenue for the Nigerian government com-
pared to the pre-oil era. The aftermath of this was an expansion
of money supply. Having more liquidity in the economy has a de-
pressing effect on the lending rate. The lending rate is the cost
of capital. As it reduces, it encourages more investment activities
either for domestic or export. It is therefore very pertinent for the
monetary authority in Nigeria to ensure the stability of the lend-
ing rate in order to stimulate investment and agricultural(non-oil)
export business in Nigeria in the post-pandemic era.
In a further analysis, we find that different combinations of lending

rate with GDP, capital expenditure, CPI and the exchange rate
gave better insight and line of policy decisions. From Table 11,
lending rate combined with GDP gave a minimum MSPE of 0.122
with respect to oil export. The implication of this is that lower
lending rates accessible to the investors will stimulate the economy.
The lower the value of MSPE, the more the contribution of the
variable in the model and the higher its predictive power. Growth
in GDP implies increased national income which has a stimulating
effect on oil export, therefore, necessitating the inclusion of GDP
in the model.
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From the foregoing, it is very important that the government of
Nigeria through the monetary authority formulate polices that will
help eliminate erratic fluctuations in the lending rate. In addition,
the time-varying slope parameter depicts some levels of associa-
tions among the variables over the years. For instance, the time-
varying slope of oil export and GDP in Figure 4 shows positive
association over the years 1960 to early 1980. The association was
strongest in the 1960s as can be seen. It however declined sharply
towards the late 1960s, thereafter fluctuating and eventually de-
clining sharply. This can be attributed to decreased demand for
oil-export from Nigeria in the world market. The picture changed
completely around the mid-1980s and 1990s at which oil export
correlates negatively with GDP. The relationship turned positive
between the mid 1990 and late 2009 due to an improvement in
the demand for oil export from Nigeria during the period. Trends
depicted in Figure 5 shows that oil export and capital expendi-
ture remained positively correlated over the stretch of 1960 to late
1990s. For instance, capital expenditure in the form of oil depots
and other viable resources will help to boost oil export. It was
around mid 1990s during the dictatorial military regime in Nigeria
that this relationship was strongest. The government should im-
plement policies that would invest in more capital expenditures in
the post-COVID-19 era.
It can be seen from Figure 6 that the consumer price index which

is a measure of the relative change in the price level of goods and
services positively correlates with oil export between 1960 to early
1980 after which it declined steadily. Increased oil export generates
more income for the government which through its multiplier effect
will stimulate aggregate demand in the economy with its consequent
effect on the CPI. The pattern of exchange rate with respect to oil
export has been rather volatile with only positive relationship in
the 1960s after which there was a sharp decline around early 1970s
as contained in Figure 7. The negative relationship continued over
a long period till early 1980s to 2009 at which it turned zero. The
government through the central bank should have helped to monitor
the exchange rate appropriately in order to maintain its stability
given its influence on the proceeds from oil export. The relationship
between oil export and lending rate was not stable over the study
period. The result is displayed in Figure 8 where the time- varying
parameter estimates appears to be erratic. Given the results of its
MSPE, the lending rate appears crucial. The monetary authority of
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Nigeria should formulate policies towards stabilizing inflation and
the govenment should focus more on non-oil (agricultural) export
after the pandermic as suggested by [17]. Discounting played crucial
role in reducing the times (not shown) and intensity of all these
models.

5. Concluding Notes

This paper has examined the problem of estimating dynamic state
space models in the presence of discounted evolution variance us-
ing simulated and economic data with several newly revealed in-
sights. We have presented a class of modular dynamic time series
regression models that can accommodate several different dynamics
with the ability to estimate time-varying parameters. The proposed
Bayesian analysis using MCMC method with embedded RFFBS
allows for a full account of uncertainty in the model and can be
performed with moderate computational resources due to the fast
convergence of the chain as a result of discounting of the state vari-
ance. It was revealed that the estimated model is able to detect
regime shifts, structural changes and sudden jumps in the historical
predictors of crude oil export studied while portending some policy
implications for the post-pandemic era. The procedures developed
and presented in this paper will be useful in many areas of research
where estimation of time-varying parameters in dynamic models
are of interest. There are several promising directions for further
research and policy applications of the class of models presented in
this article. One of such is the generalization to simultaneous equa-
tions model to enable multivariate response observations in space
and time. An example of such is the Bayesian Functional ANOVA
models where the response is naturally a function of space and time.
Another possibility would be to test and compare the forecasting
performance and goodness of fit of our model in relation with other
models including linear ordinary least squares model and a machine
learning model like the artificial neural network model which has re-
cently gained tremendous popularity for forecasting non-linear time
series data. Works in these areas are in progress with a plethora of
possible future policy implications.
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