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A QUANDLE OF ORDER 2N AND THE CONCEPT

OF QUANDLES ISOMORPHISM
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ABSTRACT. Quandles (non-trivial) are non-associative alge-
braic structures that are idempotent and distributive. The con-
cept of quandles is still relatively new. Hence, this work is aimed
at developing methods of constructing new quandles of finite
even orders. The concept of quandles isomorphism is discussed.
The inner automorphism structure and the centralizer of certain
element(s) of some of the quandles constructed were obtained,
and these were used to classify the constructed examples up to
isomorphism.
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1. INTRODUCTION

The concept of quandles was introduced in 1982 independently by
Joyce ([15]) and Matveev ([20]). Both associated quandles to knot
invariants of a topology. Joyce, in his maiden paper, refers to these
structures as knot quandles while Matveev refers to them as dis-
tributive groupoids. However, the notion was not completely new.
It appeared, in part or whole, in the literature with many differ-
ent names ([5]). For example, Burstin and Mayer ([3]), in 1929
presented particular classes of this notion as distributive groups,
Takasaki ([23]) , in 1943 called this notion Kei. Precisely, though,
Kei is an involutory quandle. In 1955, Orrin ([21]) published a
paper on self distributive systems which involved, in part, the no-
tion of quandle. Then, in 1976 Smith ([22]) published an article
on distributive quasigroups that incorporated, in whole, the quan-
dle notion. A distributive quasigroup is a latin quandle. Quandles
have been investigated by topologists because of its importance
in knot theory, and quandles provide several invariants of knots
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and singular knots([2, 4]). The two operations of conjugation of
a group (x, y) 7→ y−1xy and (x, y) 7→ yxy−1 describe succinctly,
the conjugation quandle([16]). The symmetry at each element of
a quandle is an automorphism of the quandle which fixes that ele-
ment. Quandle theory is still relatively new and examples are sparse
([17]). Thus, there is need to develop methods of constructing new
examples of quandles. A lot has been revealed from the construc-
tion of examples and counter examples of algebraic structures (see
[9, 10, 11, 13, 14]). Hence, a method of constructing new examples
of quandles of order 2n is developed. The method is such that if
a quandle with a smaller order is used to kick start, then a higher
order of such quandle (structurally) is constructed. This method
is demonstrated in section 3. The problem of classifying quandles
of the same order up to isomorphism, especially when they are ex-
pressed in cayley tables, is not peculiar to quandles alone. This
is addressed in subsection 3.2 with Theorem 3.4 and Examples 3.4
and 3.5 as significant contributions in this paper.

2. PRELIMINARY

This section presents some definitions and results that are relevant
to this work.

Definition 2.1: Let X be a set and ∗ : X 7→ X be a binary
operator. The pair (X, ∗) is called a quandle if

(1): ∀ x ∈ X, x ∗ x = x
(2): ∀ x, y ∈ X, ∃ z ∈ X : z ∗ y = x and
(3): ∀ x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)

If (X, ∗) is a quandle, then ∗ is called a quandle structure on X.
Specifically , a quandle can also be defined by the following:

Definition 2.2: A quandle is a set X equipped with two binary
operations denoted as xB y and xB−1 y satisfying three identities
below:

(1): xB x = x
(2): (xB y) B−1 y = x = (xB−1 y) B y
(3): (xB y) B z = (xB z) B (y B z)

for all x, y, z ∈ X
For a group quandle, (x B y) = y−1xy and (x B−1 y) = yxy−1.

Definition 2.3: A trivial quandle is a quandle (Q,B) which satis-
fies only the identity:

(xB y) = x ∀ x, y ∈ Q
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Definition 2.4: Let n be a positive integer. For elements i, j ∈ Zn

(integers modulo n), define i ? j ≡ 2j − i(mod n). Then ? defines a
quandle structure called the dihedral quandle.

This quandles can be gotten by considering conjugacy classes of
involutions in dihedral groups. This translates into a nice formula
x ? y = 2y − x mod n , x, y ∈ Z as defined above.

Definition 2.5: An Involutory quandle is a quandle (Q,B) which
satisfies the identity:

(xB y) B y = x ∀ x, y ∈ Q

Definition 2.6: A quandle is said to be abelian if it satisfies the
identity

(w B x) B (y B z) = (w B y) B (xB z)

Definition 2.7: Centralizer of an element ′a′ of a quandle Q is the
set of all members of Q that commute with ′a′.

In establishing isomorphism among quandles, you can find the
centralizer of each element of the quandles one after the other until
you have a different set of elements for the same element in check.
This is developed in subsection 3.2.

Definition 2.8: Given two quandles (X, ∗) and (Y,B), let f be a
mapping from quandle (X, ∗) to a quandle (Y,B), then, f is said
to be a quandle homomorphism if f(a ∗ b) = f(a) B f(b) for every
a, b ∈ X
Definition 2.9: A quandle homomorphism that is bijective is
called quandle isomorphism. That is to say (X, ∗) and (Y,B) are
isomorphic quandles if there exists an isomorphism between them.

Definition 2.10: The automorphism group of quandle (X, ∗) ,
denoted as Aut(X) is the group of all isomorphisms f : X 7→ X.

Definition 2.11: The inner automorphism group of a quandle
(X, ∗) denoted as Inn(X) is the subgroup of Aut(X) generated by
all Rx where Rx(y) = y∗x, for any x, y ∈ X. The map Rx : X 7→ X
that maps y to y ∗ x defines a right action of X on X, so that we
obtain a map X 7→ inn(X).

Axiom (2) in definition 2.1 guarantees that to each element y of
a finite quandle Q, the value at x is x B y. This permutation is a
symmetry at y, and each symmetry is a quandle automorphism of
Q. The group of automorphisms of Q generated by symmetries of
its elements is called the inner automorphism group of Q denoted
as Inn(Q). Whenever, a quandle is expressed in or defined by a
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Cayley table, it is convenient to have Inn(Q) act on the right of Q.
For example, consider a quandle defined by the Cayley table below:

· 1 2 3

1 1 3 2
2 3 2 1
3 2 1 3

The inner automorphism structure is as follows

A1: = (23)
A2: = (13)
A3: = (12)

This quandle of order 3 has 3 elements of order 2. Thus, the inner
automorphism structure of a quandle plays a significant role in the
classification of the quandle.

Theorem 2.1:[6] Let Rn = Zn be the dihedral quandle with the
operation i · j = 2j − i(modn). Then the automorphism group
Aut(Rn) is isomorphic to the affine group Aff(Zn).

Theorem 2.2:[6] The inner automorphism group Inn(Rn) of the
dihedral quandle Rn is isomorphic to the dihedral group Dm

2
of

order m where m is the least common multiple of n and 2.

Theorem 2.3:[6] Let G be a group and let the quandle X be the
group G as a set with conjugation x?y = yxy−1 as operation. This
quandle is usually denoted by Conj(G). Then the inner automor-
phism group of X is isomorphic (as a group) to the quotient of G
by its center Z(G).

The results above help in obtaining the inner automorphism and
the automorphism groups and in classifying quandles up to isomor-
phism. There are exactly three quandles of order 3, exactly seven
quandles of order 4 and 22 quandles of order 5 up to isomorphism.
These quandles were classified by Ho and Nelson ([8]). Moreover,
there are 73 quandles of order 6, 298 quandles of order 7 and 1581
quandles of order 8 up to isomorphism. These quandles were clas-
sified by Elhamdadi, et al ([6, 18]). The quandles of orders 3 and
4 as classified by Ho and Nelson are shown in Table 1 and Table 2
below:
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Quandle X Disjoint cycles notation Inn(X) Aut(X)

Q1 (1),(1),(1) { 1 } Σ3

Q2 (1),(1),(12) Z2 Z2

Q3 (23),(13),(12) Σ3 Σ3

Table 1. Quandles of order 3 with automorphism groups

Quandle X Disjoint cycles notation Inn(X) Aut(X)

Q1 (1),(1),(1),(1) { 1 } Σ4

Q2 (1),(1),(1), (23) Z2 Z2

Q3 (1),(1),(1),(123) Z2 Z3

Q4 (1),(1),(12),(12) Z2 Z2 × Z2

Q5 (1),(34),(24),(23) Σ3 Σ3

Q6 (34),(34),(12),(12) Z2 × Z2 D4

Q7 (234),(143),(124),(132) A4 A4

Table 2. Quandles of order 4 with automorphism groups

For quandles of orders 6, 7 and 8 (see [6, 18])

3. EVEN QUANDLES AND THE CONCEPT OF ISOMORPHISM

This section presents methods of constructing new quandles of
finite even orders. These quandles are of order 2n, and they are
called in this work even quandles. Constructing quandles this way,
requires that a lower-order quandle be used as a starting point. For
example

Q2 =

· 1 2

1 1 1
2 2 2

is an even quandle. This is the smallest even quandle, and it
is a trivial quandle. Using this as starting point, another quandle
of order 4 will be constructed. This quandle will again be trivial
since a trivial quandle is used as a start. Taking a different quandle
of order 3, a quandle of order 6 will be constructed. The process
can go on and on. Therefore, Theorem 3.1 below gives an abstract
construction of an even quandle that captures the foregoing descrip-
tion. In the literature, it is common to describe a quandle of order
n by the permutations of the n elements where the permutations
are product of disjoint cycles. The disjoint cycles are the columns
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in the Cayley table of the quandles ([6, 18]). This representation is
adopted henceforth in this section.

3.1 A Quandle of Order 2n

Theorem 3.1: Let (Qn, ·) be any quandle of order n, and Z2 a
residue group of order 2. Then (Q,B) = Qn × Z2 such that

(x, a)B(y, b) =

{
(xy, a+ b+ 1) if a 6= 0 and b 6= 0 or a = 0 and b 6= 0

(xy, a+ b) if otherwise

is an even quandle of order 2n, where n is a positive integer.
Proof:
We need to show that (Q,B) satisfies Definition 2.1
First, idempotent law:
Let x′, y′, z′ ∈ Q such that x′ = (x, a), y′ = (y, b) and z′ =
(z, d)∀ x, y, z ∈ Qn.
Consider x′ B x′ = (x, a) B (x, a) = (x · x, a + a + 1) = (x, a) = x′

where a 6= 0
Second, z′By′ = x′ implies that [(z, d)B (y, b)] = (z ·y, d+ b+ 1) =
(x, a) = x′ for d, b 6= 0 and a 6= 0.
Now we show uniqueness. Suppose there exists z′, z′′ where z′ =
(z, d) and z′′ = (z∗, d) such that z′ B y′ = x′ and z′′ B y′ = x′. This
implies that

(z · y, d+ b+ 1) = (z∗ · y, d+ b+ 1)⇒ z = z∗ ⇔ z′ = z′′.

Thus, z′ is unique. Finally, we show that (x′B y′)B z′ = (x · y, a+
b+ 1) B (z, d) = (xz · yz, α) where α 6= 0
Next consider: (x′Bz′)B(y′Bz′) = [(x, a)B(z, d)]B[(y, b)B(z, d) =
(xz ·yz, α) where α 6= 0. Thus, (Q,B) as defined above is a quandle
of order 2n.
Remark 3.1: xy is a juxtaposition of x · y in the construction
above.

For the purpose of illustration, the three quandles of order 3 in
Table 1 and two quandles of order 4 in Table 2 will be used as
starting points in the examples below.
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Example 3.1: Quandles of order 6

Quandle X order 3 cycles The cycles of the constructed Inn(X) Aut(X)
quandles of order 6

Q1 (1),(1),(1) (1),(1),(1),(1),(1),(1) { 1 } S6

Q2 (1),(1),(12) (1),(1),(1),(1),(13)(24),(13)(24) A4 × Z2 A4 × Z2

Q3 (23),(13),(12) (35)(46),(35)(46),(15)(26), D3 D3 × Z2

(15)(26),(13)(24),(13)(24)

Table 3. The quandle of order 2n, n=3

Example 3.2: Quandles of order 8

Quandle X order 4 cycles The cycles of the constructed quandles of order 8

Q′
1 (1),(1),(1),(23) (1),(1),(1),(1),(1),(1),(35)(46),(35)(46)

Q′
2 (34),(34),(12), (57)(68),(57)(68),(57)(68),(57)(68),

(12) (13)(24),(13)(24),(13)(24),(13)(24)

Table 4. The quandle of order 2n, n=4

Remark 3.2: The constructed quandles in Examples 3.1 and 3.2
are appropriately isomorphic to certain quandles in the list of quan-
dles of orders 6 and 8 respectively, presented in [6, 18].

Theorem 3.2: Let (Qn,B) be a group quandle with the conjugate
operation, and Z2 a residue group of integer (mod 2). Then, (Qn×
Z2, •) defined as

(x, a)•(y, b) =

{
(xy, a+ b+ 1) if a 6= 0 & b 6= 0 or a = 0 & b 6= 0

(xy, a+ b) if otherwise

is a group quandle of order 2n.
Proof:
We only need to show that the definition of a group quandle pre-
sented in Definition 2.2 is satisfied. Let x, y, z ∈ Qn such that
xB y = y−1xy and xB−1 y = yxy−1 hold.
Then, consider: (x, a) • (x, a) = (x, a)

(x, a) • (x, a) = (x−1xx, a+ a+ 1) = (x, a)

where a 6= 0.
Next consider:

[(x, a) • (y, b)] •−1 (y, b) = (yxy−1, a+ b+ 1) • (y, b) = (x, a)
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where a, b 6= 0.
Similarly

[(x, a) •−1 (y, b)] • (y, b) = (y−1xy, a+ b+ 1) • (y, b) = (x, a)

Finally, we show that

[(x, a) • (y, b)] • (z, d) = [(x, a) • (z, d)] • [(y, b) • (z, d)]

First,

[(x, a)• (y, b)]• (z, d) = (y−1xy, b+d+1)• (z, d) = (z−1(y−1xy)z, β)

where β 6= 0. Then,

[(x, a)• (z, d)]• [(y, b)• (z, d)] = (zxz−1, a+d+1)• (zyz−1, b+d+1)

= (z−1(y−1xy)z, β)

where β 6= 0. Thus (Qn × Z2, •) is a group quandle.

Corollary 3.1: Let (Qn,B) be an abelian group quandle with the
conjugate operation, and Z2 a residue group of integer (mod 2).
Then, (Qn × Z2, •) defined above is an abelian group quandle of
order 2n

Proof:
An abelian group quandle satisfies Definition 2.6. Then the result
follows from Theorem 3.2

Theorem 3.3: Let (Qn, ·) be an involutory (Kei) quandle, and
Z2 a residue group of integer (mod 2). Then, (Q, ?) = Qn × Z2 ,
defined as in Theorem 3.1 is an involutory quandle of order 2n.

Proof:
We only need to show that (Q, ?) satisfies Definition 2.5 . That is

(x′ ? y′) ? y′ = x′ ∀ x′, y′ ∈ Q

Let x′ = (x, a), y′ = (y, b) ∀ x, y ∈ Qn then,

(x, a) ? (y, b) = (x · y, a+ b+ 1) ? (y, b) = [(x · y) · y, a] = (x, a)

where a, b 6= 0. Thus, (Q, ?) is an involutory quandle

Remark 3.3: The starting quandle mostly determines the type
of quandle the constructed quandle becomes. That is, if Qn is an
A-type quandle, mostly then Q = Qn × Z2 as constructed in this
work, will also be an A-type quandle. The following example will
illustrate Remark 3.3

Example 3.3: A Kei quandle of order 6 constructed from a Kei
quandle of order 3.
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3.2 The Concept of Quandles Isomorphism

The problem of establishing isomorphism between two algebraic
structures, especially when they are expressed in Cayley tables, is
common to most areas of algebra. Quandles are not an excep-
tion. To some binary systems, considering their order structures
is enough to establish isomorphism between them but to others,
it may not be enough ([12, 14]). In quandles, the order structure
corresponds to the inner automorphism. Therefore, the inner auto-
morphism structure can distinguish two quandles of the same order
up to isomorphism. Thus, two quandles of the same order shall be
considered non-isomorphic if they contain different number of ele-
ment(s) of the same order in their inner automorphism structures.
However, whenever there is a tie, we shall go further to consider
their commutative pattern by obtaining the centralizer of the same
element(s) in both quandles.

Theorem 3.4: The constructed quandles in Table 3 and Table 4
are non - isomorphic quandles of orders 6 and 8 respectively.
Proof:
First we shall consider their inner automorphism structures:
Q1 is an identity quandle of order 6 (trivial)
Q2 contains two elements of order 2
Q3 contains six elements of order 2
Obviously, Q1, Q2 and Q3 are non-isomorphic quandles of order 6.
Similarly, the quandles of order 8 in Table 4 are also non-isomorphic
since Q′1 contains two elements of order 2 and Q′2 contains eight
elements of order 2.

Example 3.4: Show that Q1 = (1), (1), (1), (12), (12), (45) and
Q2 = (1), (1), (1), (56), (46), (45) are non-isomorphic.

Solution:
Q1 and Q2 contain 3 elements of order 2 only in their order struc-
tures.

Quandle X Kei quandle of order 3 The constructed Kei quandle
of order 6

Q (23),(13),(12) (35)(46),(35)(46),(15)(26),
(15)(26),(13)(24),(13)(24)

Table 5. A Kei quandle of order 2n, n=3
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But the centralizer of 4 = {4} in Q1 and the centralizer of 4 =
{4, 5, 6} in Q2.

Though Q1 and Q2 are having similar inner automorphism struc-
tures, but the centralizers of element 4 in both quandles are not the
same. Thus, Q1 and Q2 are non-isomorphic quandles of order 6.

Example 3.5: Show that q1 = (1), (1), (1), (12)(34), (12)(45), (45)
and q2 = (1), (1), (1), (12)(56), (13)(46), (23)(45) are non-isomorphic.

Solution:
q1 and q2 have similar order structures since both contain 3 elements
of order 2 only
However, q1 has a centralizer of 6 = {6}, and q2 has a centralizer
of 6 = {4, 5, 6}.

Thus, q1 and q2 are having similar inner automorphism structures
(order structures), but their centralizers of element 6 are not the
same. Therefore, q1 and q2 are non-isomorphic quandles of order 6.

Behold, quandles in Examples 3.4 and 3.5 above have similar
order structures since they have the same number of elements of
order 2 only. This presents a challenge when classifying them based
on their order structures. In this case, using the order structure
is not enough to establish isomorphism between these quandles.
We have to go further to consider their commutative pattern, by
obtaining the centralizer of certain element(s) of the quandles. On
the other hand, if two quandles have the same order structure, and
their commutative pattern is the same, such quandles are possibly
isomorphic. To illustrate, consider the following example.

Example 3.6: Show that Q1 = (1), (1), (1), (1), (12), (12) and
Q2 = (1), (1), (1), (1), (12), (34) are isomorphic.

Solution:
Q1 contains 2 elements of order 2 only while Q2 also contains 2
elements of order 2 only as their inner automorphism structures.
Moreover, the two quandles have the same commutative pattern as
the centralizer of each element in both quandles are the same.

Therefore, Q1 and Q2 are isomorphic quandles of order 6 (Q1
∼=

Q2).

Remark 3.4: All the quandles used to kick-start the examples
3.4-3.6 were taking from the list of quandles of order 6 presented in
[6, 18].
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4. CONCLUDING REMARKS

Theorem 3.1 presents methods of constructing new quandles of
even orders, called even quandles. These methods give an algebraic
replication of any quandle used as a start. The new quandles are
mainly dihedral quandles. These are used to demonstrate the con-
cept of quandles isomorphism introduced in subsection 3.2. This
concept helps to establish isomorphism between any given quan-
dles of the same order that are expressed in Cayley tables. The
order structure of a quandle is summarized by the disjoint cycles
representation of the quandle which also corresponds to its inner
automorphisms. Whenever we find a tie, the commutative pattern
of the quandle is considered by obtaining the centralizer of each el-
ement in both quandles until you establish a difference. These are
used in classifying the quandles up to isomorphism. Most of the
results were verified with the help of Mapple software [24]. Note-
worthily, this article shows that the order structure or the inner
automorphism structure of quandles is not sufficient to establish
isomorphism between them. However, the classification of quan-
dles of order 2n (n ≥ 5) up to isomorphism is still open for future
research.
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