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LOCAL NONSIMILARITY SOLUTIONS FOR MIXED

CONVECTIVE FLOW OVER A STRETCHING SHEET

IN THE PRESENCE OF CHEMICAL REACTION AND

HALL CURRENT

M. O. LAWAL1 AND S. O. AJADI

ABSTRACT. This paper presents the combined effects of buoy-
ancy forces, pressure gradient, heat source, thermal radiation,
chemical reaction and Hall current on the heat and mass transfer
of Newtonian fluid over a stretching sheet subjected to a non-
linear stretching velocity. The governing nonlinear partial dif-
ferential equations were reduced to a system of coupled nonlin-
ear ordinary differential equations by using an established local
non-similarity transformation. The resulting equations are then
solved numerically using the Midpoint Method with Richard-
son Extrapolation Enhancement scheme and implemented on
the MAPLE 18 platform. The result reveals that axial and
transverse velocity profiles increase as Hall current parameter
increases; though the increase is more pronounced for the trans-
verse velocity. The magnetic field strength was observed to re-
duce concentration, axial and transverse velocity profiles but
increases the temperature profiles. It was also observed that in-
creasing the nonlinear velocity parameter led to increases in the
axial and transverse velocity profiles whereas it reduces the tem-
perature and concentration profiles. In line with the physics of
the problem, an increase in chemical reaction parameter reduces
the concentration and the influence of Hall current parameter
on both axial and transverse velocities are of great significance.
The study concluded that the combined effects of thermophysi-
cal parameters such as chemical reaction, Hall current, thermal
radiation and others are very significant in MHD boundary layer
flow.
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1. INTRODUCTION

The problems of heat and mass transfer in the boundary layers on
continuous stretching surfaces starting from the pioneering articles
of Sakiadis [1] and [2] have attracted considerable attentions during
the last few decades due to the numerous applications to several in-
dustrial manufacturing processes such as extrusion of plastic sheet,
hot rolling, wire drawing, glass fibre and paper production, drawing
of plastic films, metal spinning and the cooling of a metallic plate
in a cooling bath. It is known that the combined effect of the kine-
matics of stretching and the simultaneous heating or cooling during
such processes have a decisive influence on the quality of the final
product [3]- [11].

The study of magnetohydrodynamics (MHD) viscous flows is im-
portant to industrial, technological and geothermal applications
such as high-temperature plasma, cooling of nuclear reactors, liq-
uid metal fluids, magnetohydrodynamic generators and accelera-
tors. As a result, a significant amount of interest has been carried
out to study the effects of electrically conducting fluids such as liq-
uid metals, water mixed with little acid and others in the presence
of a magnetic field on the flow and heat transfer aspects in various
geometries [12]- [13].

Hall [14] observed that when an electrical current passes through
a sample placed in a magnetic field, a potential proportional to the
current and to the magnetic field is developed across the material in
a direction perpendicular to both the current and to the magnetic
field. The Hall effect is important when the magnetic field is high
or when the collision frequency is low, causing the Hall parameter
to be significant (Sutton and Sherman [15]). Alfven [16] discussed
movement within a conducting fluid that is in the presence of a
magnetic field will generate electrical currents. Owing to the mag-
netic field, these currents give mechanical forces which change the
state of motion of the liquid. Also, Rossow [17] reported signifi-
cance of transverse magnetic field that can be used to control the
motion of electrically conducting fluids over a flat plate.

Muthucumaraswamy [18] investigated the effects of heat and mass
transfer on a continuously moving isothermal vertical surface with
uniform suction taking into account the homogeneous chemical re-
action of first order. A theoretical solution of the problem are
obtained in terms of exponential functions. It is observed that the
velocity increases during the generative reaction and decreases in
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the destructive reaction, while the concentration increases in the
presence of the generative reaction.

Devi et al. [19] analyzed a steady MHD boundary layer flow
due to an exponentially stretching sheet with radiation taking into
account heat source/sink. By using a fourth order Runge-Kutta
method along with shooting technique, they obtained a numerical
solution which shows that the momentum boundary layer thickness
decreases while both thermal and concentration boundary layer
thicknesses increase with an increase in the magnetic field inten-
sity and the radiation reduces the temperature. Gangadhar and
Bhaskar [20] analyzed the problem of chemically reacting MHD
boundary layer flow of heat and mass transfer over a moving verti-
cal plate in a porous medium with suction. The heat source/sink
effects in thermal convection are significant where there exist a high
temperature differences between the surface (e.g. space craft body)
and the ambient fluid.

Bhattacharyya [21] analyzed the effect of heat source/sink on
MHD flow and heat transfer over a shrinking sheet with mass suc-
tion. Employing finite difference method using quasilinearization
technique, it is found that velocity inside the boundary layer in-
creases with increase in wall mass suction and magnetic field and ac-
cordingly the thickness of the momentum boundary layer decreases.
The temperature decreases with Hartmann number, Prandtl num-
ber and heat sink parameter and the temperature increases with
heat source parameter. Furthermore, for strong heat source, heat
absorption at the sheet occurs. Reddy et al. [22] discussed the
growing need for chemical reactions in chemical and hydrometal-
lurgical industries which require the study of heat and mass transfer
with chemical reaction. It was observed that the presence of a for-
eign mass in water or air causes some kind of chemical reaction.

Makinde et al. [23] carried out numerical study of chemically re-
acting hydromagnetic fluid with Soret-Dufour effects and a convec-
tive surface boundary condition using Nachtsheim-Swigert Shoot-
ing iteration technique in conjuction with Runge-Kutta 6th order
integration Scheme. Magnetic field has been observed to retard the
flow in the boundary layer but simultaneously enhance tempera-
tures and concentration values. The growth of both momentum
and thermal boundary layer thicknesses are enhanced by mass dif-
fusion effect while the concentration field is appreciably influenced
by the thermal diffusion.
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Shateyi et al. [24] studied the Hall effect on MHD flow and heat
transfer over an unsteady stretching permeable surface in the pres-
ence of thermal radiation and heat source/sink. A computational
iterative approach known as Spectral Local Linearization Method
(SLLM) blended with Chebyshev Spectral Method is employed and
when compared with Matlab bvp4c routine technique, an excellent
agreement is observed. The velocity components are enhanced as
the Hall parameter increases, the fluid temperature increases with
increasing values of thermal radiation as well as a heat source.

Rao et al. [25] considered unsteady MHD free convective heat and
mass transfer flow past a semi-infinite vertical permeable moving
plate with heat absorption, radiation, chemical reaction and Soret
effects using perturbation techniques. The fluid velocity is found to
increase with increasing thermal Grashof number and mass Grashof
number. The increase in heat source and radiation effects caused
the reduction in the fluid temperature which resulted in decrease in
the fluid velocity, while increase in Soret effect caused the reduction
in the concentration distribution and this resulted in decreasing in
the fluid velocity.

Fatunmbi et al. [26] examined mixed convective and heat transfer
analysis of hydromagnetic Micropolar fluid past a heated inclined
sheet which stretches nonlinearly along the direction of flow.

This study was motivated by the works of some renown authors,
particularly Bhattacharyya [21], Shateyi and Gerald [24], Makinde
et al. [23] and Fatunmbi et al. [26]. Basically, this work contributes
to the body of knowledge by employing local nonsimilarity trans-
formation approach for a nonsimilar boundary layer flow problem.
However, the knowledge of the flow geometry and mechanism shows
that some of the thermophysical parameters like Hall current ef-
fect, chemical reaction, thermal radiation, buoyancy forces, heat
source/sink, pressure gradient and nonlinear velocity that were not
considered on the heat and mass transfer on MHD fluid in some of
the previous works cannot be totally neglected and have not been
articulated together in a single study.

The governing equations modelling MHD flow, heat and mass
transfer over stretching surfaces are highly nonlinear therefore mak-
ing exact solutions impossible to obtain. Therefore, numerical so-
lutions have always been developed and modified, with a bid to get
more accurate and stable solutions. This study presents the effects
of combining some prominent thermophysical parameters on an un-
steady chemically reactive MHD mixed convective heat and mass
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transfer flow over a stretching sheet in presence of Hall current us-
ing the local non-similarity method implemented on the MAPLE
18 platform.

1.2 Research Questions

Based on the aforementioned, the following research questions are
appropriate:

(i) How does the use of MMRE compare with SLLM?
(ii) What are the contributions of Chemical reaction and Hall

current on the axial and transverse velocities?
(iii) How does increasing suction affect the axial and transverse

velocities?
(iv) And what are the effects of other embedded parameters on

the variables of state(velocity, temperature and concentra-
tion)?

2. FORMULATION OF THE PROBLEM

We consider a two-dimensional, unsteady mixed convective MHD
chemically reactive flow of an electrically conducting, viscous fluid
radiating over a continuously moving stretching sheet with a chem-
ical reaction source based on the one-step exothermic reaction. The
boundary layer is assumed flat while the reaction source is placed in
the viscous region as shown in Fig. 1. The governing equations of
the MHD boundary layer flow in the presence of uniform transverse
magnetic field in the viscous region are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=ν

∂2u

∂y2
− 1

ρ

∂P

∂x
− σB2

ρ(1 +m2)
(u+mw)

+ gβc(C − C∞) + gβT (T − T∞),

(1)

∂w
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RT . (4)



358 M. O. LAWAL AND S. O. AJADI

Fig. 1. Schematic diagram of the flow.

The associated initial and boundary conditions for the present prob-
lem are

t = 0 : u = 0, v = 0, T = Tw, C = Cw at y = 0, (5)

t > 0 : u = Uw(x, t), v = vw, T = Tw(x, t), C = Cw at y = 0, (6)

t > 0 : u→ U∞(x, t), w → 0, T → T∞, C → C∞, as y →∞. (7)

Following Ishak et al.[27] and Khan et al.[28] for the similarity
transformation, we introduce the following dimensionless quantities
and parameters as functions of f, g, θ, φ, a pseudosimilarity variable
η and non-similarity variable ξ:

ψ =

√
λνb

1− ct
x
j+1
2 f(ξ, η), η =

√
λb

ν(1− ct)
yx

j−1
2 ,

ξ = vw

√
1− ct
λνb

x
1−j
2 , w =

λb

1− ct
xjg(ξ, η), Uw =

λbxj

1− ct
,

θ(ξ, η) =
T − T∞
Tw − T∞

, φ(ξ, η) =
C − C∞
Cw − C∞

, U∞ =
λaxj

1− ct
.

(8)

The sheet surface temperature and concentration which varies with
the distance x from the origin (slot) and time t are:

Tw = T∞ + T0
λ2bx2j

2ν(1− ct)3/2
, Cw = C∞ + C0

λ2bx2j

2ν(1− ct)3/2
, (9)

where λ is a scaling parameter of the dimension L1−j and L 6= 0.
The expressions Uw(x, t), U∞(x, t), Tw(x, t), Cw(x, t) are valid only
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for the time t < 1
c

(i.e. ct < 1) and c > 0 (positive constant). T0 is
the reference temperature such that 0 ≤ T0 ≤ Tw.
By using the Rosseland diffusion approximation, the radiation heat
flux is given by

qr = − 4σ∗

3K∗
∂T 4

∂y
, (10)

where σ∗ and K∗ are the Stefan-Boltzman constant and the Rosse-
land mean absorption coefficient respectively. We assume that the
temperature differences within the flow are sufficiently small such
that T 4 may by expressed as a linear function of temperature. Ex-
panding T 4 in a Taylor series about T∞ and neglecting higher order
terms we obtain T 4 ≈ 4T 3

∞T − 3T 4
∞ substituting this in (10) and

finally into the fourth term on right hand side of (3) we obtain

∂qr
∂y

= −16σ∗T 3
∞

3K∗
∂2T

∂y2
. (11)

Local Nonsimilarity Approach
Problems involving mixed convection, surface mass transfer, effect
of suction or injection of fluid at the wall, variation in wall temper-
ature, variation in free-stream velocity, inclination angle effects in
boundary layers analysis are usually not self similar or locally sim-
ilar or admissible to similarity solution because of the embedded
parameters that are usually marked with the presence of dimen-
sional variables. According to Minkowycz and Sparrow [29], the
first step in the development of the solution method is to transform
the problem from the x, y coordinate system to the ξ, η system.
The coordinate η, which involves both x and y, with x denoting
the streamwise coordinate and y the transverse coordinate, may
be termed a pseudo-similarity variable; it is chosen to reduce to a
true similarity variable for boundary layers which are similar. In
the same vein, ξ is related to x and is so chosen that x does not
appear explicitly in the transformed conservation equations or the
boundary conditions, hence, the need for this solution approach.

By applying this nonsimilarity variables and quantities above in
(8) and (9), the continuity equation (1) is automatically satisfied
and the governing partial differential equations are transformed into
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a system of coupled non-linear ODE as shown below:

f ′′′ +
j + 1

2
ff ′′ + j[ω2 − (f ′)2]− Ax(f ′ +

1

2
ηf ′′ − 1

2
ξF ′) +Grxθ
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M
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2
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]
,
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1

2
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2
ξG)

+
M
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1− j
2

ξ

[
f ′
∂g

∂ξ
− g′∂f

∂ξ

]
,

(13)

(1+
4

3
R)θ′′ + Pr(

j + 1

2
fθ′ − 2jf ′θ)− PrAx

2
(3θ + ηθ′ − ξX)

− δxθ = Pr
1− j

2
ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
,

(14)

φ′′ + Sc(
j + 1

2
fφ′ − 2jf ′φ)− ScAx

2
(3φ+ ηφ′ − ξY )

− ScLrRexφe
θ

1+∈θ = Sc
1− j

2
ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
.

(15)

The corresponding dimensionless initial and boundary conditions
are

f ′(ξ, η) = 1, g(ξ, η) = 0, θ(ξ, η) = 1, φ(ξ, η) = 1, at η = 0,

f ′ → ω, g → 0, θ → 0, φ→ 0 as η →∞.
(16)

Where primes denote the differentiation with respect to η and

Ax =
c

λbxj−1
, Grx =

gβT (Tw − T∞)x

U2
w

, Gcx =
gβc(Cw − C∞)x

U2
w

,

R =
4σ∗T 3

∞
κK∗

, m = ωeτe, M =
σB2

0

ρUw
x, ω =

a

b
, δx =

νQo

κUw
x,

Pr =
µCp
κ

, Sc =
ν

D
, ε =

−E
R∗T∞

, Rex =
xUw
ν

,Lr =
νKr

U2
w

e
−E

R∗T∞ .

Vw = −(νUw
ξ

)
1
2f(ξ, 0) represents the mass transfer at the surface

with f(ξ, 0) = fw where fw < 0 and fw > 0 represent injection and
suction respectively. Ax = Mx

1+m2 for satisfactory bounbary condi-
tion.

The local similarity solution often regarded as the first level

of truncation is computationally attractive but leads to numeri-
cal results of uncertain accuracy. This coincides with when the
respective right hand side (RHS) terms of equations (12) - (15);
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ξ

[
f ′
∂f ′

∂ξ
− f ′′∂f

∂ξ

]
, ξ

[
f ′
∂g

∂ξ
− g′∂f

∂ξ

]
, ξ

[
f ′
∂θ

∂ξ
− θ′∂f

∂ξ

]
and

ξ

[
f ′
∂φ

∂ξ
− φ′∂f

∂ξ

]
are deleted or neglected. Furthermore, the errors

incurred by employing the local similarity method are markedly
greater, the uncertainty concerning the validity of this assumption
of neglecting RHS or when ξ is sufficiently small is a weakness of
the local similarity method.

However, in order to overcome the mentioned drawback in solving
non-similar boundary layer equations, the local nonsimilarity solu-
tion approach presented by Sparrow et al. [30]; Sparrow and Yu
[31] can be adopted to third level of truncation(or three-equation
model). No error had been committed by stopping at the second
level though higher levels of truncations can be obtained by pro-
ceeding along lines similar to the second level. It is well known that
the second level truncation is a relatively good approximation since
the third level truncation makes no significant contribution to the
solution (Sparrow and Yu [31]).

The governing equations for f, g, θ and φ at the second level of
truncation(local nonsimilarity) in equations (12) - (15) are retained
without approximation. The auxiliary equations for F,G,X and Y

are derived by taking
∂

∂ξ
of (12) - (15), introducing

∂f

∂ξ
= F ,

∂g

∂ξ
=

G,
∂θ

∂ξ
= X and

∂φ

∂ξ
= Y and then respectively truncating the terms

ξ

[
∂

∂ξ
(f ′F ′ − f ′′F )

]
, ξ

[
∂

∂ξ
(f ′G− g′F )

]
, ξ

[
∂

∂ξ
(f ′X − θ′F )

]
and

ξ

[
∂

∂ξ
(f ′Y − φ′F )

]
in equations (21) - (24). According to this con-

cept as reported by Minkowycz and Sparrow [29], Sparrow et al.
[30] and Mohamad et al. [32], the RHS of the equations are as-
sumed to be sufficiently small so that it may be approximated by
zero. Boundary conditions for F,G,X and Y are also obtained by

differentiating (16) with respect to ξ and deleting
∂F

∂ξ
,
∂G

∂ξ
,
∂X

∂ξ

and
∂Y

∂ξ
.

Therefore, the complete set of the governing, auxiliary equations
obtained from second level truncation model and their respective
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boundary conditions are

f ′′′ +
j + 1

2
ff ′′ + j(ω2 − f ′2)− Ax(f ′ +

1

2
ηf ′′ − 1

2
ξF ′)+

Grxθ +Gcxφ−
M

(1 +m2)
(f ′ +mg) =

1− j
2

ξ (f ′F ′ − f ′′F ) ,
(17)

g′′ + (
j + 1

2
fg′ − jf ′g)− Ax(g +

1

2
ηg′ − 1

2
ξG)

+
M

(1 +m2)
(mf ′ − g) =

1− j
2

ξ [f ′G− g′F ] ,
(18)

1

Pr
(1 +

4

3
R)θ′′ + (

j + 1

2
fθ′ − 2jf ′θ)− Ax

2
(3θ + ηθ′ − ξX)

+ δxθ =
1− j

2
ξ [f ′X − θ′F ] ,

(19)

1

Sc
φ′′ + (

j + 1

2
fφ′ − 2jf ′φ)− Ax

2
(3φ+ ηφ′ − ξY )

− LrRexφe
θ

1+∈θ =
1− j

2
ξ [f ′Y − φ′F ] ,

(20)

F ′′′ +
j + 1

2
(fF ′′ + f ′′F )− 2jf ′F ′ − Ax(

1

2
F ′ +

1

2
ηF ′′) +GrxX

+GcxY −
1− j

2
(f ′F ′ − f ′′F )− M

(1 +m2)
(F ′ +mG) = 0,

(21)

G′′ +
j + 1

2
(fG′ + g′F )− j(f ′G+ F ′g)− Ax(

1

2
G+

1

2
ηG′)

− 1− j
2

(f ′G− g′F ) +
M

(1 +m2)
(mF ′ −G) = 0,

(22)

1

Pr
(1 +

4

3
R)X ′′ +

j + 1

2
(fX ′ + θ′F )− 2j(f ′X + F ′θ)

+ δxX −
Ax
2

(2X + ηX)− 1− j
2

(f ′X − θ′F ) = 0,

(23)

1

Sc
Y ′′ +

j + 1

2
(fY ′ + φ′F )− 2j(f ′Y + F ′φ)

− Ax
2

(2Y + ηY ′)− 1− j
2

(f ′Y − φ′F )− LrRexY e
θ

1+∈θ

− LrRexφ
(

X

1+ ∈ θ
− ∈ θX

(1+ ∈ θ)2

)
e

θ
1+∈θ = 0,

(24)

f ′(ξ, 0) = 1, g(ξ, 0) = 0, θ(ξ, 0) = 1, φ(ξ, 0) = 1,

f ′(ξ,∞) = ω, g(ξ,∞) = 0, θ(ξ,∞) = 0, φ(ξ,∞) = 0.
(25)
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F ′(ξ, 0) = 0, G(ξ, 0) = 0, X(ξ, 0) = 0, Y (ξ, 0) = 0,

F ′(ξ,∞) = 0, G(ξ,∞) = 0, X(ξ,∞) = 0, Y (ξ,∞) = 0.
(26)

The physical engineering quantities of interest in this problem are
the Skin-friction coefficients in the x- and z-directions, the local
Nusselt number (Nux) and the Sherwood number (Shx) which are
given respectively by the following expressions. Taking advantage
of the velocity field, the skin friction coefficient at the wall can be
obtained in the form

Cfx = −
2µ
(
∂u
∂y

)
y=0

ρU2
w

= −2Re
−1
2
x f ′′(ξ, 0), (27)

Cfz =
2µ
(
∂w
∂y

)
y=0

ρU2
w

= 2Re
−1
2
x g′(ξ, 0). (28)

Using the temperature field, the rate of heat transfer coefficient can
be obtained which in non-dimensional form is given by

Nux =
xqw

κ(Tw − T∞)
= −Re

1
2 θ′(ξ, 0), (29)

where τx = µ
(
∂u
∂y

)
y=0

, τz = µ
(
∂w
∂y

)
y=0

are the wall shear stresses,

qw = κ
(
∂T
∂y

)
y=0

+ (qr)w is the wall heat flux as given by Akin-

bobola and Okoya [37], Bataller [34] and Fatunmbi et al. [26],
qr = −16σ∗

3K∗
T 3
∞
∂T
∂y

. Also with the knowledge of the concentration

field, the rate of mass transfer coefficient can be obtained which in
non-dimensional form,in terms of Shearwood number is given by

Sh = −φ′(ξ, 0)Re
1
2
x . (30)

3. MATHEMATICAL SOLUTION

The numerical solutions of the dimensionless governing coupled
non-linear differential equations (17)-(24) subject to the boundary
conditions (25) and (26) derived by the local nonsimilarity approach
have been carried out by employing Midpoint Method embedded
with Richardson Extrapolation (MMRE) Enhancement scheme im-
plemented, an inbuilt numerical method for boundary value prob-
lem on the MAPLE 18 platform which is a symbolic and numeric
environment due to its ability to handle highly nonlinear problem
of this nature. From this process of numerical computation, the
skin-friction coefficients, the Nusselt number and Sherwoood num-
ber which correspond to −f ′′(ξ, 0), g′(ξ, 0), −θ′(ξ, 0) and −φ′(ξ, 0)
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respectively are also obtained out and their numerical values are
presented in a tabular form.

4. RESULTS AND DISCUSSION

In order to validate the accuracy of our numerical solution by
MMRE, comparison is made with the SLLM approximate results
and it is clearly seen from the Tables 1 - 5 that an excellent agree-
ment between the results of the two methods are observed.

Table 1 shows a comparative study of present result with MMRE
and the SLLM approximate results for some selected values of the
unsteadiness parameter Ax. It shows that an increase in the un-
steadiness parameter leads to increases in the skin-friction coeffi-
cients in both directions. It is clearly seen that the axial and trans-
verse skin-frictions are accurate and precise at 5 decimal places.
The negative values of −f ′′(ξ, 0) mean that the solid surface ex-
erts a drag force on the fluid. This is due to the development of
the velocity boundary layer which in the current study is caused
solely by the stretching sheet velocity. Moreover, the local Nusselt
number (heat transfer coefficient) increases with increase in the un-
steadiness parameter. The appreciable increase in Nusselt number
shows that heat is being transferred over time with increase in un-
steadiness parameter Ax. The calculated slope values of the linear
regression (SLR) line through data points for SLLM and MMRE
are 0.29224 and 0.20422 slope respectively. It has been observed
that many authors have committed the error of neglecting thermal
radiation which has been part of the governing equation that should
equally be incorporated into the wall heat flux for proper analysis
of the Nusselt number according to Bataller [34] and Fatunmbi et al
[26]. The noticed discrepancies in the heat transfer coefficients may
also be due to unperceived error from the previous authors which
this research has revealed and addressed. Thus, the MMRE com-
pares favourably with SLLM and the result is in good agreement
for skin friction in both directions, which places the MMRE on a
good footing than SLLM.
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Table 1. Comparison of the Midpoint Method with Richardson
Extrapolation Enhancement (MMRE) results of −f ′′(ξ, 0), g′(ξ, 0) and
−θ′(ξ, 0) with those obtained by Spectral Local Linearization Method

(SLLM) when Pr = 0.72, j = m = M = R = δ = 1 and
ω = Lr = Sc = Rex = Grx = Gcx = ξ = 0.

−f ′′(ξ, 0) g′(ξ, 0) −θ′(ξ, 0)
Shateyi Present Shateyi Present Shateyi Present

[15] Result [15] Result [15] Result
Ax (SLLM) (MMRE) (SLLM) (MMRE) (SLLM) (MMRE)
1 2.06334 2.0633409 0.17552 0.1755163 0.95974 0.9488611
2 2.27278 2.2727768 0.15185 0.1518542 1.30759 1.1780898
3 2.46650 2.4664970 0.13459 0.1345976 1.54422 1.3572989

Table 2. Comparison of the Midpoint Method with Richardson
Extrapolation Enhancement (MMRE) results of −f ′′(ξ, 0), g′(ξ, 0) and
−θ′(ξ, 0) with those obtained by Spectral Local Linearization Method

(SLLM) when Pr = 0.72, j = m = R = Ax = δ = 1 and
ω = Sc = Rex = Grx = Gcx = ξ = 0.

−f ′′(ξ, 0) g′(ξ, 0) −θ′(ξ, 0)
Shateyi Present Shateyi Present Shateyi Present

[15] Result [15] Result [15] Result
M (SLLM) (MMRE) (SLLM) (MMRE) (SLLM) (MMRE)
1 2.06334 2.0633409 0.17552 0.1755163 0.51730 0.5175441
3 2.40060 2.4005980 0.41758 0.4175784 0.46088 0.4623551
5 2.69188 2.6918781 0.59380 0.5938049 0.43117 0.4275275

In Table 2, we present a comparison between the MMRE and
SLLM results for the effect of the magnetic parameter on the skin
friction coefficients and the Nusselt number. The implication of
the presence of magnetic parameter is that it exert magnetic field
on the flow properties and as such as the magnetic strength in-
creases, the skin friction in both directions increase as a result of
the dragging effect. Conversely, increase in the value of magnetic
parameter lower the Nusselt number. It is observed that increase in
the value of magnetic parameter lowers the Nusselt number which
in turn increases heat diffusion with the fluid flow as such heat
transfer is physically reduced at the wall as M is increased. The
calculated slope values of the linear regression (SLR) line through
data points for SLLM and MMRE are -0.0215325 and -0.0225042
slope respectively. The implication of this is that application of a
strong magnetic field reduces the velocity which in turn increases
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heat diffusion with the fluid flow as such heat transfer is physically
reduced at the wall as M is increased. MMRE compared favourably
with SLLM and the result is in excellent agreement for local skin
friction in both directions as their SLR value is thesame for MMRE
and SLLM. However, the SLR value of MMRE is lower than that
of SLLM.

Table 3. Comparison of the Midpoint Method with Richardson
Extrapolation Enhancement (MMRE) results of −f ′′(ξ, 0), g′(ξ, 0) and
−θ′(ξ, 0) with those obtained by Spectral Local Linearization Method

(SLLM) when Pr = 0.72, j = m = R = Ax = δ = 1.0 and
ω = Rex = Sc = Grx = Gcx = ξ = 0.

−f ′′(ξ, 0) g′(ξ, 0) −θ′(ξ, 0)
Shateyi Present Shateyi Present Shateyi Present

[15] Result [15] Result [15] Result
m (SLLM) (MMRE) (SLLM) (MMRE) (SLLM) (MMRE)
0.1 2.2059 2.2059164 0.0312 0.0312785 0.4978 0.4974593
0.5 2.1537 2.1536683 0.1311 0.1311253 0.5041 0.5036479
1.0 2.0633 2.0633410 0.1755 0.1755163 0.5173 0.5162056

In the same vein, Table 3 shows the influence of the Hall current
on the skin friction coefficients as well as the Nusselt number. The
skin friction coefficient in axial direction is reduced as the values
of the Hall current parameter increase. However, the skin friction
in transverse direction increases as the Hall current parameter in-
creases. There is slight effect of the Hall current parameter on the
Heat transfer rate on the stretching surface only that MMRE values
are a bit higher than SLLM.

The variation of −f ′′(ξ, 0), g′(ξ, 0), −θ′(ξ, 0) and −φ′(ξ, 0) with
respect to chemical reaction parameter Lr, streamwise point ξ,
Magnetic strength parameter M , Hall current parameter m, pres-
sure gradient parameter j, Prandtl number Pr and Schmidt number
Sc are displayed in Table 4. It is observed from Table 4 that axial
skin friction coefficient −f ′′(ξ, 0) increases with increasing chemical
reaction parameter, Magnetic strength parameter, Hall current pa-
rameter, Prandtl number and Schmidt number meaning that these
parameters contributes to the skin friction but decreases with in-
creasing j and ξ. Moreover, the transverse skin friction coefficient
g′(ξ, 0) increases with increasing values of magnetic strength pa-
rameter M , as the magnetic strength increase, the dragging effect
is clearly seen by significant increase in the skin friction but reduces
with increasing Lr, ξ, m, Pr, Sc and j .
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Table 4. Computation showing −f ′′(ξ, 0), g′(ξ, 0), −θ′(ξ, 0) and
−φ′(ξ, 0) when R = Rex = Ax = δ = 1.0, ε = 0.01, ω = 0.02,fw = 0.5

and Grx = Gcx = 0.2.

Pr Sc j m M ξ Lr −f ′′(ξ, 0) g′(ξ, 0) −θ′(ξ, 0) −φ′(ξ, 0)

0.72 0.62 1 1 1 2 1 0.14988 0.02459 0.63888 1.77649
0.72 0.62 1 1 1 2 2 0.15774 0.02389 0.63741 2.16347
0.72 0.62 1 1 1 2 3 0.16329 0.02346 0.63645 2.49630

0.72 0.62 1 1 1 1 1 0.22930 0.15851 0.71034 1.84060
0.72 0.62 1 1 1 2 1 0.14988 0.02459 0.63888 1.77649
0.72 0.62 1 1 1 3 1 0.07453 -0.10847 0.57020 1.71319

0.72 0.62 1 1 2 2 1 0.52811 0.34282 0.55461 1.29635
0.72 0.62 1 1 3 2 1 0.84488 0.52729 0.47619 1.24961
0.72 0.62 1 1 4 2 1 1.10659 0.65462 0.40873 1.21150

0.72 0.62 1 2 1 2 1 0.13883 -0.12293 0.69903 1.79844
0.72 0.62 1 3 1 2 1 0.23207 -0.25228 0.71449 1.80534
0.72 0.62 1 4 1 2 1 0.25948 -0.33429 0.71743 1.80711

0.72 0.62 0.5 1 1 2 1 0.59980 0.19091 0.31169 1.65824
0.72 0.62 1.0 1 1 2 1 0.14988 0.02459 0.63888 1.77649
0.72 0.62 1.5 1 1 2 1 -0.41923 -0.38538 0.88631 1.93250

0.72 0.24 1 1 1 2 1 0.12676 0.02721 0.64413 1.08379
0.72 0.50 1 1 1 2 1 0.14482 0.02509 0.63992 1.588923
0.72 0.62 1 1 1 2 1 0.14988 0.02459 0.63888 1.77649

0.24 0.62 1 1 1 2 1 0.09352 0.03206 0.10181 1.85654
0.50 0.62 1 1 1 2 1 0.14988 0.02459 0.63888 1.77649
0.72 0.62 1 1 1 2 1 0.16167 0.02287 0.85198 1.75806

Also, Nusselt number −θ′(ξ, 0) decreases with increasing Lr, ξ,
M , Sc and j the interpretation of this is that these parameter
reduce heat transfer but increases with increasing Pr, m and j
reason been that the Prandtl number, Hall current parameter and
pressure gradient parameter contribute to the heat transfer in the
system. Furthermore, Shearwood number −φ′(ξ, 0) decreases with
increasing ξ, M and Pr, while it increases with Lr, m, Sc and j.

Table 5 shows the behaviour of −f ′′(ξ, 0), g′(ξ, 0), −θ′(ξ, 0) and
−φ′(ξ, 0) with respect velocity ratio ω, local solutal Grashof number
Gcx, local thermal Grashof number Grx, heat source parameter
δ, unsteadiness parameter Ax and radiation parameter R. The
contribution of local thermal Grashof number Grx, local solutal
Grashof number Gcx and heat source parameter δ on −f ′′(ξ, 0) are
seen in Table 5 that an increase in Grx, Gcx and δ reduce the axial
skin friction, this may be due to thermal and solutal buoyancy force
overcoming the skin friction but aid heat and mass transfer as effect
is observed on g′(ξ, 0), −θ′(ξ, 0) and −φ′(ξ, 0) except only that the
heat source parameter inhibits the heat transfer.
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Table 5. Computation showing −f ′′(ξ, 0), g′(ξ, 0), −θ′(ξ, 0) and
−φ′(ξ, 0) when Pr = 0.72, ε = 0.01, ω = 0.02, Sc = 0.62,fw = 0.5,

j = Rx = m = M = 1 and Lr = 2.
R Ax δ Grx Gcx ω −f ′′(ξ, 0) g′(ξ, 0) −θ′(ξ, 0) −φ′(ξ, 0)

1 1 1 0.2 0.2 0.20 0.17931 0.02374 0.63632 1.34795
1 1 1 0.2 0.2 0.50 0.17963 0.02410 0.63617 1.34788
1 1 1 0.2 0.2 0.70 0.17983 0.02435 0.63607 1.34783

1 1 1 0.2 0.1 0.02 0.17912 0.02353 0.63642 1.34799
1 1 1 0.2 0.5 0.02 0.09918 0.02773 0.64564 1.35588
1 1 1 0.2 1.0 0.02 0.02018 0.03176 0.65447 1.36352

1 1 1 0.1 0.2 0.02 0.19542 0.02143 0.63224 1.34517
1 1 1 0.5 0.2 0.02 0.08346 0.02969 0.64949 1.35853
1 1 1 1.0 0.2 0.02 0.02546 0.03727 0.66519 1.37102

1 1 2 0.2 0.2 0.02 0.14929 0.02428 0.83626 1.34796
1 1 3 0.2 0.2 0.02 0.14620 0.02462 0.78475 1.34896
1 1 4 0.2 0.2 0.02 0.13903 0.02565 0.64108 1.35197

1 0.5 1 0.2 0.2 0.02 -0.22214 0.17474 0.67042 1.36548
1 1.0 1 0.2 0.2 0.02 0.13903 0.02565 0.64108 1.35196
1 1.5 1 0.2 0.2 0.02 0.43662 -0.02874 0.62686 1.82549

2 1 1 0.2 0.2 0.02 0.14685 0.02446 0.75818 1.34901
3 1 1 0.2 0.2 0.02 0.13903 0.02565 0.64108 1.35197
4 1 1 0.2 0.2 0.02 0.13337 0.02659 0.56588 1.35408

Fig. 2. Axial velocity (f ′) profiles across the domain at various values
of suction (fw)
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Fig. 3. Transverse velocity (g) profiles across the domain at various
values of suction (fw)

Fig. 4. Axial velocity (f ′) profiles across the domain at various values
of streamwise pressure gradient (j)
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Fig. 5. Transverse velocity (g) profiles across the domain at various
values of streamwise pressure gradient (j)

Fig. 6. Axial velocity (f ′) profiles across the domain at various values
of Hall current parameter (m)
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Fig. 7. Transverse velocity (g) profiles across the domain at various
values of Hall current parameter (m)

An increase in thermal radiation parameter causes a decrease in
axial skin-friction coefficient−f ′′(ξ, 0) and Nusselt number−θ′(ξ, 0)
but increase in transverse skin-friction coefficient g′(ξ, 0) and Shear-
wood number −φ′(ξ, 0). Furthermore, the axial skin-friction coef-
ficient −f ′′(ξ, 0) and Shearwood number −φ′(ξ, 0) increase with
increase in unsteadiness parameter Ax but results to decrease in
g′(ξ, 0) and −θ′(ξ, 0). The effect of increase in velocity ratio ω is
not that significant on −f ′′(ξ, 0), g′(ξ, 0), −θ′(ξ, 0) and −φ′(ξ, 0).

The influence of suction parameter fw on the axial velocity (f ′)
and transverse velocity (g) are depicted in Figs. 2 and 3 respec-
tively. In both cases, we observe that increasing suction decreases
both the axial and transverse velocity profiles. This is physically
reasonable since suction, which corresponds to fluid loss (sink) de-
celerates flow velocity in the flow system. However, the effect of
fw is more felt on the transverse velocity profiles. The observed
decrease on both the axial and transverse velocity is due to the
nature of dual stretching and suction as was reported by [34]

It is observed in Fig. 4 that the axial velocity profiles increase
with increase in the value of j this claim is supported by Dulal et al
[5]. In Fig. 5, similar behaviour is observed in that the transverse
velocity profile increases with increase in j.

Fig. 6 depicts the influence of Hall current parameter m on the
axial velocity profiles. However, the Hall current parameter does
not have much effects on the except for it large values unlike on
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transverse velocity. an attempt to increase m beyond 1.5 (i.e. m >
1.5) makes the axial velocity profiles approach the classical values
[24]. The effect of the Hall current parameter on the transverse
velocity is displayed in Fig. 7, increase in the values of m causes
the transverse velocity to rapidly increase owning to the fact that
increase in Hall current decreases the viscosity thus increases the
velocity of the flow. The presence of Hall current produces Hall
effect which contributes to current density and in turn determines
magnetic field strength.

Fig. 8. Axial velocity (f ′) profiles across the domain at various values
of Hartmann number (M)

Fig. 8 depicts the influence of the local Hartmann number Mx on
the axial velocity velocity profile, increase in Mx reduces the axial
velocity of the fluid. This is because the application of transverse
magnetic field will result in a resistive type of force (Lorentz force)
similar to drag force which tends to resist the fluid flow and thus
reducing its velocity as established by [18], [19] and [28].

Effect of unsteadiness parameter Ax on transverse velocity profiles
is shown in Fig. 9. At the initial stage of the flow because of the
presence of pressure gradient and buoyancy forces, the transverse
velocity profiles are greatly influenced by the unsteadiness (time
dependent) parameter Ax in that the flow velocity reduces gradually
with time. This observation is physically reasonable and justified.
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Fig. 9. Transverse velocity (g) profiles across the domain at various
values of unsteadiness parameter (Ax)

Fig. 10. Dimensionless Temperature (θ) profiles across the domain at
various values of Hartmann number (M)
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Fig. 11. Dimensionless concentration (φ) profiles across the domain
at various values of Hartmann number(M)

Fig. 12. Transverse velocity (θ) profiles across the domain at various
values of thermal Grashof number (Gr)
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Fig. 13. Transverse velocity (θ) profiles across the domain at various
values of solutal Grashof number (Gc)

Fig. 14. Axial velocity (f ′) profiles across the domain at various
values of thermal Grashof number (Gr)
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Fig. 15. Axial velocity (f ′) profiles across the domain at various
values of solutal Grashof number (Gc)

Fig. 16. Dimensionless Temperature (θ) profiles across the domain at
various values of pressure gradient parameter (j)



LOCAL NONSIMILARITY SOLUTIONS FOR MIXED CONVECTIVE . . . 377

Fig. 17. Dimensionless concentration (φ) profiles across the domain
at various values of pressure gradient parameter (j)

Fig. 18. Dimensionless Temperature (θ) profiles across the domain at
various values of thermal radiation parameter (R)
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Fig. 19. Dimensionless Temperature (θ) profiles across the domain at
various values of heat source parameter (δ)

Fig. 20. Dimensionless Temperature (θ) profiles across the domain at
various values of Prandtl number (Pr)
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Fig. 21. Dimensionless concentration (φ) profiles across the domain
at various values of Schmidt number (Sc)

Fig. 22. Dimensionless Temperature (θ) profiles across the domain at
various values of unsteadiness parameter (Ax)
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Fig. 23. Dimensionless concentration (φ) profiles across the domain
at various values of unsteadiness parameter (Ax)

Fig. 24. Dimensionless Temperature (θ) profiles across the domain at
various values of suction parameter (fw)
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Fig. 25. Dimensionless concentration (φ) profiles across the domain
at various values of suction parameter (fw)

Fig. 26. Dimensionless concentration (φ) profiles across the domain
at various values of chemical reaction parameter (Lr)
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In Fig. 10 the effect of Magnetic strength parameter on the tem-
perature profiles is displayed. The application of a magnetic field
to an electrically conducting any fluid produces a kind of drag-like
force called Lorentz force. This force causes reduction in the fluid
velocity within boundary layer. It is observed that as M increases,
the temperature distribution increases. The effect of Lorentz force
on velocity profiles generated a kind of friction on the flow (see
Fig. 8); this friction in turn generated more heat energy which
eventually increases the temperature distribution in the flow.

The effect of magnetic strength parameter M on concentration
profiles φ(ξ, η) is displayed in Fig. 11. It is observed that increase
in magnetic strength parameter reduces the concentration profiles.
This may be due to friction which generating more heat energy
that eventually increases the temperature distribution in the flow
and therefore the concentration reduces with increase in magnetic
strength parameter.

In the Figs. 12 and 13, we observe that the axial velocity profiles
increase with increasing buoyancy parameters (Grx, Gcx) leading to
an increase in momentum boundary layer thickness. An interest-
ing feature occurs where a velocity spontaneously increase at the
reaction source (accelerated flow). In both cases this peak is ac-
centuated with an increase in thermal Grashof number (Grx) and
solutal Grashof number (Gcx) at Grx or Gcx > 0.1 in the domain
0 < η < 3. Therefore in materials processing systems in order to
damp the flow near the moving sheet, lower buoyancy forces are
required. The observation in Figs. 12 and 13 is in agreement with
the conclusion of a meta-analysis report carried out by Shah [35]
on the effects of buoyancy parameters on the flow of different flu-
ids driven by convection over various surfaces. Similar behaviour is
seen in Figs. 14 and 15 for the influence of thermal Grashof number
and species Grashof number parameter on transverse velocity ex-
cept that the fluid velocity increase with increasing thermal Grashof
number and species Grashof number generally and not concentrated
at or near the reaction source or sheet wall.

Fig. 16 shows that the temperature profile increases with increas-
ing j which confirms that the pressure gradient is negative which
implies accelerated flow leading to easy convection, hence decrease
in temperature. Similarly, Fig. 17 shows the influence of pressure
gradient parameter on concentration profile. Fig. 18 depicts the
effect of thermal radiation on the temperature profiles. The pres-
ence of thermal radiation plays important role on the temperature
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such that increase in radiation decreases the temperature profiles
[19] and [22]. This observed result may be due to the contribution
of heat release/loss of heat energy from the flow system, Therefore,
it is noticed that an increase in the thermal radiation parameter
results in a decrease in temperature within the boundary layer.

The effect of heat source/sink parameter δ on the temperature
profiles is shown in Fig. 19. This result further corroborates what
exist in literature and just as expected the heat absorption due to
a uniform sink (δ < 0) reduces the temperature and heat genera-
tion due to heat source (δ > 0) adds heat and therefore increases
temperature of the system which is in agreement with [21] and [24].

In Fig. 20, the effect of Prandtl number Pr on the temperature
profiles is shown. The values of Pr are carefully chosen in line with
those in literatures varying from small Pr < 1 are gases to large
Pr > 1 which are liquids. It is observed that an increase in Pr re-
duces the temperature within the boundary layer. This behaviour
is as a result of Pr being strongly dependent on thermal diffusivity

of fluid from the definition Pr =
ν

α
, meaning that larger Pr has

weaker thermal diffusivity which is responsible for a reduction in
temperature. The response for species concentration has been com-
puted with an increasing Schmidt number and displayed in Fig. 21,
molecular diffusivity will be reduced (low molecular diffusivity) will
decrease the ability of the chemical species to diffuse in the regime.

Also the influence of the unsteadiness parameter on the temper-
ature profile is shown in Fig. 22, it is found to have increased
with increasing unsteadiness parameter, this observation is in agree-
ment with Ibrahim and Makinde [36] and conversely the concen-
tration profile decreases with increasing unsteadiness parameter as
observed in Fig. 23. From Fig. 24 it is seen that the wall suction
affects the temperature distribution. Thus, an increase in suction
increases temperature which implies that the thermal boundary
layer thickness increases. Similarly, in Fig. 25, it is observed that
the concentration profile increase with increasing suction. The ef-
fect of Chemical reaction parameter Lr on the concentration is seen
Fig. 26, it is observed that increase in chemical reaction parameter
leads to decrease in concentration profile.
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4. CONCLUDING REMARKS

This paper deals with the theoretical study and analysis of heat and
mass transfer for a two-dimensional unsteady, chemically reactive
MHD mixed convective flow past a stretching sheet in the presence
of Hall current. The governing nonlinear partial differential equa-
tions have been reduced to a system of coupled nonlinear ordinary
differential equations by using a standard nonsimilarity transforma-
tion. The resulting equations are then solved numerically using the
Midpoint method based on Richardson Extrapolation Enhancement
scheme. The results are subjected to analysis using some embedded
parameters in the system and displayed graphically. The following
conclusions were drawn from the study:

(i) The MMRE compares favourably with SLLM in that an
excellent agreement was observed at 5 decimal places.

(ii) The axial and transverse velocities are enhanced when the
Hall current parameter increases while the increase in chem-
ical reaction parameter decreases the concentration profile.

(iii) An increase in suction reduces the axial and transverse ve-
locities, temperature and concentration profiles.

(iv) An increase in the thermal and solutal Grashof number in-
creases the axial and transverse velocities; increase in un-
steadiness parameter reduces the transverse velocity, tem-
perature and concentration profiles; increase in pressure gra-
dient parameter increases the axial and transverse veloc-
ities but reduces the temperature and concentration pro-
files; increase in thermal radiation and Prandtl number re-
duces concentration profiles; increase in Schmidt number
reduces concentration profiles and high heat source param-
eter increases the temperature profiles; also an increase in
magnetic strength parameter reduces the axial velocity and
concentration but increases the temperature profiles.
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NOMENCLATURE

a, b, c initial stretching rate, stretching rate, positive constant respectively
Ax ratio of stretching rate or unsteadiness parameter
Bo applied uniform transverse magnetic field strength
C dimensional species concentration of the fluid
Cw species concentration of the fluid along the sheet wall
C∞ species concentration of the fluid far away from the sheet wall
Cp specific heat capacity at constant pressure
D effective diffusive coefficient or mass diffusion coefficient
E activation energy
f dimensionless or reduced stream function,
f ′ dimensionless axial velocity variable,

F auxiliary axial or horizontal velocity function,
∂f

∂ξ
,

g dimensionless transverse or vertical velocity function,
g∗ acceleration due to gravity

G auxiliary transverse velocity function,
∂g

∂ξ
,

Grx local thermal Grashof number
Gcx local Solutal Grashof number
KT thermal diffusion ratio
Lr chemical reaction parameter
m Hall current parameter
M Magnetic strength parameter/Local Hartmann number
P pressure
Pr Prandtl number
R thermal radiation parameter
R∗ universal gas constant
Rex local Reynolds number
Sc Schmidt number
t time
T dimensional temperature of the fluid
Tm mean fluid temperature
Tw temperature of the sheet wall
T∞ dimensional or free stream temperature of the fluid far away from the sheet
u, v, w velocity components in x, y and z direction respectively
Uw velocity at the sheet wall or mainstream velocity
U∞ velocity far away from the sheet wall or free stream velocity

X auxiliary dimensionless temperature function,
∂θ

∂ξ
,

Y auxiliary dimensionless concentration function,
∂φ

∂ξ
,
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Greek Symbols
ρ fluid density
σ electrical conductivity of fluid
α thermal diffusivity
µ dynamic viscosity
ν kinematic fluid viscosity
κ constant thermal conductivity
δ heat source/sink parameter
θ dimensionless temperature
φ dimensionless concentration
βT thermal expansion(volumentric) coefficient
βc concentration expansion coefficient
η pseudo-similarity variable
ξ non-similarity variable

Subscripts and Superscripts
w condition at the wall
j exponent of nonlinear stretching velocity/streamwise pressure

gradient parameter.
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