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ON NAYO ALGEBRAS

EMMANUEL ILOJIDE

ABSTRACT. In this paper, nayo algebras are introduced. Prop-
erties of homomorphisms in relation to translation maps in nayo
algebras are investigated. Moreover, monics and krib maps are
introduced and studied in some clases of nayo algebras.
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1. INTRODUCTION

In [4], Kim and Kim introduced the notion of BE-algebras which
are algebras of type (2,0). Ahn and So, in [5] and [6] introduced
the notions of ideals and upper sets in BE-algebras and investigated
related properties. Several logical algebras have also been studied
by some researchers. BCK-algebras were introduced in [8]. BCI-
algebras were studied in [9]. In [10], Q-algebras were studied. Pre-
commutative algebras were studied in [11]. In [12], d-algebras were
introduced. Fenyves BCI-algebras were studied in [[13],[14],[15]]. In
this paper, a new class of algebras called nayo algebras which gen-
eralize the aforementioned logical algebras are introduced. Their
properties are investigated. Homomorphisms in relation to trans-
lation maps of nayo algebras are studied. Moreover, monics and
krib maps are introduced and investigated in some classes of nayo
algebras.

2. PRELIMINARIES

Definition 2.1. ([4]). An algebra (X; ∗, 1) of type (2, 0) is called
a BE-algebra if the following hold:

(1) x ∗ x = 1 for all x ∈ X;
(2) x ∗ 1 = 1 for all x ∈ X;
(3) 1 ∗ x = x for all x ∈ X;
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.
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Example 2.1. ([4]). Let X = {1, a, b, c, d, 0} be a set with the
following table:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X; ∗, 1) is a BE-algebra.

Proposition 2.1. ([4]). If (X; ∗, 1) is a BE-algebra, then x ∗ (y ∗
x) = 1 for any x, y ∈ X.

Definition 2.2. ([4]). A BE-algebra (X; ∗, 1) is said to be self
distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

Example 2.2. ([4]). Let X = {1, a, b, c, d} be a set with the
following table:

∗ 1 a b c d

1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

Then (X; ∗, 1) is a self distributive BE-algebra.

3. NAYO ALGEBRAS

Definition 3.1. A triple (X; ∗, 0); where X is a non-empty set, ∗
a binary operation on X, and 0 a constant element of X is called a
nayo algebra if the following axioms hold for all x, y ∈ X:

(1) x ∗ 0 = x
(2) x ∗ y = 0 and y ∗ x = 0⇒ x = y
(3) x ∗ x = 0

Example 3.1. Let X = {0, 1, a}. Define a binary operation ∗ on
X by the multiplication table below:

Then (X; ∗, 0) is a nayo algebra.
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∗ 0 1 a

0 0 0 a
1 1 0 0
a a a 0

Example 3.2. Let Z denote the set of integers; −, the operation
of subtraction, and 0 the zero integer. Then (Z;−, 0) is a nayo
algebra.

Example 3.3. Let X be a non-empty set. Let 2X denote the
collection of all subsets of X, ”-” the set difference operation and
φ the empty set. Then (2X ;−, φ) is a nayo algebra.

The notation X will be adopted for a nayo algebra (X; ∗, 0).

Definition 3.2. A nayo algebra X is called prime if 0 ∗ x = 0 for
all x ∈ X.

Definition 3.3. A nayo algebraX is called associative if (x∗y)∗z =
x ∗ (y ∗ z) for all x, y, z ∈ X.

Definition 3.4. A nayo algebraX is called medial if (x∗y)∗(u∗v) =
(x ∗ u) ∗ (y ∗ v) for all x, y, u, v ∈ X.

Definition 3.5. A nayo algebra X is called hyper-commutative if
x ∗ y = y ∗ x⇒ x = y for all x, y ∈ X.
Definition 3.6. A subset K of a nayo algebra X is called a sub-
algebra of X if (K; ∗, 0) is also a nayo algebra.
Example 3.4. Consider the set K = {0, 1} with binary operation
∗ defined by the multiplication table below:

∗ 0 1

0 0 0
1 1 0

Then (K; ∗, 0) is a sub-algebra of the nayo algebra in example
3.1.

Proposition 3.1. A non-empty subset K of a nayo algebra X is
a sub-algebra if and only if x ∗ y ∈ K for all x, y ∈ K.

Proof: Let x ∈ K. By the hypothesis, x ∗ x = 0 ∈ K. The axioms
of a nayo algebra hold in K by virtue of K being a subset of X.
The converse is obvious.
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Definition 3.7. Let (X; ∗, 0) and (Y ;�, 0′) be nayo algebras. A
function f : X → Y is called a homomorphism if f(a ∗ b) = f(a)�
f(b) for all a, b ∈ X.

Example 3.5. Let X = {0, 1, 2} and Y = {0′, P}. Consider the
nayo algebras given by the following multiplication tables:

∗ 0 1 2

0 0 0 2
1 1 0 2
2 2 2 0

� 0′ p

0′ 0′ p
p p 0′

The map f : X → Y given by f(0) = 0′, f(1) = 0′, f(2) = p is a
homomorphism.

Remark 3.1. Let f : X → Y be a homomorphism. The set
{x ∈ X : f(x) = 0′} is called the kernel of f , denoted by ker(f).
A homomorphism f : X → Y which is one to one is called a
monomorphism. If f is onto, then it is called an epimorphism. If
f is both one to one and onto, then it is called an isomorphism,
and then X and Y are said to be isomorphic. The collection of all
homomorphisms of a nayo algebra X is denoted by Hom(X).

Proposition 3.2. Let (X; ∗, 0) and (Y ;�, 0′) be nayo algebras.
Let f : X → Y be a homomorphism. Then

(1) f(0) = 0′

(2) x ∗ y = 0⇒ f(x)� f(y) = 0′

Proof:

(1) Consider f(0) = f(0 ∗ 0) = f(0)� f(0) = 0′ as required.
(2) Now, f(x)� f(y) = f(x ∗ y) = f(0) = 0′ as required.

Remark 3.2. Let f : X → Y be a homomorphism. Define a
relation ∼f by x ∼f y ⇔ f(x) = f(y). Then ∼f is an equivalence
relation.

Definition 3.8. An equivalence relation ∼ on a nayo algebra X is
called a congruence if x ∼ y and u ∼ v ⇒ (x ∗ u) ∼ (y ∗ v) for all
x, y, u, v ∈ X.
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Lemma 3.1. Let X and Y be nayo algebras, and let f : X → Y
be a homomorphism. The equivalence relation ∼f defined by x ∼f

y ⇔ f(x) = f(y) is a congruence.

Proof: Now, x ∼f y ⇒ f(x) = f(y). Also, u ∼f v ⇒ f(u) = f(v).
So, f(x)�f(u) = f(y)�f(v). Hence, f(x∗u) = f(y∗v). Therefore,
(x ∗ u) ∼f (y ∗ v) as required.

Definition 3.9. Let X be a nayo algebra, let [x] be the equivalence
class of x ∈ X and let X denote the collection of equivalence classes
in the equivalence relation ∼f . Define a binary operation � on X
by [x] � [y] = [x ∗ y].

Theorem 3.1. Let X and Y be nayo algebras and let f : X → Y
be a homomorphism. Then (X; �, [0]) is a nayo algebra.

Proof: Straightforward.

Theorem 3.2. Let X and Y be nayo algebras, and let f : X → Y
be a homomorphism. Then f(X) is isomorphic to X.

Proof: Consider the map φ : f(X) → X such that φ(f(x)) = [x].
Then φ is a bijective homomorphism.

Theorem 3.3. Let X be a nayo algebra, and let f : X → X
be a homomorphism. Then ker(f) = {0} if and only if f is a
monomorphism.

Proof: Suppose ker(f) = {0}. Let x, y ∈ X such that f(x) =
f(y). Then f(x ∗ y) = f(x) ∗ f(y) = 0. Also, f(y ∗ x) = 0. So,
x ∗ y, y ∗ x ∈ ker(f). So, x ∗ y = 0 and y ∗ x = 0. So, x = y.
Conversely, suppose f is a monomorphism. Let x ∈ ker(f). Then
f(x) = 0 = f(0). So, x = 0.

Definition 3.10. Let X be a nayo algebra. A homomorphism
f : X → X is called idempotent if f [f(x)] = f(x) for all x ∈ X.

Theorem 3.4. Let X be a nayo algebra, and let f : X → X be
an idempotent homomorphism. If f is a monomorphism, then f is
the identity map.

Proof: Let f be a monomorphism, and let x ∈ X. Then f [x ∗
f(x)] = f(x) ∗ f [f(x)] = f(x) ∗ f(x) = 0 = f(0). So, x ∗ f(x) = 0.
Similarly, f(x) ∗ x = 0. Hence, f(x) = x.

Definition 3.11. Let X be a nayo algebra. Define ’·’ in Hom(X)
by (f · g)(x) = f(x) ∗ g(x) for all f, g ∈ Hom(X), x ∈ X.
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Lemma 3.2. Let X be a medial nayo algebra. Then f · g ∈
Hom(X) for all f, g ∈ Hom(X).

Proof: LetX be a medial nayo algebra, and let f, g ∈ Hom(X), x, y ∈
X. Consider (f · g)(x ∗ y) = [f(x ∗ y)] ∗ [g(x ∗ y)] = [f(x) ∗ f(y)] ∗
[g(x) ∗ g(y)] = [f(x) ∗ g(x)] ∗ [f(y) ∗ g(y)] = (f · g)(x) ∗ (f · g)(y) as
required.

Theorem 3.5. LetX be a medial nayo algebra. Then (Hom(X); ·, 0X)
is a nayo algebra.

Proof: By Lemma 3.2, (Hom(X); ·, 0X) is closed. Now, let f, g ∈
Hom(X), and let x ∈ X. Consider (f · 0X)(x) = f(x) ∗ 0X(x) =
f(x) ∗ 0 = f(x). So, f · 0X = f . Also consider (f · f)(x) =
f(x) ∗ f(x) = 0 = 0X . So, f · f = 0X . Now, suppose f · g = 0X and
g · f = 0X . Then (f · g)(x) = 0X(x) and (g · f)(x) = 0X(x). Hence,
f(x) ∗ g(x) = 0 and g(x) ∗ f(x) = 0. So, f(x) = g(x). Therefore,
f = g. Hence, (Hom(X); ·, 0X) satisfies all the axioms of a nayo
algebra.

Theorem 3.6. Let X be a hyper commutative medial nayo alge-
bra. Then (Hom(X); ·, 0X) is hyper commutative.

Proof: Let X be a hyper commutative medial nayo algebra. By
Theorem 3.5, (Hom(X); ·, 0X) is a nayo algebra.
Let f, g ∈ Hom(X), x ∈ X such that (f · g)(x) = (g · f)(x). Then
f(x) ∗ g(x) = g(x) ∗ f(x). Then f(x) = g(x). Hence, f = g as
required.

Definition 3.12. Let X be a nayo algebra; and let a be a fixed
element of X. The map La : X → X such that La(x) = a ∗ x for
all x ∈ X is called a left translation of a.
The map Ra : X → X such that Ra(x) = x ∗ a for all x ∈ X is
called a right translation of a.

Proposition 3.3. Let X be a nayo algebra. Then every homo-
morphism f : X → X commutes with L0 and R0.

Proof: Let f : X → X be a homomorphism of a nayo algebra
X, and let x ∈ X. Consider (L0 ◦ f)(x) = L0(f(x)) = 0 ∗ f(x) =
f(0)∗f(x) = f(0∗x) = f(L0(x)) = (f ◦L0)(x). So, f ◦L0 = L0 ◦f .
Similar argument shows that f ◦R0 = R0 ◦ f .

Remark 3.4. Let X be a nayo algebra. Denote by LH(X), the set
of all left translations which are homomorphisms.
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Proposition 3.4. Let X be a nayo algebra such that 0 ∗ (x ∗ y) =
(0 ∗ x) ∗ (0 ∗ y) for all x, y ∈ X. Then LH(X) = {L0}.
Proof: Now, L0 is a homomorphism. Let 0 6= x ∈ X. Suppose
Lx is a homomorphism. Then x = x ∗ 0 = Lx(0) = Lx(0 ∗ 0) =
Lx(0) ∗ Lx(0) = 0; which is a contradiction.

Definition 3.13. Let L(X) denote the set of all left translations of
a nayo algebra X. Define⊗ on L(X) by (La⊗Lb)(x) = La(x)∗Lb(x)
for all x ∈ X.

Theorem 3.7. Let X be a prime nayo algebra such that the right
cancellation law holds. Then (L(X);⊗, L0) is a nayo algebra.

Proof: Let La, Lb ∈ L(X);x ∈ X.
Consider (La ⊗ L0)(x) =
La(x) ∗ L0(x) =
(a ∗ x) ∗ (0 ∗ x) =
(a ∗ x) ∗ 0 =
a ∗ x = La(x)⇒ La ⊗ L0 = La

Consider (La ⊗ La)(x) =
La(x) ∗ La(x) =
(a ∗ x) ∗ (a ∗ x) = 0
= L0(x).
Now, suppose La ⊗ Lb = L0 and Lb ⊗ La = L0.
Then (a ∗ x) ∗ (b ∗ x) = 0 and
(b ∗x) ∗ (a ∗x) = 0. So, a ∗x = b ∗x⇒ xLa = xLb. Hence La = Lb.
Definition 3.14. Let X be a nayo algebra. Define ’∧’ by x ∧ y =
y ∗ (y ∗ x) for all x, y ∈ X. A map f : X → X is called a monic if
f(x ∗ y) = [x ∗ f(y)] ∧ [y ∗ f(x)] for all x, y ∈ X.

Example 3.6. Consider the nayo algebra X given by the multipli-
cation table below:

∗ 0 a b

0 0 0 b
a a 0 b
b b b 0

Define f : X → X by f(b) = 0, f(0) = b, f(a) = b.
Then f is a monic of X.

Definition 3.15. Let X be a nayo algebra. A map f : X → X is
called regular if f(0) = 0.
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Definition 3.16. A nayo algebra X is called a wedge if 0 ∗ x = x
for all x ∈ X.

Proposition 3.5. Let f be a monic of a nayo algebra X. Then
for all x ∈ X,

(1) 0 ∗ f(x) ∗ (0 ∗ f(x) ∗ (x ∗ f(0))) = f(x)
(2) X is associative ⇒ 0 ∗ [x ∗ f(0)] = f(x)
(3) f is regular ⇒ 0 ∗ f(x) ∗ [(0 ∗ f(x)) ∗ x] = f(x)
(4) f is regular and X is associative ⇒ 0 ∗ x = f(x)
(5) X is prime ⇒ f(x) = 0
(6) X is a wedge ⇒ f(x) ∗ (f(x) ∗ (x ∗ f(0))) = f(x)
(7) f is regular and X is a wedge ⇒ f(x) ∗ (f(x) ∗ x) = f(x)

Proof:

(1) f(x) = f(x ∗ 0) = (x ∗ f(0)) ∧ (0 ∗ f(x)) = 0 ∗ f(x) ∗ (0 ∗
f(x) ∗ (x ∗ f(0)))

(2) Apply the associative law to the left hand side of item (1).
(3) Apply regularity of f to the left hand side of item (1).
(4) Apply the associative law to the left hand side of item (3).
(5) Apply the property of X being prime to item (1).
(6) Apply the property of X being a wedge to item (1).
(7) Apply regularity of f to the left hand side of item (6).

Proposition 3.6. Let f be a monic of a nayo algebra X. Then
for all x ∈ X,

(1) x ∗ f(x) = f(0)
(2) f is regular ⇒ x ∗ f(x) = 0
(3) X is associative ⇒ 0 ∗ (x ∗ f(x)) = f(0)
(4) f is regular and X is associative ⇒ 0 ∗ (x ∗ f(x)) = 0

Proof:

(1) f(0) = f(x ∗ x) = (x ∗ f(x)) ∧ (x ∗ f(x)) = x ∗ f(x)
(2) Apply regularity of f to the right hand side of item (1).
(3) Consider f(0) = f(x ∗ x) = [x ∗ f(x)] ∧ [x ∗ f(x)] = (x ∗

f(x)) ∗ [(x ∗ f(x)) ∗ (x ∗ f(x))] = 0 ∗ (x ∗ f(x)) as required.
(4) Apply regularity of f to the right hand side of item (3).

Proposition 3.7. Every monic of a prime nayo algebra X is reg-
ular.

Proof: Let x ∈ X. Consider f(0) = f(0 ∗ x) = (0 ∗ f(x)) ∧ (x ∗
f(0)) = (x ∗ f(0)) ∗ (x ∗ f(0) ∗ (0 ∗ f(x))) = 0.
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Proposition 3.8. Let f be a monic on a wedge X. Then for all
x ∈ X,

(1) (x ∗ f(0)) ∗ (x ∗ f(0) ∗ f(x)) = f(x)
(2) f is regular ⇒ x ∗ (x ∗ f(x)) = f(x)
(3) X is associative ⇒ 0 ∗ f(x) = f(x)

Proof:

(1) Consider f(x) = f(0 ∗ x) = [0 ∗ f(x)] ∧ [x ∗ f(0)] = f(x) ∧
[x ∗ f(0)] = (x ∗ f(0)) ∗ [(x ∗ f(0)) ∗ f(x)] as required.

(2) Apply regularity of f to the left hand side of item (1).
(3) Apply the associative law to the left hand side of item (1).

Proposition 3.9. Let f be a monic of an associative nayo algebra
X. Then f(x ∗ y) = 0 ∗ [x ∗ f(y)] for all x, y ∈ X.

Proof: Consider f(x ∗ y) = (y ∗ f(x)) ∗ [(y ∗ f(x)) ∗ (x ∗ f(y))] =
0 ∗ [x ∗ f(y)].

Definition 3.17. Let f be a self map of a nayo algebra X. A
map α : X → X is called a right krib map of X if α(x ∗ y) =
[α(x) ∗ f(y)] ∧ [f(x) ∗ α(y)] for all x, y ∈ X.

If α(x ∗ y) = [f(x) ∗ α(y)] ∧ [α(x) ∗ f(y)] for all x, y ∈ X, then α is
called a left krib map of X.
The map f is called the underlying map of X for α.

Remark 3.3. If α is both a left krib map and a right krib map of
a nayo algebra X, then α is called a krib map of X.

Example 3.7. Let X = N ∪ {0}; where N is the set of natural
numbers. Define ∗ on X by

x ∗ y =

{
0, x ≤ y

x− y, x > y

Then X is a nayo algebra. Now, define α : X → X by α(x) = 0 for
all x ∈ X. Also define f : X → X by f(x) = 5x for all x ∈ X.
Then α is a both a right krib map and a left krib map of X.

Definition 3.18. Let X be a nayo algebra. A map f : X → X is
called krest if f(x) = 0 for all x ∈ X.

Proposition 3.10. Let α be a regular right krib map of a nayo
algebra X. Then
[f(x) ∗ α(x)] ∗ [(f(x) ∗ α(x)) ∗ (α(x) ∗ f(x))]
= [f(y) ∗ α(y)] ∗ [(f(y) ∗ α(y)) ∗ (α(y) ∗ f(y))] for all x, y ∈ X.
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Proof: Now, 0 = α(0) = α(x ∗ x)
= [α(x) ∗ f(x)] ∧ [f(x) ∗ α(x)]
= [f(x)α(x)] ∗ [(f(x)α(x)) ∗ (α(x) ∗ f(x))].
Similar argument gives
[f(y)α(y)] ∗ [(f(y)α(y)) ∗ (α(y) ∗ f(y))] = 0.
Hence the result follows.

Proposition 3.11. Let α be a regular right krib map on an asso-
ciative nayo algebra X. Then 0 ∗ [α(x) ∗ f(x)] = 0 ∗ [α(y) ∗ f(y)]
for all x, y ∈ X.

Proof: Consider 0 = α(0) = α(x ∗ x)
= [α(x)f(x)] ∧ [f(x)α(x)]
= [f(x)α(x)] ∗ [f(x)α(x) ∗ α(x)f(x)]
= 0 ∗ [α(x)f(x)].
Similar argument gives 0 ∗ [α(y)f(y)] = 0.
Hence the conclusion follows.

Proposition 3.12. Let α be a right krib map of a nayo algebra
X. Then for all x ∈ X, the following hold:

(1) f(0)α(x) ∗ [f(0)α(x) ∗ α(0)f(x)] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ [α(0)f(x)] = α(0 ∗ x)
(3) X is prime ⇒ f(0)α(x) ∗ [f(0)α(x) ∗ α(0)f(x)] = α(0)

Proof:

(1) Consider α(0 ∗ x) = [α(0) ∗ f(x)] ∧ [f(0) ∗ α(x)]
= [f(0) ∗ α(x)] ∗ [f(0)α(x) ∗ α(0)f(x)].

(1) Apply the associative law to item (1).
(2) Apply the property of X being prime to the right hand side

of item (1).

Corollary 3.1. Let α be a regular right krib map of a nayo algebra
X. Then for all x ∈ X, the following hold:

(1) [f(0) ∗ α(x)] ∗ [f(0)α(x) ∗ 0 ∗ f(x)] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ [0 ∗ f(x)] = α(0 ∗ x)
(3) X is prime ⇒ f(0)α(x) ∗ [f(0)α(x) ∗ (0 ∗ f(x))] = α(0)

Proof:

(1) Apply regularity of α to item (1) of Proposition 3.12.
(2) Apply regularity of α to item (2) of Proposition 3.12.
(3) Apply regularity of α to item (3) of Proposition 3.12.
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Proposition 3.13 Let α be a right krib map of a nayo algebra
X with underlying map f ∈ Hom(X). Then for all x ∈ X, the
following hold: [0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ α(0)f(x)] = α(0 ∗ x)

Proof: Now, α(0 ∗ x) = [α(0)f(x)] ∧ [f(0)α(x)]
= [0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ α(0)f(x)].

Corollary 3.2. Let α be a regular right krib map of a nayo algebra
X with underlying map f ∈ Hom(X). Then for all x ∈ X, we have:

(1) [0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ (0 ∗ f(x))] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ [0 ∗ f(x)] = α(0 ∗ x)

Proof:

(1) Apply regularity of α to Proposition 3.13.
(2) Apply the associative law to item (1) of this corollary.

Proposition 3.14. Let α be a regular right krib map of a nayo
algebra X with a krest underlying map f . Then for all x, y ∈ X,
the following hold:

(1) [0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ α(x)] = 0
(2) [0 ∗α(x)] ∗ [(0 ∗α(x)) ∗α(x)] = [0 ∗α(y)] ∗ [(0 ∗α(y)) ∗α(y)]
(3) α(0 ∗ x) = 0

Proof:

(1) Consider 0 = α(0) = α(x∗x) = [α(x)∗f(x)]∧[f(x)∗α(x)] =
[0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ α(x)] as required.

(2) Replacing x with y in item (1), we have 0 = [0 ∗α(y)] ∗ [(0 ∗
α(y)) ∗ α(y)]. Hence, the conclusion follows.

(3) Consider α(0 ∗ x) = [α(0) ∗ f(x)]∧ [f(0) ∗α(x)] = 0 ∗α(x) ∗
[(0 ∗ α(x)) ∗ 0] = 0 as required.

Corollary 3.3. Let α be a regular right krib map of a nayo algebra
X with a krest underlying map f . Then for all x, y ∈ X, the
following hold: α(0 ∗ x) = α(0 ∗ y)

Proof: Replacing x with y in item (3) of Proposition 3.14, we have
α(0 ∗ y) = 0. Hence, the conclusion follows.

Proposition 3.15. Let α be a regular right krib map of an as-
sociative nayo algebra X with krest underlying map. Then for all
x, y ∈ X, the following hold:

(1) 0 ∗ α(x) = 0
(2) 0 ∗ α(x) = 0 ∗ α(y)
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Proof:

(1) Consider 0 = α(0) = α(x ∗ x) = f(x)α(x) ∗ [f(x)α(x) ∗
α(x)f(x)] = 0 ∗ α(x)

(2) Replacing x with y in item (1), we have 0 ∗ α(y) = 0. Since
0 ∗ α(x) = 0 and 0 ∗ α(y) = 0, we have 0 ∗ α(x) = 0 ∗ α(y)
as required.

Remark 3.5. One can follow the fore-going arguments to prove
the following propositions for left krib maps:

Proposition 3.16. Let α be a regular left krib map of a nayo
algebra X. Then
[α(x) ∗ f(x)] ∗ [(α(x) ∗ f(x)) ∗ (f(x) ∗ α(x))]
= [α(y) ∗ f(y)] ∗ [(α(y) ∗ f(y)) ∗ (f(y) ∗ α(y))] for all x, y ∈ X.

Proof: Now, 0 = α(0) = α(x ∗ x) = [f(x) ∗ α(x)] ∧ [α(x) ∗ f(x)] =
[α(x)∗f(x)]∗ [(α(x)∗f(x))∗ (f(x)∗α(x))]. Similar argument gives
[α(y)∗f(y)]∗[(α(y)∗f(y))∗(f(y)∗α(y))] = 0. Hence the conclusion
follows.

Proposition 3.17. Let α be a regular left krib map on an asso-
ciative nayo algebra X. Then 0 ∗ [f(x) ∗ α(x)] = 0 ∗ [f(y) ∗ α(y)]
for all x, y ∈ X.

Proof: Consider 0 = α(0) = α(x∗x) = [f(x)∗α(x)]∧[α(x)∗f(x)] =
[(α(x)∗f(x))∗(α(x)∗f(x))]∗[f(x)∗α(x)] = 0∗[f(x)∗α(x)]. Similar
argument gives 0 = 0 ∗ [f(y) ∗α(y)]. Hence, the conclusion follows.

Proposition 3.18. Let α be a left krib map of a nayo algebra X.
Then for all x ∈ X, the following hold:

(1) α(0)f(x) ∗ [α(0)f(x) ∗ f(0)α(x)] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ [f(0)α(x)] = α(0 ∗ x)
(3) X is prime ⇒ α(0)f(x) ∗ [α(0)f(x) ∗ f(0)α(x)] = α(0)

Proof:

(1) Consider α(0 ∗ x) = [f(0) ∗ α(x)] ∧ [α(0) ∗ f(x)] = [α(0) ∗
f(x)] ∗ [(α(0) ∗ f(x)) ∗ (f(0) ∗ α(x))] as required.

(2) Apply the associative law to the left hand side of item (1).
(3) Apply the definition of X being prime to the right hand side

of item (1).

Corollary 3.4. Let α be a regular left krib map of a nayo algebra
X. Then for all x ∈ X, the following hold:

(1) [0 ∗ f(x)] ∗ [0 ∗ f(x) ∗ (f(0) ∗ α(x))] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ (f(0) ∗ α(x)) = α(0 ∗ x)
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(3) X is prime ⇒ 0 ∗ f(x) ∗ [0 ∗ f(x) ∗ (f(0) ∗ α(x))] = 0

Proof:

(1) Apply the definition of regularity of α to item (1) of Propo-
sition 3.18.

(2) Apply the associative law to the left hand side of item (1)
of Proposition 3.18.

(3) Apply primeness of X and regularity of α to the right hand
side of item (3) of Proposition 3.18.

Proposition 3.19. Let α be a left krib map of a nayo algebra
X with underlying map f ∈ Hom(X). Then for all x ∈ X, the
following hold: [α(0) ∗ f(x)] ∗ [α(0)f(x) ∗ 0α(x)] = α(0 ∗ x)

Proof: Now, α(0∗x) = [f(0)∗α(x)]∧ [α(0)∗f(x)] = [α(0)∗f(x)]∗
[(α(0) ∗ f(x)) ∗ (0 ∗ (α(x)))] as required.

Corollary 3.5. Let α be a regular left krib map of a nayo algebra
X with underlying map f ∈ Hom(X). Then for all x ∈ X, we
have:

(1) [0 ∗ f(x)] ∗ [(0 ∗ f(x)) ∗ (0 ∗ α(x))] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ [0 ∗ α(x)] = α(0 ∗ x)

Proof:

(1) Apply regularity of α to the right hand side of the identity
in Proposition 3.19.

(2) Apply the associative law to the left hand side of item (1).

Proposition 3.20. Let α be a regular left krib map of a nayo
algebra X with a krest underlying map f . Then for all x, y ∈ X,
the following hold:

(1) α(x) ∗ [α(x) ∗ ((0 ∗ α(x))] = 0
(2) α(x) ∗ [α(x) ∗ ((0 ∗ α(x))] = α(y) ∗ [α(y) ∗ ((0 ∗ α(y))]
(3) 0 ∗ [0 ∗ (0 ∗ α(x))] = α(0 ∗ x)

Proof:

(1) Consider 0 = α(0) = α(x∗x) = [f(x)∗α(x)]∧[α(x)∗f(x)] =
α(x) ∗ [α(x) ∗ (0 ∗ α(x))] as required.

(2) Replacing x with y in item (1), we have 0 = α(y) ∗ [α(y) ∗
(0 ∗ α(y))]. Hence the conclusion follows.

(3) Consider α(0 ∗ x) = [f(0) ∗ α(x)] ∧ [α(0) ∗ f(x)] = 0 ∗ [0 ∗
(0 ∗ α(x))] as required.
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Proposition 3.21. Let α be a regular left krib map of an asso-
ciative nayo algebra X with krest underlying map. Then for all
x, y ∈ X, the following hold:

(1) 0 ∗ [0 ∗ α(x)] = 0
(2) 0 ∗ [0 ∗ α(x)] = 0 ∗ [0 ∗ α(y)]

Proof:

(1) Consider 0 = α(0) = α(x∗x) = [f(x)∗α(x)]∧[α(x)∗f(x)] =
[α(x) ∗ α(x)] ∗ [0 ∗ α(x)] = 0 ∗ [0 ∗ α(x)] as required.

(2) Replacing x with y in item (1), we have 0 = ∗[0 ∗ α(y)].
Hence the conclusion follows.

Remark 3.5. Combining the results on right and left krib maps,
we have the following theorems:

Theorem 3.8. Let α be a regular krib map of a nayo algebra X.
Then for all x, y ∈ X, the following hold:

(1) [f(x) ∗ α(x)] ∗ [(f(x) ∗ α(x)) ∗ (α(x) ∗ f(x))]
= [f(y) ∗ α(y)] ∗ [(f(y) ∗ α(y)) ∗ (α(y) ∗ f(y))]

(2) [α(x) ∗ f(x)] ∗ [(α(x) ∗ f(x)) ∗ (f(x) ∗ α(x))]
= [α(y) ∗ f(y)] ∗ [(α(y) ∗ f(y)) ∗ (f(y) ∗ α(y))]

Proof: Since α is a krib map, it is both a right and left krib map.
The result therefore follows from the combination of Propositions
3.10 and 3.16.

Theorem 3.9. Let α be a regular krib map on an associative nayo
algebra X. Then for all x, y ∈ X, the following hold:

(1) 0 ∗ [α(x) ∗ f(x)] = 0 ∗ [α(y) ∗ f(y)]
(2) 0 ∗ [f(x) ∗ α(x)] = 0 ∗ [f(y) ∗ α(y)]

Proof: Since α is a krib map, it is both a right and left krib map.
The result therefore follows from the combination of Propositions
3.11 and 3.17.

Theorem 3.10. Let α be a krib map of a nayo algebra X. Then
for all x ∈ X, the following hold:

(1) f(0)α(x) ∗ [f(0)α(x) ∗ α(0)f(x)] = α(0 ∗ x)
(2) X is associative ⇒ 0 ∗ [α(0)f(x)] = α(0 ∗ x)
(3) X is prime ⇒ f(0)α(x) ∗ [f(0)α(x) ∗ α(0)f(x)] = α(0)
(4) α(0)f(x) ∗ [α(0)f(x) ∗ f(0)α(x)] = α(0 ∗ x)
(5) X is associative ⇒ 0 ∗ [f(0)α(x)] = α(0 ∗ x)
(6) X is prime ⇒ α(0)f(x) ∗ [α(0)f(x) ∗ f(0)α(x)] = α(0)
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Proof: Since α is a krib map, it is both a right and left krib map.
The result therefore follows from the combination of Propositions
3.12 and 3.18.

Theorem 3.11. Let α be a right krib map of a nayo algebra X with
underlying map f ∈ Hom(X). Then for all x ∈ X, the following
hold:

(1) [0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ α(0)f(x)] = α(0 ∗ x)
(2) [α(0) ∗ f(x)] ∗ [α(0)f(x) ∗ 0α(x)] = α(0 ∗ x)

Proof: Since α is a krib map, it is both a right and left krib map.
The result therefore follows from the combination of Propositions
3.13 and 3.19.

Theorem 3.12. Let α be a regular krib map of a nayo algebra X
with a krest underlying map f . Then for all x, y ∈ X, the following
hold:

(1) [0 ∗ α(x)] ∗ [(0 ∗ α(x)) ∗ α(x)] = 0
(2) [0 ∗α(x)] ∗ [(0 ∗α(x)) ∗α(x)] = [0 ∗α(y)] ∗ [(0 ∗α(y)) ∗α(y)]
(3) α(0 ∗ x) = 0
(4) α(x) ∗ [α(x) ∗ (0 ∗ α(x))] = 0
(5) α(y) ∗ [α(y) ∗ (0 ∗ α(y))] = α(x) ∗ [α(x) ∗ (0 ∗ α(x))]
(6) 0 ∗ [0 ∗ (0 ∗ α(x))] = α(0 ∗ x)

Proof: Since α is a krib map, it is both a right and left krib map.
The result therefore follows from the combination of Propositions
3.14 and 3.20.
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