
Journal of the Vol. 40, Issue 1, pp. 17-29, 2021

Nigerian Mathematical Society c©Nigerian Mathematical Society

SOME TOPOLOGICAL PROPERTIES OF AN
INVOLUTION PERMUTATION METRIC SPACES

A. I. GARBA1 AND B. ALHASSAN

ABSTRACT. Various works have been done on defining metric
on permutation spaces using different approaches. All the re-
searches focus on the algorithmic and combinatorial properties
of the involution permutation metric space. However, none of
these works studied the topological properties of metric on per-
mutation spaces. Hence, in this study, a metric is constructed
on set of some permutations on Sn called involution permuta-
tions. Some topological properties of the involution permutation
metric space were investigated. The study shows that every sub-
set of the involution permutation metric space is open and the
topological space generated by the involution permutation met-
ric space is Hausdorff, disconnected and normal.
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1. INTRODUCTION

Metric on Sn have been defined by many researchers as well as
its application to some areas such as coding theory, statistics, bell-
ringing, computing, etc. [12], [1], [8],[9], [11].

Levenshtein, [13], introduced a metric called ”edit distance” which
defined distance between two distinct permutations as the minimum
cost of the ”edit” operation required to transform one permutation
into the other. This distance is called string edit distance, where the
edit operations are inserting a new character, removing an existing
character, or changing a character to a different one. Levenshtein
was concerned with binary strings. This distance leads to various
works on defining metric on permutation space using different ap-
proach.
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Wagner and Fischer ,[19], extended the work of ,[13], to non-
binary strings, introduced the ability to apply different costs to the
three types of edit operations, and provided a dynamic program-
ming algorithm for computing it, while Cicirello , [5], extended the
work of [13] by defining edit distance with a single atomic edit op-
eration, removal/insertion which removes an element and reinserts
it elsewhere in the permutation. It is the minimum number of re-
movals/insertions needed to transform permutation p1 into p2.

On the other hand, Caprara ,[4], introduced reversal edit dis-
tance as the minimum number of reversals needed to transform p1
into p2, but, it was argued that the best available approximations
are insufficient for search landscape analysis by [17].

However distance/metric were also defined in relation to graph
theory. Useful measures for permutation to represent set of edges,
cyclic edge distance and acyclic edge distance were defined in [14].
Also, Campos, Laguna and Mart’i ,[3], defined the r-type distance
as a directed edge version of acyclic edge distance, while Cicirello
,[5], defined the cyclic r-type distance which is a cyclic counterpart
to r-type distance, which includes an edge between the end points.
Similarly, r-type distance satisfies the metric properties, while cyclic
r-type is a pseudo-metric. They were defined respectively as

d(p1, p2) =
n−1∑
i=1

{
0, if ∃x : p1(i) = p2(x) ∧ p1(i+ 1) 6= p2(x+ 1)),

1, otherwise.

d(p1, p2) =

n∑
i=1


0, if ∃j∃x∃y : i = (imodn) + 1 ∧ y = (xmodn)

+1 ∧ P1(i) = p2(x) ∧ p1(j) 6= p2(y)),

1, otherwise.

Ronald [15], extended Hamming distance to non-binary string,
producing a permutation distance called ”exact match distance”,
which is the number of positions with different elements. It is an
edit distance where the only edit operation is element changes. It
is also a metric defined as

d(p1, p2) =
n∑
i=1

{
1, if p1(i) 6= p2(i)),

0, otherwise.

In the same year a metric on permutation space called deviation
distance was also defined by Ronald as the sum of the positional
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deviations of the permutation elements.

Sevaux and Sorensen [18] suggested squared deviation distance on
involution permutation metric space, which is based on Spearman’s
rank correlation coefficient. They mistakenly stated that squared
deviation distance as well as deviation distance require quadratic
time as observed by Cicirello, [6].

Cicirello and Cernera ,[7], also defined Interchange distance as
an edit distance with one edit operation, elements interchange (or
swap). It is the minimum number of swaps needed to transform p1
into p2, and is computed efficiently by counting the number of cycles
between the permutations. The interchange distance is defined by

d(p1, p2) = n− CycleCount(p1, p2).

Cameron ,[2], studied the metric and topological aspect of the
symmetric group of countable degree using Baire category and Haar
measure.

Deza and Huang ,[10], surveyed on distances on the symmetric
group together with their applications in many contexts such as
statistics, coding theory, computing, bell-ringing and so on, which
were originally seen unrelated. All these researches focus on the
algorithmic and combinatorial properties of the permutation met-
ric space. However, none of these works studied the topological
properties of metric on involution permutations. Investigating the
topological properties of involution permutation metric space is of
immense importance, since involutions play vital role in euclidean
geometry (reflection of plane), projective geometry, linear algebra
and so on. Hence, in this paper, we defined a metric on involu-
tion permutations using an Eulerian permutation statistics called
descent and investigate its topological properties.

2. NOTATION

Definition 2.1. [16]; A permutation π on a non-empty set is called
an involution if it is not the identity, but its square (π2) is.

Definition 2.2. Let Xn ⊂ Sn be a set of involutions permutations
of length n with identity permutation. We defined a metric as a
function d : Xn ×Xn → R as:

d(πi, πj) = des(πi ◦ πj)
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where πi, πj ∈ Xn and i, j ∈ N.
Also,

Des(π) = {i : ai > ai+1, ai ∈ π}
and

des(π) = |Des(π)|.

Remark 2.1. Let π = (a1a2 · · · an) ∈ Sn. A descent in π is an
integer j with 1 ≤ j ≤ n such that aj > aj+1. The number of
descents in π is donated by des(π), while the set of descents is
denoted by Des(π).

Definition 2.3. Let Xn be a nonempty set of involution permu-
tations with identity. A function d : Xn × Xn → R is said to be
a metric on Xn if it satisfies the following properties. For each
πi, πj, πk ∈ Xn

(1) d(πi, πj) ≥ 0
(2) d(πi, πj) = 0 ⇔ π = πj
(3) d(πi, πj) = d(πj, πi)
(4) d(πi, πj) ≤ d(πi, πj) + d(πj, πk).

The pair (Xn, d) is called a involution permutation metric space.

Example 2.2. Consider the symmetric group of length 3

S3 =

{
e =

(
1 2 3

1 2 3

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3

2 1 3

)
,

(
1 2 3

2 3 1

)
,

(
1 2 3

3 1 2

)
,

(
1 2 3
3 2 1

)}
.

The set of involutions permutations I3 ⊂ S3 is

I3 =

{(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
3 2 1

)}
and Xn is defined as Xn = {e} ∪ In. Therefore,

X3 =

{
e =

(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
3 2 1

)}
.

Then we defined a metric d : X3 ×X3 → R by

d(πi, πj) = des(πi ◦ πj), ∀ πi, πj ∈ X3

Now let

π1 =

(
1 2 3
1 3 2

)
π2 =

(
1 2 3
2 1 3

)
π3 =

(
1 2 3
3 2 1

)



SOME TOPOLOGICAL PROPERTIES OF AN INVOLUTION . . . 21

(1) d(πi, πj) ≥ 0

d(π1, π2) = des(π1 ◦ π2)

= des

((
1 2 3
1 3 2

)
◦
(

1 2 3
2 1 3

))
= des

(
1 2 3
3 1 2

)
= 1 > 0

(2) d(πi, πj) = 0⇔ πi = πj

d(π3, π3) = des(π3 ◦ π3)

= des

((
1 2 3
3 2 1

)
◦
(

1 2 3
3 2 1

))
= des

(
1 2 3
1 2 3

)
= 0

(3) d(πi, πj) = d(πj, πi)

d(π1, π2) = des(π1 ◦ π2)

= des

((
1 2 3
1 3 2

)
◦
(

1 2 3
2 1 3

))
= des

(
1 2 3
3 1 2

)
= 1

Similarly,

d(π2, π1) = des(π2 ◦ π1)

= des

((
1 2 3
2 1 3

)
◦
(

1 2 3
1 3 2

))
= des

(
1 2 3
2 3 1

)
= 1

(4) d(πi, πk) ≤ d(πi, πj) + d(πj, πk)
d(π1, π3) ≤ d(π1, π2) + d(π2, π3)
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d(π1, π3) = des(π1 ◦ π3)

= des

((
1 2 3
1 3 2

)
◦
(

1 2 3
3 2 1

))
= des

(
1 2 3
2 3 1

)
= 1

d(π1, π2) = des(π1 ◦ π2)

= des

((
1 2 3
1 3 2

)
◦
(

1 2 3
2 1 3

))
= des

(
1 2 3
3 1 2

)
= 1

d(π2, π3) = des(π2 ◦ π3)

= des

((
1 2 3
2 1 3

)
◦
(

1 2 3
3 2 1

))
= des

(
1 2 3
3 1 2

)
= 1

Hence d(π1, π3) ≤ d(π1, π2) + d(π2, π3).

Definition 2.4. Let (Xn, d) be a involution permutation metric
space. Let π ∈ Xn and r > 0. Then the subsets

Br(π) = {πi ∈ Xn : d(π, πi) < r}
Br(π) = {πi ∈ Xn : d(π, πi) ≤ r}
Sr(π) = {πi ∈ Xn : d(π, πi) = r}

are respectively called the open ball, closed ball and sphere centred
at π with radius r with respect to the metric d.

Remark 2.3.
Sr(π) = Br(π)−Br(π).

Definition 2.5. A subset O of an involution permutation metric
space Xn is called open if for all π ∈ O there exists ε > 0 such that
B(π, ε) ⊆ O.
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Definition 2.6. Let (Xn, d) be an involution permutation metric
space. The diameter δ(A) of a nonempty subset A ⊆ Xn is defined
as

δ(A) = sup
πi,πj∈A

{d(πi, πj)}.

Definition 2.7. Let (Xn, d) be an involution permutation metric
space. A subset A ⊆ Xn is said to be bound if δ(A) <∞.
Definition 2.8. For any two nonempty subsets A and B in Xn,

d(A,B) = max{d(πi, πj) : πi ∈ A, πj ∈ B}.
Definition 2.9. Let (Xn, d) be an involution permutation metric
space and A ⊆ Xn. A point π ∈ Xn is called an interior point of A
if there exists ε > 0 such that B(π, ε) ⊆ A.

Definition 2.10. The set of all interior points of A is called the
interior of A and is denoted by int(A).

Remark 2.4. Let (Xn, d) be an involution permutation metric
space. A set A ⊆ Xn is called open if and only if every point
in A is an interior point of A.

3. CONSTRUCTION OF METRIC ON INVOLUTION
PERMUTATION SPACE

Proposition 3.1. Let Xn be a permutation space and d be defined
as d(πi, πj) = des(πi ◦ πj). Then the pair (Xn, d) is an involution
permutation metric space.

Proof. Let Xn be a set of involution permutations with identity and
d be a distance function (d : Xn ×Xn → R) defined as d(πi, πj) =
des(πi ◦ πj). Then for each πi, πj, πk ∈ Xn, we have

(1) des(πi ◦ πj) ≥ 0. This follows obviously since descent of any
permutation π is non-negative.

(2) If d(πi, πj) = 0 this implies that des(πi◦πj) = 0⇒ πi◦πj = e
hence πi = πj.
Conversely, suppose πi = πj, then

d(πi, πj) = d(πi, πi) = des(πi ◦ πi) = des(e) = 0.

(3) Similarly, des(πi ◦ πj) = d(πi, πj) = d(πj, πi) = des(πj ◦ πi).
(4) Also,

des(πi ◦ πk) = d(πi, πk)

≤ d(πi, πj) + d(πj, πk)

= des(πi ◦ πj) + des(πj ◦ πk)
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Hence (Xn, d) is a metric space, called involution permuta-
tion metric space.

�

Remark 3.2. From Definition 2.2, we can observe that for any
permutation π of length n, des(π) ≤ n− 1.

Lemma 3.3. Let π0 =

(
1 2 · · · n
n n− 1 · · · 1

)
and

π∗ =

(
1 2 · · · n− 1 n
1 2 · · · n n− 1

)
, then π0, π∗ ∈ Xn

Proof. It is obvious that neither π0 nor π∗ is the identity. Also,

π2
0 = π0 ◦ π0 =

(
1 2 · · · n
n n− 1 · · · 1

)
◦
(

1 2 · · · n
n n− 1 · · · 1

)
=

(
1 2 · · · n
1 2 · · · n

)
Similarly,

π2
∗ = π∗ ◦ π∗ =

(
1 2 · · · n− 1 n
1 2 · · · n n− 1

)
◦
(
1 2 · · · n− 1 n
1 2 · · · n n− 1

)
=

(
1 2 · · · n
1 2 · · · n

)

Therefore, π0, π∗ are an involutions. Hence, π0, π∗ ∈ Xn. �

Proposition 3.4. For any Xn, ∃ πi, πj ∈ Xn, such that d(πi, πj) =
n− 1 and it is the supremum distance in Xn. That is,

sup{d(πi, πj) : πi, πj ∈ Xn} = n− 1

Proof. For any Xn, ∃ e ∈ Xn, and π0 ∈ Xn from Lemma 3.3. Such
that

d(π0, e) = des(π0 ◦ e) = des(π0) = n− 1.

Hence from Remark 3.2 sup{d(πi, πj) : πi, πj ∈ Xn} = n− 1. �

Proposition 3.5. For any Xn, ∃ πi, πj ∈ Xn, and πi 6= πj such
that d(πi, πj) = 1 and it is the infimum distance in Xn. That is,

inf{d(πi, πj) : πi 6= πj} = 1

Proof. Let πi, πj ∈ Xn. Case I: If πi = πj, the result follows from
the second condition i.e

d(πi, πj) = des(πi ◦ πj) = des(e) = 0
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Case II: if πi 6= πj, then d(πi, πj) 6= 0. Also, for any Xn, ∃ e ∈ Xn,
and π∗ ∈ Xn from Lemma 3.3, such that

d(π∗, e) = des(π∗ ◦ e) = des(π∗) = 1.

Hence the min{d(πi, πj) : πi 6= πj} = 1 �

Theorem 3.6. The metric on any involution permutation metric
space (Xn, d) is bounded. That is,

0 ≤ d(πi, πj) ≤ n− 1, ∀ πi, πj ∈ Xn.

Proof. This follows immediately from Proposition 3.4 and Proposi-
tion 3.5. �

Proposition 3.7. Let A be a non empty subset of the involution
permutation metric space (Xn, d). Then

δ(A) = sup
πi,πj∈A

{d(πi, πj)} ≤ n− 1.

Proof. Let (Xn, d) be an involution permutation metric space. Sup-
pose A is a non empty subset of Xn. Then

δ(A) = sup
πi,πj∈A

{d(πi, πj)}

This implies that

δ(A) = sup
πi,πj∈A

{des(πi ◦ πj)} ≤ n− 1

since, 0 ≤ des(π) ≤ n− 1, for any permutation of length n. �

Proposition 3.8. Let A and B be two non empty subsets of an
involution permutation metric space (Xn, d), then

d(A,B) =

{
0, if A ∩B 6= ∅,
i, if A ∩B = ∅, 1 ≤ i ≤ n− 1.

Proof. Given that A and B are nonempty subsets of Xn. If A∩B 6=
∅, ∃ πi ∈ A ∩ B such that πi ∈ A and πi ∈ B this implies that
d(πi, πi) = 0.
If A∩B = ∅, then for any permutation πi ∈ A ∃ πj ∈ B, such that
πi 6= πj. Therefore, d(πi, πj) > 0. Hence, 0 < d(A,B) ≤ n− 1. �

Proposition 3.9. Let (Xn, d) be an involution permutation metric
space, where Xn is the set of all involution of length n. Then the
diameter is given as

δ(Xn) = sup{d(πi, πj) : πi, πj ∈ Xn} = n− 1.

Proof. This follows from Proposition 3.4. �
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Proposition 3.10. If r = 1, then B(π, r) = {π}.
Proof. Let Xn be the set of involution permutations. Let B(π, r)
be an open ball of an arbitrary permutation π ∈ Xn with radius 1,
then

B(π, 1) = {πi ∈ Xn : d(π, πi) < 1}
Since d(π, πi) is non-negative integer then B(π, 1) = {πi ∈ Xn :
d(π, πi) = 0}.
But, d(π, πi) = 0 if and only if π = πi. Hence B(π, 1) = {π}. �

Proposition 3.11. Let (Xn, d) be an involution permutation met-
ric space and π ∈ Xn. Then

Sn−1(π) =

{
π0 : π0 =

(
1 2 · · · n
n n− 1 · · · 1

)}
Proof. Let (Xn, d) be an involution permutation metric space of
length n. Let Sn−1 be the sphere of a permutation π ∈ Xn with
radius n− 1 and

Sn−1(π) = {πi : d(π, πi) = n− 1}
Then

Sn−1(π) =

{
π0 : π0 =

(
1 2 · · · n
n n− 1 · · · 1

)}
since d(e, π0) = d(π0, e) = des(π0) = n− 1. �

Proposition 3.12. Let (Xn, d) be an involution permutation met-
ric space and π ∈ Xn then

Bn−1(π) = Xn

Proof. Let (Xn, d) be an involution permutation metric space. Let
Bn−1(π) be a closed ball and π ∈ Xn with radius n− 1 defined by

Bn−1(π) = {πi : d(π, πi) ≤ n− 1}
then Bn−1 = Xn since the maximum distance between two permu-
tations is n− 1. �

Proposition 3.13. Let (Xn, d) be an involution permutation met-
ric space and π ∈ Xn, then

Bn−1(π) = {Xn \ π0}
Proof.

Bn−1(π) = Bn−1(π)− Sn−1(π)

= Xn − {π0}
as required. �
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Proposition 3.14. Let A be any nonempty subset of Xn, then

(1) int(A) = A
(2) int(int(A)) = int(A)

Proof. (1) Let Xn be a nonempty set of permutation. Suppose
A ⊆ Xn, and π ∈ A, then there exist r > 0 such that
π ∈ Br(π) ⊆ A. Choose r = 1. Then B1(π) = {π} ⊆ A.
Therefore Int(A) = A.

(2) from (i) int(A) = A. Hence, Int(Int(A)) = Int(A) = A.
�

Proposition 3.15. For any A ⊆ (Xn, d), A is open.

Proof. Let (Xn, d) be an involution permutation metric space. Let
A be a nonempty subset of Xn. A is open if for any π ∈ A, there
exist ε > 0 such that

Bε(π) ⊆ A.

Thus holds since Int(A) = A from Proposition 3.14 �

Theorem 3.16. For any A,B ⊆ Xn then

(1) A ∪B is open
(2) A ∩B is open
(3) A \B is open
(4) A4B is open

Proof. Let (Xn, d) be an involution permutation metric space. Let
A and B be nonempty subsets of Xn then

(1) A ∪B ⊆ Xn

(2) A ∩B ⊆ Xn

(3) A \B ⊆ Xn

(4) A4B ⊆ Xn

By Proposition 3.15 any subset of Xn is open. Hence (i), (ii), (iii)
and (iv) are open. �

Proposition 3.17. The topology defined on involution permuta-
tion metric space is discrete

Proof. The discrete topology on Xn is the collection of all open sets
in Xn. By Proposition 3.15 any subset of an involution permutation
metric space Xn is open. Hence the topology generated on (Xn, d)
is discrete. �

Proposition 3.18. Let (Xn, τ) be topological space generated from
involution permutation metric space, where τ is the discrete topol-
ogy. Then
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(1) Xn is Hausdorff
(2) Xn is disconnected
(3) Xn is T4−space (Normal Space)

Proof. (1) Xn is discrete, therefore for any two points πi, πj ∈
Xn, there exist open sets Oi, Oj ∈ τ, such that πi ∈ Oi,
πj ∈ Oj and Oi ∩Oj = ∅.

(2) A topological space is disconnected if there exist a clopen
set O in τ such that O 6= ∅ and O = Xn. But Xn is discrete
therefore any set in τ is clopen.

(3) A topological space is Normal if Xn is Hausdorff and given
two disjoint closed sets F F ′, there exist two disjoint open
sets O,O′ such that F ⊆ O and F ′ ⊆ O′, since τ contains
every subset of Xn. Hence Xn is normal.

�
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