
Journal of the Vol. 41, Issue 1, pp. 49-64, 2022

Nigerian Mathematical Society c©Nigerian Mathematical Society

OPTIMIZED HYBRID BLOCK INTEGRATOR FOR

NUMERICAL SOLUTION OF GENERAL THIRD ORDER

ORDINARY DIFFERENTIAL EQUATIONS

MARK I. MODEBEI

ABSTRACT. A hybrid method for the numerical approximation
of the solution of general third order initial and boundary value
problems is derived via the collocation technique. This method
considers three intra-step points which are adequately selected
so as to optimize the local truncation errors of the main formu-
las. The new method is zero-stable, consistent and convergent.
Numerical examples from literature shows the efficiency of this
method in terms of the global errors obtained.
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1. Introduction

Third order ordinary differential equations are of great interest in
the fields of engineering and sciences. This can be seen in biological
sciences and control theory. For instance, draining and coating flow
problems [1], laminar boundary layer and sandwich beam problems
[2], in fluid dynamics [3] and many others in literature. In this
work, the numerical approximation for general 3rd-order problems
of the type:

y′′′ = f(x, y, y′, y′′), a ≤ x ≤ b (1)

with the initial conditions

y(a) = α0, y
′(a) = α1, y

′′(a) = α2 (2)

and the boundary conditions

y(a) = α0, y
′(a) = α1, y(b) = β0 (3)
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is considered, where αi i = 0, 1, 2, β1, a, b are real constants.
x ∈ [a; b] and f ∈ C3[a, b]. Other forms of boundary conditions can
also be considered, say, y(a) = α0, y

′(a) = α1, y
′(b) = β1 The theo-

retical existence and uniqueness of solution of (1) was discussed in
[4, 5]. Thus in this work, the existence and uniqueness of solution
of (1) are assumed. Furthermore, it is also assumed that (1) is
well posed and the numerical solution is the focus. Accurate nu-
merical methods for solving third-order initial and boundary value
problems are available in literature. Some of the methods avail-
able are but not limited to Non-polynomial splines [6], quartic B-
splines, [7], Quartic Splines [8], collocation method [9, 10]. Block
methods [11, 12]. From all these methods, collocation/interpolation
approach, which is the technique employed in this work, produces
block method which is more efficient in that: it approximate the
solution of (1) at several intra-points, it contains several linear mul-
tistep methods which constitute the main and additional methods
required for direct solution of (1) such that it overcomes the over-
lapping of pieces of solutions, it is self starting, that is, it does
not require any starting value from other methods. In this paper
a three-step continuous hybrid block method with three intra-step
points is developed via collocation approach, for the direct solution
of (1).

2. Derivation of the Methods

Here, the optimized hybrid block method is derived. A non-optimized
version of the method given in this paper can be found in [10],
where the three off-step points in the interval 0 < xn+j1 < xn+j2 <
xn+j3 < 1 are given such that (j1; j2; j3) = (3

8
, 5
8
, 7
8
). Optimized

two-step block method with three hybrid points for solving third
order initial value problems can be found in [13]. In their method,
the off-step points r, s, g are such that 0 < r, s, g < 2. In the case
of this paper, the off-step points are (j1, j2, j3) = (s, u, v), where
s, u and v are to be determined from the local truncation error
of the main methods such that 0 < s < 1 < u < 2 < v < 3.
Also, the solution y(x) of (1) is sort in the interval [a, b] such that
a = x0 < x1 < · · · < xN = b with step-size h = xj+1 − xj,
j = 0, 1, . . . , N − 1.

Consider the approximation q(x) of y(x) given by the polynomial
of the form
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y(x) ≈ q(x) =

r1+r2−1∑
n=0

ρnx
n (4)

with the third derivative given by

y′′′(x) ≈ q′′′(x) =

r1+r2−1∑
n=0

n(n− 1)(n− 2)ρnx
n−3 (5)

where x ∈ [a, b], ρn’s are real coefficient to be determined, r1
and r2 are numbers of interpolation and collocation points. Setting
r1 = 3 and r2 = 7, the intra-step points are such that 0 < s < 1,
1 < u < 2, and 2 < v < 3 which are used for the approximation of
the three step method in the interval [x0, x3]. Here, xs = xn + sh,
xu = xn +uh, xv = xn + vh. Now, Interpolating the approximation
in (4) at the points xn+i, i = 0, 1, 2 and collocating the approxima-
tion in (5) at the points xn+j , j = 0, s, 1, u, 2, v, 3, the following
system of 10 algebraic equations is arrived at

q(xn) = yn, q(xn+1) = yn+1, q(xn+2) = yn+2,

q′′′(xn) = fn, q′′′(xn+s) = fn+s, q′′′(xn+1) = fn+1,

q′′′(xn+u) = fn+u, q′′′(xn+2) = fn+2, q′′′(xn+v) = fn+v,

q′′′(xn+3) = fn+3.

where the approximation of yn+j = y(xn+j), and fn+j = y′′′(xn+j)
denote the approximation to f(xn+j, y(xn+j), y

′(xn+j), y
′′(xn+j)).

Solving the above system and obtaining the expressions for ρi, i =
0(1)9 and substituting them into the approximation (4). Then,
carrying out the substitution for the variable x = xn+i + th, the
approximation in (4) takes the form

q(xn + th) =
2∑
i=0

αiyn+i + h3

(
3∑
i=0

βifn+i +
3∑
i=1

β̂ifn+wi

)
(6)

where w1 = s; w2 = u; w3 = v, and αi, i = 0, 1, 2, βi, i = 0, 1, 2, 3,
β̂i, i = 1, 2, 3 are continuous coefficients.
Evaluating q(x), q′(x) and q′′(x) in (6) respectively at the point
xn+3, the following main formulae are obtained:
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yn+3 = yn − 3yn+1 + 3yn+2 + h3(47−63u−63v+42uv+21s(−3+2u+2v))
2520suv

fn
+h3(−572+525u+525v−462uv+21s(25−22u−22v+20uv))

840(s−1)(u−1)(v−1) fn+1

+Ah3(−9057+4599s+4599u−2394su+4599v−2394sv−2394uv+1260ruv)
2520

fn+2

+Bh3(−614+189s+189u−42su+189v−42sv−42uv)
2520

fn+3

+Ch3(282−378u−378v+252uv)
2520

fn+s + Dh3(−282+378s+378v−252sv)
2520

fn+u
+Kh3(−282+378s+378u−252su)

2520
fn+v

(7)

hy′n+3 = 3yn
2
− 4yn+1 + 5yn+2

2
+ h3(−2003+360v+30u(12+v)+6s(60+5u+5v+21uv))

15120suv
fn

+h3(−1279+3282v−6u(−547+607v)+6s(547−607v+u(−607+602v)))
5040(s−1)(u−1)(v−1) fn+1

+Ah3(−133809+63900s+63900u−31410su+63900v−31410sv−31410uv+15750suv)
15120

fn+2

+Bh3(−24403+8802s+8802u−3054su+8802v−3054sv−3054uv+1008suv)
15120

fn+3

+Ch3(−12018+2160u+2160v+180uv)
15120

fn+s + Dh3(12018−2160s−2160v−180sv)
15120

fn+u
+h3K(12018−2160s−2160u−180su)

15120
15120fn+v

(8)

h2y′′n+3 = yn − 2yn+1 + yn+2 + h3(−2896+999u+999v−336uv+s(999−336u−336v+154uv))
5040suv

fn
+h3(3615−719u−719v−280uv+s(−719−280v+56u(−5+11v)))

1680(s−1)(u−1)(v−1) fn+1

+Ah3(−69450+30381s+30381u−13692su+30381v−13692sv−13692uv+6342suv)
5040

fn+2

+Bh3(−37955+13617s+13617u−4872su+13617v−4872sv−4872uv+1736suv)
5040

fn+3

+Ch3(−17376+5994u+5994v−2016uv)
5040

fn+s + Dh3(17376−5994s−5994v+2016sv)
5040

fn+u
+Kh3(17376−5994s−5994u+2016su)

5040
fn+v

(9)

where

A = 1
(s−2)(u−2)(v−2) ; B = 1

(s−3)(u−3)(v−3) ; C = 1
s(−6+11s−6s2+s3)(s−u)(s−v)

D = 1
u(s−u)(−6+11u−6u2+s3)(u−v) ; K = 1

v(s−v)(v−u)(−6+11v−6v2+v3)

}
(10)

Now, the values of s, u and v can be determined by considering
the Local Truncation Errors (LTEs) of (7)-(9) each, so that one
more order for each of the formula can be gained by setting their
principal truncation term to zero. In this sense, the values of s, u
and v would have been optimized. The LTEs for each of (7)-(9)
are:

L(y(xn+3);h) = 27(4suv−su−sv−uv)y(10)(xn)h10
313600

+ 1
27596800

(44s2uv − 11s2u− 11s2v + 44su2v − 11su2 + 44suv2
+242suv − 66su− 11sv2− 66sv − 11u2v − 11uv2− 66uv − 18)y(11)(xn)h11 +O(h)12

(11)
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L(hy′(xn+3);h) = 3(u(9−6v)+9(v−3)+s(9−6v+2u(7v−3)))y(10)(xn)h10
156800

+ 1
1254400

(42s2uv − 18s2u− 18s2v + 27s2 + 42su2v − 18su2

+42suv2 + 216suv − 81su− 18sv2 − 81sv + 162s− 18u2v + 27u2

−18uv2 − 81uv + 162u+ 27v2 + 162v − 729)y(11)(xn)h11 +O(h)12

(12)

L(h2y′′(xn+3);h) = (28suv−42su−42sv+108s−42uv+108u+108v−297)y(10)(xn)h10
156800

+ 1
627200

(14s2sv − 21s2u− 21s2v + 54s2 + 14su2v..21su2 + 14suv2

+42suv − 72su− 21sv2 − 72sv + 324s− 21u2v + 54u2 − 21uv2 − 72uv
+324u+ 54v2 + 324v − 1296)y(11)(xn)h11 +O(h)12

(13)

Equating the principal terms in (11)-(13) to zero

{
4suv − su− sv − uv = 0
u(9− 6v) + 9(v − 3) + s(9− 6v + 2u(7v − 3)) = 0
u(9− 6v) + 9(v − 3) + s(9− 6v + 2u(7v − 3)) = 0

(14)

This yields the solution (s, u, v) =
(

3
10

(5−
√

15), 3
2
, 3
10

(5−
√

15)
)
.

Substituting these values into (7)-(9), the following are the main
formulae for the solution y(x) of (1);

yn+3 = yn − 3yn+1 + 3yn+2 − h3
(

97fn
34020

− 1373fn+1

4620
− 1373fn+2

4620
+ 97fn+3

34020
− 2375fn+s

56133
− 8336fn+u

25515
− 2375fn+v

56133

)
hy′n+3 = 3yn

2
− 4yn+1 + 5yn+2 − h3

(
509fn
204120

− 929fn+1

1980
− 3593fn+2

5544
+ 94fn+3

25515
− (855500+121500

√
15)fn+s

6735960

−1024fn+u

2187
− (855500+121500

√
15)fn+v

6735960

)
h2y′′n+3 = yn − 2yn+1 + yn+2 − h3

(
fn
972
− 1003fn+1

3080
− 3149fn+2

4620
− 6437fn+3

68040
−
(

16375
56133

+ 25
126

√
5/3
)
fn+s

−8056fn+u

25515
−
(

16375
56133

− 25
126

√
5/3
)
fn+v

)
(15)

To obtain the additional methods, evaluating q(x), at the points
xn+s, xn+u, xn+v then, evaluating q′(x) and q′′(x) at the points xn+j,
j = 0, s, 1, u, 2, v, the following are obtained;
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yn+s = (2245320000−449064000
√
15)yn

816480000(5+
√
15)

+ (1224720000+734832000
√
15)yn+1

816480000(5+
√
15)

+ (612360000−367416000
√
15)yn+2

816480000(5+
√
15)

−h3
(

11(178093−31689
√
15)fn

272160000(5+
√
15)

− (962417−93933
√
15)fn+1

3360000(5+
√
15)

− (74194461+9108855
√
15)fn+2

816480000(5+
√
15)

− (1420221−413721
√
15)fn+3

816480000(5+
√
15)

− (72392500−17797500
√
15)fn+s

816480000(5+
√
15)

− (67013056−26566848
√
15)fn+u

816480000(5+
√
15)

+ (6053500+4315500
√
15)fn+v

816480000(5+
√
15)

)
yn+u = −yn

8
+ 3yn+1

4
+ 3yn+2

8
+ h3

(
14713fn
34836480

− 170717fn+1

4730880
− 457fn+2

430080
− 2297fn+3

34836480

+ (−3040000−850500
√
15)fn+s

1149603840
− 521fn+u

25515
+ (−3040000+850500

√
15)fn+v

1149603840

)
yn+v = − (2245320000−449064000

√
15)yn

816480000(
√
15−5) − (1224720000−734832000

√
15)yn+1

816480000(
√
15−5) − (612360000+367416000

√
15)yn+2

816480000(
√
15−5)

−h3
(

11(−178093+31689
√
15)fn

272160000(
√
15−5) − (−962417+93933

√
15)fn+1

3360000(
√
15−5) + (74194461+9108855

√
15)fn+2

816480000(
√
15−5)

+ (1420221−413721
√
15)fn+3

816480000(
√
15−5) + (6053500+4315500

√
15)fn+s

816480000(
√
15−5) + (67013056+26566848

√
15)fn+u

816480000(
√
15−5)

+ (72392500−17797500
√
15)fn+v

816480000(
√
15−5)

)
hy′n = −3yn

2
+ 2yn+1 − yn+2

2
+ h3

(
121fn
204120

+ 701fn+1

3465
+ 59fn+2

2520
+ 13fn+3

7290
+ (428000+121500

√
15)fn+s

6735960

−1672fn+u

76545
+ (428000−121500

√
15)fn+v

6735960

)
hy′n+s = −3

2

√
3
5
yn + (−6735960000+4041576000

√
15)yn+1

6735960000
+ (6735960000−2020788000

√
15)yn+2

6735960000

+h3
(

(−526424+17073
√
15)fn

204120000
− (−5606596+1061289

√
15)fn+1

27720000
+ (1362402828−342656973

√
15)fn+2

6735960000

+ (−17371992+5198391
√
15)fn+3

6735960000
+ (150039500−42750000

√
15)fn+s

6735960000
+ (1270135328−330105600

√
15)fn+u

6735960000

+ (155871500−42750000
√
15)fn+v

6735960000

)
hy′n+1 = −yn

2
+ yn+2

2
+ h3

(
439fn
204120

− 421fn+1

3465
− 191fn+2

27720
− 11fn+3

20412
+ (−74500−22500

√
15)fn+s

6735960
− 272fn+u

15309

+ (−74500+22500
√
15)fn+v

6735960

)
hy′n+u = −yn+1 + yn+2 − h3

(
155fn
5225472

+ 9367fn+1

3548160
+ 9367fn+2

3548160
+ 155fn+3

5225472
− 6575fn+s

43110144
+ 89729fn+u

2449440
− 6575fn+v

43110144

)
hy′n+2 = yn

2
− 2yn+1 + 3yn+2

2
− h3

(
401fn
204120

− 491fn+1

3465
− 751fn+2

27720
− 37fn+3

51030
− (68000+22500

√
15)fn+s

6735960

−1592fn+u

10935
− (68000−22500

√
15)fn+v

6735960

)
hy′n+v = 3

2

√
3
5
yn + (−6735960000−4041576000

√
15)yn+1

6735960000
+ (6735960000+2020788000

√
15)yn+2

673596000

−h3
(

(526424+17073
√
15)fn

204120000
− (5606596+1061289

√
15)fn+1

27720000
+ (1362402828+342656973

√
15)fn+2

6735960000

− (−17371992−5198391
√
15)fn+3

6735960000
− (155871500+42750000

√
15)fn+s

6735960000
+ (1270135328+330105600

√
15)fn+u

6735960000

− (150039500+42750000
√
15)fn+v

6735960000

)
h2y′′n = yn − 2yn+1 + yn+2 − h3

(
6631fn
68040

+ 148fn+1

385
+ 263fn+2

9240
+ 31fn+3

17010
−
(
−2000
8019

− 25
126

√
5
3

)
fn+s − 8fn+u

729(
2000
8019
− 25

126

√
5
3

)
fn+v

)
h2y′′n+s = yn − 2yn+1 + yn+2 + h3

(
(493525+100602

√
15)fn

34020000
+ (−87775−170586

√
15)fn+1

1540000
+

(
65453
184800

− 85293
√

3
5

154000
fn+2

)
+

(
− −23621

1360800
+

207
√

3
5

14000

)
fn+3 +

(
2375

112266
− 1429

1386
√
15

)
fn+s +

(
4168
25515

− 68
875

√
3
5

)
fn+u

+
(

2375
112266

− 1
693
√
15

)
fn+v

)
h2y′′n+1 = yn − 2yn+1 + yn+2 − h3

(
227fn
34020

+ 19fn+1

264
+ 157fn+2

4620
+ 173fn+3

68040
+

(
125
5103

+
325
√

5
3

12474

)
fn+s − 3848

25515
fn+u

+

(
125
5103
− 325

√
5
3

12474

)
fn+v

)
h2y′′n+u = yn − 2yn+1 + yn+2 − h3

(
1289fn
544320

− 7781fn+1

24640
+ 25fn+2

1344
+ 263fn+3

544320
−
(

2375
112266

+
325
√

5
3

22176

)
fn+s

− 4168
25515

fn+u −
(

2375
112266

− 325
√

5
3

22176

)
fn+v

)
(16)
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h2y′′n+2 = yn − 2yn+1 + yn+2 − h3
(

367fn
68040

− 304fn+1

1155
− 2081fn+2

9240
− 13fn+3

3402
−
(

1000
56133

+
325
√

5
3

12474

)
fn+s

−12184
25515

fn+u −
(

1000
56133

− 325
√

5
3

12474

)
fn+v

)
h2y′′n+v = yn − 2yn+1 + yn+2 + h3

(
(493525−100602

√
15)fn

34020000
+ (−87775+170586

√
15)fn+1

1540000

+

(
65453
184800

+
85293
√

3
5

154000

)
fn+2 +

(
−23621
1360800

− 207
√

3
5

14000

)
fn+3 +

(
2375

112266
+ 1

693
√
15

)
fn+s

)
(17)

3. Order and Local Truncation Errors (LTEs) of the method

The linear differential operator L[y(x);h] for the methods (7)-(9)
is defined as

L[z(x);h] = hy(x+ ih)−
2∑
i=0

αiz(x+ ih)− h3
(

3∑
i=0

βiz
′′′(x+ ih) +

3∑
i=0

β̂iz
′′′(x+ wih)

)
(18)

Expanding (18) in Taylor series, we obtain

L[z(x);h] = C0z(x) + C1hz
′(x) + C2h

2z′′(x) + · · ·+ Cph
pz(p)(x) +O(h)p+1

(19)

where Cj are constants such that

C0 = C1 = C2 = · · · = Cp+3 = 0, and Cp+3 6= 0

so that

L[z(x);h] = Cp+3h
p+3z(p)(x) +O(h)p+4 (20)

Substituting the values of s, u, v into (11)-(13), then the order
and error for the main methods in (7)-(9) are obtained as;

L(y(xn+3);h) = − 243

78848000
y(11)(xn)h11 +O(h)12

L(hy′(xn+3);h) = − 27

39424000
y(11)(xn)h11 +O(h)12

L(h2y′′(xn+3);h) = − 27

394240000
y(11)(xn)h11 +O(h)12 (21)

Thus, appearing in the form of (20). In this case, Cp+3 is the
error constant (see Lambert [14]). The linear difference operator
L[y(x);h] is said to be consistent if the order p > 1. Hence the
order of the main methods (7)-(9) is p = 8. Following the same
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approach, for the additional methods, order p = 7 is obtained and
their error constants are given in the table below;

Table 1. Error constants for the additional methods
(16)-(17), with p = 7.

y Cp+3 y Cp+3 y Cp+3

yn+s -1.60444E-6 hy′n+1 2.20459E-6 h2y′′n+s 2.30922E-5
yn+u 3.36662E-7 hy′n+u 1.30680E-8 h2y′′n+1 2.30922E-5
yn+v -1.60444E-6 hy′n+2 -2.20459E-6 h2y′′n+u -8.81834E-6
hy′n 6.61376E-6 hy′n+v 1.62175E-6 h2y′′n+2 -2.99255E-7
hy′n+s -1.62175E-6 h2y′′n 4.40917E-6 h2y′′n+v 8.81834E-6

3.1. Zero-stability

The main and additional methods forms a system of difference
formulae which can be written compactly as

A1Y = hA2Y
′ + h2A3Y

′′ + h3BF (22)

where

Y = (yn, yn+s, yn+1, yn+u, yn+2, yn+v, yn+3)
T ;

Y ′ = (y′n, y
′
n+s, y

′
n+1, y

′
n+u, y

′
n+2, y

′
n+v, y

′
n+3)

T ;
Y ′′ = (y′′n, y

′′
n+s, y

′′
n+1, y

′′
n+u, y

′′
n+2, y

′′
n+v, y

′′
n+3)

T ;
f = (fn, fn+s, fn+1, fn+u, fn+2, fn+v, fn+3)

T ;

(23)

A1, A2, A3 and B are matrices of coefficients. Zero-stability implies
the stability of the difference system as h → 0. So, if h → 0 in ,
then the difference system may be rearranged in a more convenient
matrix form as

Ā1Yτ − Ā0Yτ−1 = 0 (24)

where
Yτ = (yn+3, yn+2, yn+1, yn+s, yn+u, yn+v)

T

Yτ−1 = (yn, yn−1; yn−2; ys−1, yu−1, yv−1)
T

Ā1 =


1 3 −3 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 3
20

(−7 + 2
√

15) −3
10

(−2 +
√

15) 1 0 0
0 −3

8
−3

4
0 1 0

0 − 3
20

(4 +
√

15) 9
20

(3 +
√

15) 0 0 1


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Ā0 =


−1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
11
20

0 0 0 0 0
1
8

0 0 0 0 0
−11

20
0 0 0 0 0


The block method which constitutes the main and additional

methods is said to be zero-stable if the roots λi of the first char-
acteristic polynomial ρ(λ) defined by ρ(λ) = det|Ā1λ − Ā0| sat-
isfy |λj| ≤ 1 and for |λj| = 1 the multiplicity does not exceed
the order of the differential equation (see [15]), in this case 3.
Hereρ(λ) = λ5(λ − 1). Consequently, since the block method (22)
is consistent and zero-stable, therefore by [14], it is convergent.

3.2. Linear stability analysis

The study of zero-stability concerns the behavior of the numeri-
cal method for h→ 0. The concept of linear stability for any given
h > 0 is concern with the behaviour of the underlined problem
in question and not just the numerical method. Here, the stabil-
ity properties for the intending numerical method is analyzed by
considering the linear test equation for λ > 0 of the form

y′′′(x) = −λ3y(x) (25)

This linear test equation (25) was used in [10] and [13]. The
method derived in this work is intended for solving general third
order problem. Therefore, motivated by [16], the linear test equa-
tion for λ > 0 of the form

y′′′(x) = −3λy′′(x)− 3λ2y′(x)− λ3y(x) (26)

is adopted, since (25) does not have any derivative of y in the
right side. It can also be verified that (26) has a bounded solu-
tion for λ ≥ 0 as x → ∞. Adopting the procedures in [16] and
[13], the region in which the numerical method gives the behav-
ior of the true solutions is determined. The derived method has
eighteen equations in which there are fourteen different terms of
derivatives and three intermediate terms yn+s, yn+u, yn+v. These
terms are eliminated from the system of equation so that the fol-
lowing recurrence equation with the term yn, yn+1, yn+2 and yn+3
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are derived

W0(Z)yn +W1(Z)yn+1 +W2(Z)yn+2 +W3(Z)yn+3 = 0 (27)

where Z = λh,

W0 = −3870720000 + 1661680λ6 + 1800λ9

W1 = 11612160000− 1935360000λ3 + 11142960λ6 + 797040λ9

− 6237λ12

W2 = −11612160000− 1935360000λ3 − 11142960λ6 + 797040λ9

+ 6237λ12

W3 = 3870720000− 1661680λ6 + 1800λ9

Obtaining from the recurrence equation (27), the following charac-
teristic polynomial is derived

W0(Z) +W1(Z)τ +W2(Z)τ 2 +W3(Z)τ 3 = 0 (28)

from which the roots τ1,2,3 are obtained. These roots (containing
the real and imaginary parts) are plotted and Figure 1 shows the
region of stability for the method derived and the stability interval
is (0, 13.258). This region is the complex Z-plane where the roots of
the characteristic equation (28) are bounded in modulus by unity.

0 2 4 6 8 10 12 14

-10

-5

0

5

10

Re(Z)

Im
(Z
)

Figure 1. Stability region
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4. Numerical Examples

To show the efficiency of this method, some examples from liter-
ature are used so as to compare errors and maximum errors where
applicable.
Example 1. Consider the IVP discussed in [13].

y′′′ = 3 sin(x), x ∈ [0, 1]
y(0) = 1, y′(0) = 0, y′′(0) = −2

(29)

whose exact solution is y(x) = 3 cos(x) + x2

2
− 2.

Table 2. Comparison of maximum Errors (ME) for
Example 1 for h = 0.1

x ME in new method ME in [13]
0.1 1.3107× 10−15 4.1078× 10−15

0.2 1.3157× 10−15 1.6875× 10−14

0.3 1.0758× 10−17 5.0848× 10−14

0.4 1.2101× 10−15 1.1779× 10−13

0.5 1.2246× 10−15 2.4081× 10−13

0.6 4.2042× 10−17 4.3709× 10−13

0.7 1.0229× 10−15 7.3708× 10−13

0.8 1.0456× 10−15 1.1662× 10−12

0.9 9.0975× 10−17 1.7587× 10−12

Table 2 shows the maximum error obtained for the grid points x
= 0.1(0.1)0.9 using the optimized method and thus compared with
the method in [13] using fixed step-size h = 0.1. The new method
perform better.

Example 2. Consider the BVP discussed in [10].

y′′′ + y = (x− 4) sin(x) + (1− x) cos(x), x ∈ [0, 1]
y(0) = 0, y′(0) = 1, y′(1) = − sin 1

(30)

whose exact solution is y(x) = (x− 1) sin(x).
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Table 3. Comparison of maximum Errors (ME) for
Example 2

h ME in new method ME in [10]
1
16 4.02552× 10−17 1.03179× 10−11
1
32 3.92786× 10−20 3.24907× 10−13
1
64 3.83607× 10−23 1.02789× 10−14

Table 3 shows the maximum error obtained using different step-
sizes and compared with the method in [10] and the optimized
method in this work. It clearly shows that the method presented is
more superior to the cited literature.

Example 3. Consider the BVP discussed in [13].

y′′′ + y′ = 0, x ∈ [0, 1]
y(0) = 0, y′(0) = 1, y′(1) = cos(1) + 2 sin(1)

(31)

whose exact solution is y(x) = 2(1− cos(x)) + sin(x).

Table 4. Comparison of maximum Errors (ME) for
Example 3

x ME in new method ME in [13]
0.1 8.1583× 10−16 1.9345× 10−14

0.2 8.2542× 10−16 7.1831× 10−14

0.3 1.6722× 10−17 1.8218× 10−13

0.4 6.1786× 10−16 3.6803× 10−13

0.5 6.2027× 10−16 6.5725× 10−13

0.6 7.4789× 10−18 1.0689× 10−12

0.7 3.4270× 10−16 1.6320× 10−12

0.8 3.4040× 10−16 2.3652× 10−12

0.9 1.8886× 10−17 3.2969× 10−12

Table 4 shows the maximum error obtained for the grid points
x = 0.1(0.1)0.9 using the optimized method and compared with
the method in [13] using fixed step-size h = 0.1. The new method
competes favourably with that of [13].

Example 4. Consider the nonlinear BVP discussed in [9].

y′′′ + 2e−3y = 4(1 + x)−3, x ∈ [0, 1]
y(0) = 0, y′(0) = 1, y′(1) = 1/2

(32)
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whose exact solution is y(x) = ln(1 + x).

Table 5. Comparison of maximum Errors (ME) for
Example 4

N ME in new method FDM in [9]
7 2.41× 10−9 5.24× 10−9

14 4.13× 10−12 2.39× 10−11

28 5.72× 10−15 9.50× 10−14

56 5.89× 10−18 3.62× 10−16

112 6.07× 10−21 2.27× 10−17

From Table 5 different values of N has been used to obtain the
maximum error for example 4. It is clear the new method perform
better than the FDM in [9] despite that the later is of order p = 8,
the method in this work is of order p = 7.

Example 5. Consider the BVP discussed in [10].

y′′′ − xy = (x3 − 2x2 − 5x− 3)ex, x ∈ [0, 1]
y(0) = 0, y′(0) = 1, y′(1) = 5e

(33)

whose exact solution is y(x) = xex(1 + x).
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Table 6 compares the method in this work and those of [9] and
[10]. This example has a misprint in [10] but the correct version is
in [9]. In both case, the method in this work performs better for
different step-sizes (h) and for different number of subinterval (N),
which shows its superiority over both.

Example 6. Consider the IVP, (nonlinear Blassius equation) in fluid
dynamics given discussed in [9, 12].

2y′′′ − yy′′ = 0, x ∈ [0, 1]
y(0) = y′(0) = 0, y′(∞) = 1

(34)

The solution of (34) does not have a closed form. For comparison
of the numerical results obtained, the approach in [9] and [12] are
followed.

Comparing the results obtained in the new method and those of
FDM in [9] and BT in [12], it agrees with values obtained for y′′(0)
at 6 decimal places for which that of FDM in [9] and the values
obtained for y′′(x∞) at the truncated boundary x∞ at 5 decimal
places with that of FDM in [9]. The Number of steps needed in the
new method was only 15 to get the required values at the truncated
boundary, for [9], the number of steps needed was 20 and for [12],
the number of steps needed was 21.

5. Conclusion

An optimized three-step with three intra-points hybrid block met-
hod is developed in this work and applied directly to solve third
order initial and boundary value problems in ordinary differential
equations. The characteristics of the new method viz-a-viz, zero
stability, consistency and convergence were established. Standard
numerical examples in literature were used to show the efficiency in
terms of the techniques, accuracy in terms of the errors obtained,
of the derived method when compared to other methods. From
the results obtained as seen in the tables, it can be concluded that
the proposed method compare favourably and superior to existing
methods in the literature cited.
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