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OPTIMIZED HYBRID BLOCK INTEGRATOR FOR
NUMERICAL SOLUTION OF GENERAL THIRD ORDER
ORDINARY DIFFERENTIAL EQUATIONS

MARK I. MODEBEI

ABSTRACT. A hybrid method for the numerical approximation
of the solution of general third order initial and boundary value
problems is derived via the collocation technique. This method
considers three intra-step points which are adequately selected
so as to optimize the local truncation errors of the main formu-
las. The new method is zero-stable, consistent and convergent.
Numerical examples from literature shows the efficiency of this
method in terms of the global errors obtained.
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1. Introduction

Third order ordinary differential equations are of great interest in
the fields of engineering and sciences. This can be seen in biological
sciences and control theory. For instance, draining and coating flow
problems [1], laminar boundary layer and sandwich beam problems
[2], in fluid dynamics [3] and many others in literature. In this
work, the numerical approximation for general 3rd-order problems
of the type:

y" = flzyy "), a<z<b (1)
with the initial conditions
y(a) = ao,y'(a) = a1,y (a) = o (2)
and the boundary conditions
y(a) = ao,y'(a) = a1, y(b) = fo (3)
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is considered, where «; i« = 0,1,2, (31, a,b are real constants.
r € [a;b] and f € C3a,b]. Other forms of boundary conditions can
also be considered, say, y(a) = ag, ¥'(a) = o, ¥/ (b) = B1 The theo-
retical existence and uniqueness of solution of (1) was discussed in
[4, 5]. Thus in this work, the existence and uniqueness of solution
of (1) are assumed. Furthermore, it is also assumed that (1) is
well posed and the numerical solution is the focus. Accurate nu-
merical methods for solving third-order initial and boundary value
problems are available in literature. Some of the methods avail-
able are but not limited to Non-polynomial splines [6], quartic B-
splines, [7], Quartic Splines [8], collocation method [9, 10]. Block
methods [11, 12]. From all these methods, collocation/interpolation
approach, which is the technique employed in this work, produces
block method which is more efficient in that: it approximate the
solution of (1) at several intra-points, it contains several linear mul-
tistep methods which constitute the main and additional methods
required for direct solution of (1) such that it overcomes the over-
lapping of pieces of solutions, it is self starting, that is, it does
not require any starting value from other methods. In this paper
a three-step continuous hybrid block method with three intra-step
points is developed via collocation approach, for the direct solution

of (1).
2. Derivation of the Methods

Here, the optimized hybrid block method is derived. A non-optimized
version of the method given in this paper can be found in [10],
where the three off-step points in the interval 0 < 2,45, < Tpyj, <
Tnij, < 1 are given such that (ji;72;73) = (2,2,1). Optimized
two-step block method with three hybrid points for solving third
order initial value problems can be found in [13]. In their method,
the off-step points r, s, g are such that 0 < r,s,g < 2. In the case
of this paper, the off-step points are (j1,72,73) = (s, u,v), where
s, u and v are to be determined from the local truncation error
of the main methods such that 0 < s < 1 < u < 2 < v < 3.
Also, the solution y(z) of (1) is sort in the interval [a, b] such that
a = x9 < 11 < -+ < xy = b with step-size h = x;11 — xj,
j=0,1,...,N —1.

Consider the approximation ¢(z) of y(z) given by the polynomial
of the form
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ri+ro—1

y(@) = q(@) = Y pua” (4)
n=0
with the third derivative given by

r1+ro—1

y"(@)=q" (@)= Y nn—1)(n—2)pa" ()

n=0

where © € [a,b], p,’s are real coefficient to be determined, ry
and ry are numbers of interpolation and collocation points. Setting
ri = 3 and ry = 7, the intra-step points are such that 0 < s < 1,
1 <u <2 and 2 < v < 3 which are used for the approximation of
the three step method in the interval [z¢,z3]. Here, z, = x,, + sh,
Ty = Tp +uh, x, = x, +vh. Now, Interpolating the approximation
in (4) at the points z,,4;, i = 0, 1,2 and collocating the approxima-
tion in (5) at the points z,4; , j = 0,s,1,u,2,v,3, the following
system of 10 algebraic equations is arrived at

Q(xn) = Yn, Q(xn—&-l) = YUn+1, Q(xn—I—Z) = Yn+2,
W( n) = fu; W(xn+8) = fats; qm(xm—l) = fot1s
q/H(anru) = f7L+U7 qm<xn+2) = fn+2a q”/(anrv) = fn+v7

q//,(xn+3) = fn+3-

where the approximation of y,+; = y(xn+;), and fry; = ¥ (Tp4y)
denote the approximation to f(@n+j, Y(Tnts), ¥ (Tnts), ¥ (Tnss))-
Solving the above system and obtaining the expressions for p;, i =
0(1)9 and substituting them into the approximation (4). Then,
carrying out the substitution for the variable x = x,.; + th, the
approximation in (4) takes the form

3 3
o 1h) = zazymh (z@fmz@fw) ©)
1=0 =1

where wy = s; wy = u; w3y =v, and oy, 2 =0,1,2, 5;, 1 =0,1,2,3,
61, = 1,2, 3 are continuous coefficients.

Evaluating ¢(z), ¢'(z) and ¢”(x) in (6) respectively at the point
Znas, the following main formulae are obtained:
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Yn+3 =

hy;erS =

thn+3 -

where

A=

(s— 2)(u 2)(1)72)7 B = (s— 3)(u 3)(v— 3)’
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h3(47—63u— 63U+42uv+21s( 3+2u+2v))
3yn+1 + 3yn+2 + fn

+h3( 5724-525u+525v—462uv+21s(25—22u— 22v+20uv) f
840(s—1)(u—1)(v—1) n+
+Ah3( 9057+45995+4599u—2394su+4599v—2394s5v— 2394u1}+12607“uv)f
n+2

2520
Bh?(—614+189s+189u—42su+189v—42sv—42uv)
+ fn+3

2520
Ch3(282—378u—378v+252uv) Dh3(—282+3785+378v—252sv)
+ f + 2520 fn-‘ru

_l’_

2520
K h3(—282+3785+378u—252su)
2520 fn+v

(7)

T o 4yn+1 + 5yn+2 + h3(— 2003+360v+30u(12+v)+65(60+ou+5v+21uv)) fn

RB3(—1279+3282v— Gu( 5A7+607v)+65(547— 607v+u( 607+602u

+ 5040(s—1)(u—1)(v—1) f"+1

+Ah3( 133809+63900s+63900u—31410su+63900v—31410sv—31410uv+15750suv) f o
n

15120
+Bh3‘( 24403+-88025+8802u— 3054su+8802v 3054sv— 3054uv+10085u'u)f
n+

Ch3(— 12018+2160u+2160v+180uv) Dh3(12018—2160s—2160v— 180sv)
+ fn +s + fn+u

15120 15120
+h3K(12018 2160s—2160u—180su)

15120 15120 fn 4o

(8)

h3( 2896+999u+999v— 3$6uv+s(999 336u—336v+154uv))
2yn+1 + yn+2 + fn

SUV
Jr}13(3610 719u—"719v—280uv+s(—719—280v+56u(— o+11v)))f
1680(s—1)(u—1)(v—1)
+Ah3( 69450+303815+30381u—13692s5u+3038lv—13692sv— 13692uv+63425uv) f
n+2

5040
+Bh3( 379554-1361754-1361Tu— 48725u+13617v 4872s5v—4872uv+1736suv) f
n+3

Ch3(—17376+5994u+5994v— 2016uv) Dh*(17376 59945—5994v+20165v)
+ f” +s 5040 fn+u

9)

5040
Knh3(17376—59945—5994u+20165u)
+ 5040 fn+v

C =

1
5(7614»11576s2+s3)(s7u)(571))

= u(s—u)(— 6+11u 6u2+s3)(u— v)’ K= v(s—v)(v—u)(—6+11lv—6v2+v3)

(10)

Now, the values of s, u and v can be determined by considering
the Local Truncation Errors (LTEs) of (7)-(9) each, so that one
more order for each of the formula can be gained by setting their
principal truncation term to zero. In this sense, the values of s, u
and v would have been optimized. The LTEs for each of (7)-(9)

are:

L(y(tpys); h) = Zswwmsuzsvs qu(m)(T SL srmasao (4452uv — 11s2u — 11520 + 44su2v — 11su2 + 44suv2

+242s5uv — 66511 — 11502 — 66sv — 11u2v — 11uv2 — 66uv — 18)y(11)(zn)hll + O(h)'?

(11)
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[,(hy’(a:mg)' h) _ 3(u(9-6v)+9(v— 3)+s(9 617+2u(7@ 3))y(10) (xR0
+1204400(425 uv — 183 u — 18s%v + 27s? + 42suv — 18su?
+42suv? + 216suv — 8lsu — 18s5v% — 81sv + 1625 — 18uv + 27u?
—18uv? — 81uv + 162u + 27v% + 162v — 729)y(11)(z, )R + O(h)12
(12)

(28suv—42su—42s5v+108s5— 42u@+108u+108v 297)y(10)(x,,)h1°
+6Z7200(14s SV — 219%11 — 215%0 + 54s% + 14su?v..21su? + 14suv?

+42suv — T2su — 21s5v% — 72sv + 3245 — 21u?v + 54u? — 21uv® — T2uv
+324u + 5402 + 324v — 1296)y(11)(x,) A + O(h)*?
(13)

LWy (xp13);h) =

Equating the principal terms in (11)-(13) to zero

4suv — su—sv —uv =0
u(9 — 6v) + 9(v — 3) + 5(9 — 6v + 2u(7Tv — 3)) =0 (14)
w(9 —6v) +9(v —3) + s(9 — 6v+2u(7v —3)) =0

This yields the solution (s, u,v) = (&(5 — V15), 2, (5 — V/15)).
Substituting these Values into ( )-(9), the following are the main
formulae for the solution y(zx) of (1);

D

_ _ _ b3 97fn _ 1373fnyr  1373fnyo 97fnts _ 23T5fnts _ 8336fntu _ 2375 niw
Ynt3 = Yo — 3Ynt1 + 3Yni2 — R (34020 1620 1620 T 3020 56133 25515 56133
A T = 13 (509fn  929fni1  3593fmis | 94fwis  (855500+121500v/15) fuss
hypis = =5 = W1 + SYnra — 17 5735 1980 5544 T 25515 6735960
1024fniu  (8555004121500V/15) fnso

2187 6735960

21 3 1003 fn41 3149 fpny2 6437 fn+3 16375 | 25
DYt = Yn = 2Yns1 + Yotz — b (972 308~ ace0 — esoio — \so1ss + 136 V/0/3) Juts

_ 8056fntu _ (16375 _ 25 / f
25515 56133 126 ntv

(15)

To obtain the additional methods, evaluating g(x), at the points
Tpts, Tntu, Tnto then, evaluating ¢'(z) and ¢”(z) at the points 4 ;,
7 =20,s,1,u,2,v, the following are obtained;
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_ (2245320000—449064000v/15)y, | (1224720000+734832000v/15)yn+1 |, (612360000—367416000v/15)yn 42
Ynts = 816480000(5++/15) + 816480000(5++/15) + 816480000(5+/15)
3 11(178093—31689V15) fn _ (962417—93933v15) fny1 _ (7419446149108855v/15) fn o
272160000(5++/15) 3360000(5++/15) 816480000(5++/15)
_ (1420221-413721V15) frys _ (72392500—17797500V/15) frys _ (67013056—26566848v/15) fr 1
816480000(5-+v/15) 816480000(5-+v/15) 816480000(5-+v/15)

- (6053500+4315500v/15) fn
816480000(5++/15)

— _Yn g 3Ynt1 4 3Ynt2 +h 14713f, _ 170717fn41  457fnyo  2297fnys
Yntu B 4 8 34836480 4730880 430080 34836480
+(730400007850500\/15)fn+s _ 521fniu + (—3040000+850500v/T5) fritv
1149603840 25515 1149603840
; _ _ (2245320000—449064000v/T5)y,  (1224720000—734832000v/15)yn1  (612360000+367416000v/15)yn 2
Ynto = 816480000(v/15—5) 816480000(v/15—5) 816480000(v/15—5)
_p3 11(—178093+31689v15) fn _ (—962417+93933V/15) fn 1 + (7419446149108855V15) frt2
272160000(v/15—5) 3360000(v/15—5) 816480000(v/15—5)
(1420221-413721V15) frys | (605350044315500v/15) fris | (67013056+26566848v/15) fr+u
- + - - + -
816480000(v15—5) 816480000(v15—5) 816480000(v/15—5)

4 (12892500 177975001/ T5) fr .0
816480000(v/15—5)
.  3ym ymiz 23 (120fa | TOUfair | 59 miz | 13fais | (428000+121500v/15)fnis
hy,, = 5 T 2Ynn1 el (204120 + 3 T 0 T 6735960
16720 | (425000 121500V/15) fu o
76545 6735960
. = 3 . (S6735060000+4041576000V TE)yn 1, (6735960000—2020785000v T5) s
Ynts 21/ 5Yn 6735960000 6735060000
3 (CEWRATOTSVIR) fy (~36065064 1061289V TE) f 1, (1362402828 312656973V TE) 12
204120000 27720000 6735960000
4 (CATSTI002- 5198391V TE) fu s (150030500 42750000V T5) fys (1270135328 —530105600VT5)
6735960000 6735960000 6735960000
. (155571500 42750000V/T6) f o
6735960000
_n oy Yns2 3 (439fn  A20/ngy 190wy fwas | (Z74500-22500v15)fgs  272fniu
2 2 204120 3465 27720 20412 6735060 15309
(74500422500 VTE) foyo
6735960

}1'!/;4-1 =

ro_ 33 ( 155fs 9367fns1 | 9367fnt2 | 155fnss  6575fnss | 89729fniu _ 6575 ntv
hyp = Ynt1 + Ynio — (5225472 + S5asi60 T B5asio | b2zsirz 43110144 | 2449440 13110144

gy B 3 (0Ua | A9 asr | T5Lfasd  3Tfwes | (68000422500VT5) fnss
2 Yn+1 2 204120 3465 27720 51030 6735960

159204y (68000—22500v/15) frn+v )

hyp 0 =

10035 6735060
Byl — B [8, | (SOTESO60000-4041576000V TE)yner | (6T3E960000+2020788000v T5 )2
Ynto 2/ 5Yn 6735960000 673596000
_ 3 (((R04241TOTVI) [ (5000590 L0G128OVTE) gy (13624028284 342656973V T5) frs
] 204120000 27720000 6735960000
_ (C1TATIO0 519891 VT) oy (1558TIS00-+42750000V/T5) fcs | (1270135328-+330105600V/T5) fc
6735960000 6735960000

6735960000
(150039500+42750000v/15) frt v
6735960000

2,1 _ _ 3 [ 6631fn 148fn 41 263 frt2 31fnys _ (—2000 _ 25 /5 _ 8fniu
h Yn = Yn 2?]n+1 + Yn+2 h ( 68040 + 385 + 9240 + 17010 8019 126 3 fTH’S 729

2000 _ 25 /5 f

8019 126/ 3 ) Jntv

2.0 _ _ 3 [ (493525+100602v/15)fn | (=87775—170586v/15) fni1 65453 _ 852031/%

h Ynts = Yn = 2Yn+1 + Ynio + h 34020000 + 1540000 + | 1s1s00 15400 fos2

3
23621 | 207§ 2375 1429 4168 _ 68 /3
+< 1360800 T 14000 Jovs + 112266 138615 s + 25515  875\/ 5 Jotu
2375 1 :
+ (]12266 693\/15) f”“’)

2 _p3 ([ 227fn | 19fn+1 | 157fnto | 173fn4s 125 | °
PoYpir = Yn = 2Uni1 + Uni2 = B Sioz0 + o6 + a0 T esodo” T | 55 T

125 _ 35y3) .
+ (5103 T 12474 fato
1289fn _ T781fn41 + 25fni2 + 263fny3 ( 2375

2,1 _ _ L — B3 _
PYvu = Yn = 2Ynir + Ytz — 17 | 530 24640 1344 544320 112266

e e o375 325,/ f
25515/ ntu 112266 22176 | Jntv
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2 . 13 (367fu _ 304fus1 _ 2081faia _ 13furs [ 1000 | 325v/3
h yn+2 = Yn— 2Wns1 + Ynr2 — N 68040 1155 9240 3402 56133 T 12474 Jots
_latsdg (1000 _35./3 f
255157 ntu 56133 12474 n+tv
2 _ . 3 [ (493525—100602v/15) fr, | (—87775+170586/15) fnt1
Pypi = Yn = 2Ynt1 + Yni2 + R ( 34020000 + 1540000
4 oas3 852931/% Foso + [ 22020 207/ Foas + (20 4 f
184800 154000 n+2 1360800 14000 n+3 112266 693\/ n+s

(17)

3. Order and Local Truncation Errors (LTEs) of the method

The linear differential operator L[y(z); k| for the methods (7)-(9)
is defined as

L(z(x); h] = hy(z + ih) — Za z(z +ih) — B? (Z Biz" (x + ih) + Zﬂ 2z + U)Z}L))
(18)

Expanding (18) in Taylor series, we obtain

L[z(x); h] = Coz(x) + CLhz'(x) + Coh?2" (z) 4 - - - + CphP2P) () + O(h)PH

(19)
where C; are constants such that
00201202:"': p+3:0, and Cp+37é0
so that
L[z(x); h] = Cpysh? ™27 (z) + O(h)+ (20)

Substituting the values of s, u, v into (11)-(13), then the order
and error for the main methods in (7)-(9) are obtained as;

243
ni3)ih) = —————y(11)(z,)h"! h)'?
L(y(rnss)i ) = == esy(11) ()1 4+ O()
' Y 27 11 12
" 27
LY (wr3)i ) = = 55 ssay(I) @) b+ O (21)

Thus, appearing in the form of (20). In this case, Cpi3 is the
error constant (see Lambert [14]). The linear difference operator
L[y(z); h] is said to be consistent if the order p > 1. Hence the
order of the main methods (7)-(9) is p = 8. Following the same
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approach, for the additional methods, order p = 7 is obtained and
their error constants are given in the table below;

TABLE 1. Error constants for the additional methods
(16)-(17), with p = 7.

y Cpis y Cpis y Cpis
Ynts -1.60444E-6 | hy, ., 2.20459E-6 thn-&-e 2.30922E-5
Yntu  3.36662E-7 | hy. ., 1.30680E-8 hzyn_H 2.30922E-5
Ynto -1.60444E-6 | hy,_ o -2.20459E-6 h2y;’+u -8.81834E-6

hy! 6.61376E-6 | hy,,, 1.62175E-6 thnJrQ -2.99255E-7

n

hylps -1.62175E-6 | h2y!  4.40917E-6 | h2y",, 8.81834E-6

3.1. Zero-stability

The main and additional methods forms a system of difference
formulae which can be written compactly as

A)Y = hAY' + W2 AY" + hPBF (22)

where

Y = (ym Yn+ts> Yn+1) Yntur Yn+25 Yntv; yn+3)T§

Y' = (y;w y;z—&—s’ y;,—&—lv y;z+u7 y;z+27 y;z—i—m y;z+3)T; (23>

Y = (Y, Ynsss Yrnats Yrnsws Ynazs Yoo Ynas)

= (fm Jntss favts fotws fna2s frros fn+3)T;
Ay, Ay, A3 and B are matrices of coefficients. Zero-stability implies
the stability of the difference system as h — 0. So, if h — 0 in ,
then the difference system may be rearranged in a more convenient
matrix form as

A1YT - A()YT,l == 0 (24)
where
3/7 - (yn+3u Yn+2; Un+15 Yn+ss Yn+us yn+v>T
Y‘rfl = (yn7ynfl;yn72;ysfl7yu717yv71)T
1 3 -3 0 00
0 1 0 0 00
A - 0 0 1 0 00
T 0 2(—7+2V15) 2(-24V15) 1 0 0
0 -3 -3 010
0 —5(4++v15) %(3++v15) 0 0 1
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-1 00000
1 00000
| L 00000
" &4 00000
s 00000
-2 00000

The block method which constitutes the main and additional
methods is said to be zero-stable if the roots A; of the first char-
acteristic polynomial p()\) defined by p(\) = det|A;\ — Ay| sat-
isfy |A\;| < 1 and for |\;| = 1 the multiplicity does not exceed
the order of the differential equation (see [15]), in this case 3.
Herep(A\) = A(X — 1). Consequently, since the block method (22)
is consistent and zero-stable, therefore by [14], it is convergent.

3.2. Linear stability analysis

The study of zero-stability concerns the behavior of the numeri-
cal method for h — 0. The concept of linear stability for any given
h > 0 is concern with the behaviour of the underlined problem
in question and not just the numerical method. Here, the stabil-
ity properties for the intending numerical method is analyzed by
considering the linear test equation for A > 0 of the form

y"(z) = =Ny(x) (25)

This linear test equation (25) was used in [10] and [13]. The
method derived in this work is intended for solving general third
order problem. Therefore, motivated by [16], the linear test equa-
tion for A > 0 of the form

y"(x) = =3\y"(z) = 3%/ () — Ay(2) (26)

is adopted, since (25) does not have any derivative of y in the
right side. It can also be verified that (26) has a bounded solu-
tion for A > 0 as ¢ — oo. Adopting the procedures in [16] and
[13], the region in which the numerical method gives the behav-
ior of the true solutions is determined. The derived method has
eighteen equations in which there are fourteen different terms of
derivatives and three intermediate terms ¥, s, Yniu, Ynio- Lhese
terms are eliminated from the system of equation so that the fol-
lowing recurrence equation with the term v, ¥ni1, Ynio and y,43
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are derived
Wo(Z)yn + Wi(Z)yns1 + WaZ)ynso + Ws(Z)yns =0 (27)
where Z = A\h,

Wy, = —3870720000 + 1661680A° + 1800\°

Wy = 11612160000 — 1935360000\% + 11142960A° + 797040)\°
— 6237\"2

W, = —11612160000 — 1935360000\* — 11142960\° + 797040)\°
+ 6237A\"2

Ws = 3870720000 — 1661680\° + 1800\°

Obtaining from the recurrence equation (27), the following charac-
teristic polynomial is derived

Wo(Z) + Wy(Z)T 4+ Wa(Z)T* + Ws(Z)7m* = 0 (28)

from which the roots 7123 are obtained. These roots (containing
the real and imaginary parts) are plotted and Figure 1 shows the
region of stability for the method derived and the stability interval
is (0, 13.258). This region is the complex Z-plane where the roots of
the characteristic equation (28) are bounded in modulus by unity.

10F E

m(2)

—-10 - -

FI1cURE 1. Stability region
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4. Numerical Examples

59

To show the efficiency of this method, some examples from liter-
ature are used so as to compare errors and maximum errors where

applicable.

Example 1. Consider the IVP discussed in [13].

y" = 3sin(z), z €10,1]
y(0) =1, y'(0) =0, y"(0) = —2

whose exact solution is y(x) = 3 cos(z) + % — 2.

TABLE 2. Comparison of maximum Errors (ME) for

Example 1 for h = 0.1

T

ME in new method

ME in [13]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.3107 x 1015
1.3157 x 10715
1.0758 x 10717
1.2101 x 10715
1.2246 x 10715
4.2042 x 10717
1.0229 x 10~1°
1.0456 x 10—t
9.0975 x 10~17

4.1078 x 10~ 1®
1.6875 x 10~ 14
5.0848 x 1014
1.1779 x 10~13
2.4081 x 10~13
4.3709 x 10~13
7.3708 x 10713
1.1662 x 10~12
1.7587 x 10~12

Table 2 shows the maximum error obtained for the grid points x
= 0.1(0.1)0.9 using the optimized method and thus compared with
the method in [13] using fixed step-size h = 0.1. The new method

perform better.

Example 2. Consider the BVP discussed in [10].

y" +y=(xr—4)sin(x) + (1 — z)cos(z), = €[0,1]

y(0) =0, ¥(0) =1, y(1) = —sinl

whose exact solution is y(x) = (x — 1) sin(z).

(30)
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TABLE 3. Comparison of maximum Errors (ME) for

Example 2
h  ME in new method ME in [10]
75 402552 x 10717 1.03179 x 1071
é 3.92786 x 10~20 3.24907 x 10713
a1 3.83607 x 10723 1.02789 x 10~

Table 3 shows the maximum error obtained using different step-
sizes and compared with the method in [10] and the optimized
method in this work. It clearly shows that the method presented is
more superior to the cited literature.

Example 3. Consider the BVP discussed in [13].

y" +y =0, z€[0,1]
y(0) =0, ¥'(0) =1, y'(1) = cos(1) + 2sin(1)

whose exact solution is y(x) = 2(1 — cos(x)) + sin(z).

(31)

TABLE 4. Comparison of maximum Errors (ME) for
Example 3

z ME in new method ME in [13]

0.1 8.1583 x 10716 1.9345 x 10~ 14
0.2 8.2542 x 10~16 7.1831 x 10~14
0.3 1.6722 x 1017 1.8218 x 10~13
0.4 6.1786 x 10~16 3.6803 x 1013
0.5 6.2027 x 10~16 6.5725 x 10713
0.6 7.4789 x 10718 1.0689 x 10~12
0.7 3.4270 x 10~16 1.6320 x 10~12
0.8 3.4040 x 10~16 2.3652 x 1012
0.9 1.8886 x 10~17 3.2969 x 10~ 12

Table 4 shows the maximum error obtained for the grid points
z = 0.1(0.1)0.9 using the optimized method and compared with
the method in [13] using fixed step-size h = 0.1. The new method
competes favourably with that of [13].

Example 4. Consider the nonlinear BVP discussed in [9].

Yy +2e =4(1+2)3 z€l0,1]
y(0)=0, ¥'(0)=1, y'(1)=1/2

(32)
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whose exact solution is y(x) = In(1 + x).

TABLE 5. Comparison of maximum Errors (ME) for

Example 4
N ME in new method FDM in [9]
7 241 x 1079 5.24 x 1079
14 413 x 10712 2.39 x 10~
28 5.72 x 10715 9.50 x 10~14
56 5.89 x 10718 3.62 x 10716

112 6.07 x 10721 2.27 x 10717

From Table 5 different values of N has been used to obtain the
maximum error for example 4. It is clear the new method perform
better than the FDM in [9] despite that the later is of order p = 8,
the method in this work is of order p = 7.

Example 5. Consider the BVP discussed in [10].

y" —xy = (2® — 22% — bx — 3)e*, x € [0,1]
y(0) =0, ¥(0) =1, /(1) =5e
whose exact solution is y(x) = ze®(1 + z).

(33)
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TABLE 6. Comparison of maximum Errors (ME) for Example 5

h ME in new method ME in [10] N ME in new Method FDM in [9]

= 79255 x 10710 1.3647 x 10710 7
% 8.1312 x 1071 4.2086 x 10712 14
& 8.5976 x 107%  1.2939 x 107'* 28
56
112

2.48539 x 10712
2.71078 x 1071°
3.16591 x 10718
3.18084 x 10~
3.25143 x 10~

412 x 10712
1.56 x 10714
6.08 x 10~17
2.37 x 10719
0.27 x 10722

TABLE 7. Comparison of values at truncated boundary for Example 6

New method (NN = 15) FDM

(N =20

BT

(N =21)

Too y"(0) Y (7o) y"(0)

V'(teo)  y'(0)  y'(2)

6.67984 0.332151134 4.960205269 0.332151  4.96021 0.332151 4.96021
8.18467 0.332057669 6.463942546 0.332058 6. 4639 0.332055 6.46388
9.38665 0.332057124 7.665842125 0.332057  7.66586 0.332045 7.66582
10.57641 0.332057335 8.855622131 0.332057336 8.85562 0.332057 8.85562
11.68904 0.332057336 9.968279523 0.332057336 9.96825 0.332057 9.96825
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Table 6 compares the method in this work and those of [9] and
[10]. This example has a misprint in [10] but the correct version is
in [9]. In both case, the method in this work performs better for
different step-sizes (h) and for different number of subinterval (),
which shows its superiority over both.

Example 6. Consider the IVP, (nonlinear Blassius equation) in fluid
dynamics given discussed in [9, 12].

2y" —yy" =0, z€l0,1]
y(0) =4'(0) =0, y'(0) =1

The solution of (34) does not have a closed form. For comparison
of the numerical results obtained, the approach in [9] and [12] are
followed.

Comparing the results obtained in the new method and those of
FDM in [9] and BT in [12], it agrees with values obtained for y”(0)
at 6 decimal places for which that of FDM in [9] and the values
obtained for y”(z) at the truncated boundary x,, at 5 decimal
places with that of FDM in [9]. The Number of steps needed in the
new method was only 15 to get the required values at the truncated
boundary, for [9], the number of steps needed was 20 and for [12],
the number of steps needed was 21.

(34)

5. Conclusion

An optimized three-step with three intra-points hybrid block met-
hod is developed in this work and applied directly to solve third
order initial and boundary value problems in ordinary differential
equations. The characteristics of the new method viz-a-viz, zero
stability, consistency and convergence were established. Standard
numerical examples in literature were used to show the efficiency in
terms of the techniques, accuracy in terms of the errors obtained,
of the derived method when compared to other methods. From
the results obtained as seen in the tables, it can be concluded that
the proposed method compare favourably and superior to existing
methods in the literature cited.
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