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ROBUST EXTENDED TRAPEZOIDAL RULES FOR

TWO-POINT STIFF AND NON-STIFF

BOUNDARY VALUE PROBLEMS

T. OKOR1, G. C. NWACHUKWU AND F. J. ADEYEYE

ABSTRACT. A family of boundary value methods (BVMs) re-
ferred to as robust extended trapezoidal rules (RETRs) is de-
rived using the Taylor series expansion approach. The class of
methods developed is symmetric with higher order and smaller
error constants compared with the conventional extended trape-
zoidal rules (ETRs). The BVMs are natural candidates for the
solution of boundary value problems (BVPs) and they simulta-
neously generate the approximate solutions to BVPs on the en-
tire interval of integration. We applied the RETRs to standard
non-stiff, stiff and/or singularly nonlinear perturbed two-point
BVPs to analyze the efficiency and accuracy of the scheme and
it was found to compare favorably with standard methods.
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1. INTRODUCTION

Ordinary differential equations are usually classified into Initial
Value Problems (IVPs)

y′(x) = f (x, y(x)) , y (a) = y0, x ∈ [a, b] , (1)

and Boundary Value Problems (BVPs)

y′ (x) = f (x, y (x)) , x ∈ (a, b) , g (y (a) , y (b)) = 0, (2)

where y, f, g ∈ Rn, based on the subsidiary conditions that ac-
company these problems [7]. The latter class of problems is more
difficult to handle, since it is a broader class of continuous prob-
lems unlike the former and they are usually solved by the Shooting
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Method (SHM) [1]. However, this SHM works by first reducing
the BVP to its equivalent system of IVPs which makes it suffer
from some numerical instability in the process of conversion [18].
Although, the advent of numerical schemes has done a great deal
to proffering solutions to two-point boundary value problems, the
number of schemes that can handle stiff and/or singularly perturbed
nonlinear BVPs are not nearly plentiful. Singularly perturbed prob-
lems which are characterized by differential equations where the
highest derivatives are multiplied by small parameters are an im-
portant subclass of stiff problems. These problems must often be
solved numerically. However, because they typically feature bound-
ary layers (narrow intervals where the solution varies rapidly) their
accurate numerical solutions have been far from trivial [15]. Hence,
the literature on singularly perturbed BVPs is not adequate [25].
Amongst other numerous methods proposed for the solution of lin-
ear and non-linear BVPs that may be stiff or non-stiff, the BVMs
have been proven to be well suited ([1], [3], [4], [6], [8]-[10]). This
is because the process of developing and applying these schemes
makes it suitable for solving the BVPs directly without necessarily
converting them to their equivalent system of IVPs [1]. Since the
BVMs consist in approximating a continuous initial value problem
by means of a discrete boundary value one, they are natural can-
didates to approximate continuous boundary value problems, with
some slight modification [9]. The stability and convergence prop-
erties of the BVMs have been fully discussed and readily available
in [10]. According to Brugnano and Trigiante [9], a BVM with
(k1, k2)−boundary conditions can be used to approximate the solu-
tion of the BVP provided that the root within the unit circle of the
characteristic polynomial associated with the difference equation is
the principal root of the method whose order is ≥ 1. From their
findings, it was established that the Symmetric BVMs were the
most favorite natural candidate to approximate continuous BVPs
(see [9],[10]).
In this paper, we have derived a class of Symmetric BVMs and
given a general framework on how to use the BVMs on systems of
BVPs in ODEs of the form (2). The applicability of BVMs to the
approximation of BVPs was first considered by [9]. The essence of
high order and relatively good stability properties to achieve con-
siderably accurate approximate solutions to differential problems
cannot be overemphasized (see, [3], [9], [13] and [29]). The meth-
ods developed herein are not only symmetric but are also of higher
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order up-to k+ 3 for values of the step length k compared with the
conventional ETRs which are only of order k + 1. The boundary
value technique we considered follows after the approach of ([10],
[22]-[24]) such that the approximate solutions to the exact solutions
of the BVP are simultaneously generated on the entire interval of
integration. Hence, a reduction in global error and computational
time is achieved. The proposed BVMs were developed using the
Taylor series expansion technique (see,[28]).
The paper is organized as follows: in Section 2, we present the
theoretical procedure which involves the general structure of BVMs
and the framework for the derivation of our method. Derivation and
the analysis of the RETRs are presented in Section 3. The use of
the method is given in Section 4 while in Section 5, some numerical
experiments are considered. In Section 6, we give the conclusion of
the paper.

2. THEORETICAL PROCEDURES

The continuous initial value problem (1), which corresponds to the
BVP (2) is usually solved by means of a discrete initial value prob-
lem, that is, a set of k initial conditions y0, y1, . . . , yk−1 is associated
with the linear multistep formula (LMF):

k∑
j=0

αjyn+j =h
k∑
j=0

βjfn+j (3)

whereby approximation at xn is only obtained when the previous
xn−1 has been computed. That is,

D : a = x0 < x1 < x2 < . . . < xN = b; xn = xn−1+h, n = 1, 2, ..., N

where h is the constant step size of the partition of D,N is a par-
tition integer and n is the grid index. If k1 and k2 are two integers
such that k1+ k2 = k then one may impose the k conditions for the
LMF (3) by fixing the first k1 ≤ k values of the discrete solution
y0, y1, . . . , yk1−1 and the last k2 ≡ k − k 1 values yN−k2+1, . . .
, yN so that the discrete problem becomes:

k2∑
j=−k1

αj+k1yn+j = h

k2∑
j=−k1

βj+k1fn+j, n = k1, . . . , N − k2,

y0, y1, . . . , yk1−1, yN−k2+1 , . . . , yN , fixed (4)
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Thus, the given continuous initial value problem is approximated
by means of a discrete boundary value problem. The methods ob-
tained in this way are called Boundary Value Methods (BVMs)
with (k1, k2)-boundary conditions [11]. Consider that the continu-
ous problem (1) only provides the initial solution y0. The remaining
y1, . . . , yk1−1, initial values and yN−k2+1, . . . , yN final values need
to be found by introducing a set of k−1 additional equations which
are derived by a set of k1 − 1 additional initial methods.

k2∑
j=−k1

α
(i)
j yj = h

k2∑
j=−k1

β
(i)
j fj, i = 1, . . . , k1 − 1 (5)

and k2 final methods

k2∑
j=−k1

α
(i)
K−jyN−j = h

k2∑
j=−k1

β
(i)
k−jfN−j, i = N − k2 + 1, . . . , N (6)

Clearly, the equations (4), (5) and (6) form a composite scheme
of the same order. Observe that the ideology on which BVMs are
built makes them suitable for direct solution of BVPs without first
converting to IVP and their application to BVPs is straight forward
(see, [1], [6], [9] and [10]). Therefore, consider the test two-point
BVP:

y′ = λy, b1y (0) + b2y (T ) = η (7)

whose solution is y (t) = eλt η
b1+b2eλT

, where Re (λ) is either positive

or negative due to dichotomy in general well-conditioned BVP ([5],
[20]). The approximation provided by (3) is given as:

k∑
j=0

(αi − qβi)yn+i =0, n = 0, . . . , N − k1 − 1 (8)

where as usual q = hλ and the step-size is h = T/(N + k2 − 1), k1+
k2 = k. Then the k conditions needed by the discrete scheme are
now giving by fixing the following k − 1 values of the discrete so-
lution y1, . . . , yk1−1, yN , . . . , yN+k2−1,while the remaining condi-
tion is obtained by the continuous problem b1y0 + b2yN+k2−1 = η.
In analogy with the case of the methods for IVPs, the scheme (8)
is used with (k1, k2)−boundary conditions [9].

2.1 STABILITY OF BVMs

The stability of BVMs is characterized by two kinds of polynomials;
Sk1k2 and Nk1k2 .
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Definition 1: A polynomial p(Z) of degree k = k1 + k2 is an
Sk1k2-polynomial if its roots are such that

|Z1| ≤ |Z2| ≤ · · · ≤ |Zk1| < 1 < |Zk1+1| ≤ . . . ≤ | Zk |,

whereas it is an Nk1k2-polynomial if

|Z1| ≤ |Z2| ≤ · · · ≤ |Zk1| ≤ 1 < |Zk1+1| ≤ . . . ≤ | Zk |

with simple roots of unit modulus.
Let ρ(Z)=

∑k
j=0 αjZj and σ(Z) =

∑k
j=0 βjZj denote the two

characteristic polynomials associated with the LMF (3). Thus
π (Z, q) = ρ(Z) − qσ(Z), is the stability polynomial when (3) is
applied on the test problem (7). By using the usual definitions for
the polynomials ρ(Z) and σ(Z) associated with a given LMF, the
definitions for BVMs follows (see, [10], [11]).
Definition 2: A BVM with (k1, k2)− boundary conditions is
Ok1k2-stable if the corresponding polynomial, ρ (Z), is an Nk1k2-
polynomial.
Definition 3: A k-step BVM with k1 initial conditions and k2 =
k − k1 final conditions is said to be (k1, k2)− absolutely stable
for a given complex number q if the polynomial, π(Z, q), is of type
(k1, 0, k2), i.e. it is an Sk1k2− polynomial. Similarly, one defines
the region of (k1, k2)−absolute stability of the method as follows:
Dk1k2= { q ∈ C : π(Z, q) is of type (k1, 0, k2)}.

Finally, a BVM with (k1, k2)− boundary conditions is said to be
Ak1k2−stable if C− ⊆ Dk1k2 and perfectly Ak1k2−stable if C− ≡
Dk1k2 .
It is observed that for BVMs there are no barriers concerning the
maximum order for methods which are 0k1k2-stable and /or Ak1k2
−stable (see, [10], [21]-[24]).

3. DERIVATION AND THE ANALYSIS OF THE RETRs

Consider the two point BVP,

y′ (x) = f (x, y (x)) , x ∈ (a, b) , (9)

ga (y (a)) = y0, gb (y (b)) = yN

where, ga ∈ Rs and gb ∈ Rn−s for some value s, such that 1 < s <
n and where each of the vector functions ga and gb are independent.
The general k -step LMF for solving (9) is of the form (3), where
yn+j ≈ y (xn + jh) and fn+j ≡ f(xn + jh, y (xn + jh)). While,
αj and βj are parameters to be determined. The conventional
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ETRs by [9] are based on the LMF (3) and are obtained in the
form;

yn − yn−1 = +h
v−1∑
j=−v

βj+vfn+j, n = v, . . . , N − 1. (10)

We observed that the conventional ETRs were developed consider-
ing the following choice of parameters, αk = αk−1 = 1, v ≥ 1 and
k = 2v−1, hence, the scheme could only attain a maximum general
order k+ 1 with (v, v − 1)−boundary conditions. However, enforc-
ing the following definition of the parameters, αk = α, αk−1 = 1−α,
v ≥ 2 and k = 2v− 3 on (10), we obtain a robust form of (10) with
larger region of absolute stability, higher order k + 3 and smaller
error constants. The new methods are all symmetric and perfectly
Ak1k2−stable for all k ≡ 2v − 3 with (v, v − 1)−boundary condi-
tions. Therefore, in other to get a distinctive view on the impli-
cation of the parameter choices, we rewrite (10) in terms of its
conventional parameter definition and its new parameter definition
for α, k and v to give the structures,

yn+v − yn+v−1 = h
k∑
j=0

βjfn+j

v =
k + 1

2
, k ≥ 1 and k is Odd, (11)

α yn+v − (1− α)yn+v−1 = h
k+2∑
j=0

βjfn+j ;

v =
k + 3

2
, k ≥ 1 and k is Odd. (12)

Equation (11) is referred to as the conventional ETRs by [9] and
(12) is referred to as the proposed RETRs. Both schemes are off-
shoots of the general Adams Moulton methods:

yn+i − yn+i−1 = h

k∑
j=0

βjfn+j ; k ≥ 1 and i = k. (13)

Rewriting (12) in the form

α y (x+ vh)− (1− α)y (x+ (v − 1)h)− h
k+2∑
j=0

βjy
′(x+ jh) = 0
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expanding in Taylor’s series and applying the method of undeter-
mined coefficient yields a system of linear equations. we obtained
the coefficients of the methods as a solution of the resulting system
of linear equations. In Table 1, we give the coefficients of the class
of methods(12) for k = 1(2)9 .

3.1 ORDER CONDITION OF THE RETRs

Following, [14], [17] and [19],we define the local truncation error
(LTE) associated with (12) as the linear difference operator L [y (x) ;
h] such that;

L [y (x) ;h] = α y (x+ vh)− (1− α)y (x+ (v − 1)h)

−h
k+2∑
j=0

βjy
′(x+ jh) (14)

Assuming that y(x ) is sufficiently differentiable, we can find the
Taylor series expansion of the terms in (12) about the point x to
give

L (y (x) ;h) = C0y (x)+C1hy
′ (x)+C2h

2y
′′

(x)+· · ·+Cphpyp (x)+. . .

where

Cr =
1

r!
(− (1− α) (v − 1)r + αvr)− 1

(r − 1)!

k+2∑
j=0

jr−1βj (15)

Such that, 0 ≤ r ≤ p
The class of methods (12) is of order p if,C0 = C1 = C2 = · · · =
Cp = 0 and Cp+1 6= 0, where Cp+1 is the error constant (EC ) of
the method (12) and Cp+1h

p+1yp+1 (x) is the principal LTE at the
point x. The numerical scheme is consistent if p ≥ 1, [17]. In line
with [10], the coefficients of (12) satisfies the following relations:

αi = −αk−i and βi = βk−i such that i = 0, . . . , k ≡ 2v−3 (16)

and are therefore skew symmetric and symmetric respectively.

3.2 STABILITY OF THE RETRs

In line with ([10],[11], [16]), we analyze the stability of (12) by
applying it to the usual test problem

y′ = λy
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to obtain the characteristic equation

− (1− α)Zv−1 + αZv −
k+2∑
j=0

qβjZj = 0, q = λh, q ∈ C (17)

where Z = eiθ, i = 0 (1) k, θ ε [0, 2π]. Plotting the resulting
equation via the boundary loci approach [10] describes the stability
domain of the class of methods (12) (see Fig. 1; the shaded portion
is the stability region).

Fig. 1. Boundary Loci of the RETRs

In accordance with [9], the natural candidates to approximate con-
tinuous BVPs are symmetric BVMs. We observed that the bound-
ary loci of the RETRs coincide with the imaginary axis and are
therefore perfectly Ak1k2−stable (where, k1 = v; representing the
number of roots inside the unit circle and k2 = v − 1; representing
the number of roots outside the unit circle) for all k ≡ 2v − 3 and
thus must be used with (v, v − 1)− boundary conditions. In what
follows we give the coefficient list of the RETRs for the first five
values of k in Table 1, where α is obtained throughout as 1/2 while
in Table 2, we compared the new scheme (RETRs) with the con-
ventional one (ETRs) in terms of their order p and error constants
(EC).
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Table 1. Coefficient List of the RETRs for k = 1(2)9

k v β0 β1 β2 β3 β4 β5
1 2 − 1

48
13
48

3 3 11
2880

− 31
960

401
1440

5 4 − 191
241920

1879
241920

− 353
8960

68323
241920

7 5 2497
14515200

−28939
14515200

581
51840

− 40111
907200

2067169
7257600

9 6 −14797
383201280

331823
638668800

−6409423
1916006400

600503
42577920

−15228847
319334400

91473331
319334400

Table 2. Comparison of ETRs and RETRs in terms of Order p and
error constant (EC)

ETR RETR
k v p EC k v p EC
1 1 2 − 1

12
1 2 4 11

1440

3 2 4 11
720

3 3 6 − 191
120960

5 3 6 − 191
60480

5 4 8 2497
7257600

7 4 8 2497
3628800

7 5 10 − 14797
191600640

9 5 10 − 14797
95800320

9 6 12 92427157
5230697472000

4. USE OF METHOD

In line with the theoretical procedures, the main methods, RETRs
(12) are used with the following set of additional methods,
Initial methods;

α yi − (1− α) yi−1 = h
k+2∑
j=0

βj
(i)fj ; i = 1, . . . , v − 1 (18)

and final methods;

α yN+i−(1− α) yN+i−1 = h

k+2∑
j=0

βj
(i)fN+j ; i = v+1, . . . , N (19)

Clearly, the main of methods (12) together with the complemen-
tary methods (18) and (19) invariably complete the boundary value
methods of the same order k + 3. In each case (k = 1, 3, ...), the
class of methods (12) must be coupled with v− 1 number of initial
methods and v−1 number of final methods inline with the theoret-
ical procedures (Section 2). Thus, we have the following examples,

Example 1: The fourth Order RETR (RETR1) given as:

1

2
(yn+2 − yn+1) =

h

48
(−fn + 13fn+1 + 13fn+2 − fn+3) (20)
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is used with the following additional initial method,
1

2
(y1 − y0) =

h

48
(9f0 + 19f1 − 5f2 + f3)

and final method,
1

2
(yN+3 − yN+2) =

1

48
(fN − 5fN+1 + 19fN+2 + 9fN+3)

Example 2: The Sixth Order RETR (RETR3) given as:

1

2
(yn+3 − yn+2) =

h

2880
(11fn − 93fn+1 + 802fn+2

+802fn+3 − 93fn+4 + 11fn+5) (21)

is used with the following additional initial methods,
1

2
(y1 − y0) =

h

2880
(475f0 + 1427f1 − 798f2 + 482f3

−173f4 + 27f5),

1

2
(y2 − y1) =

h

2880
(−27f0 + 637f1 + 1022f2

−258f3 + 77f4 − 11f5)

and final methods,

1

2
(yN+4 − yN+3) =

h

2880
(−11fN + 77fN+1 − 258fN+1

+1022fN+3 + 637fN+4 − 27fN+5)

1

2
(yN+5 − yN+4) =

h

2880
(27fN − 173fN+1 + 482fN+2

−798fN+3 + 1427fN+4 + 475fN+5)

The methods (20) and (21) are implemented as BVMs efficiently
by combining them with their respective additional methods as si-
multaneous numerical integrators for the solution of the specified
BVP. Specifically, the main methods and the additional methods
are combined as BVMs to give a single matrix of finite difference
equations which simultaneously provides the values of the solutions.

5. NUMERICAL EXPERIMENTS

In this section, the performance of the RETRs is examined on
some non-linear stiff/singularly perturbed and non-stiff two-point
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BVPs. Comparisons are made with other standard methods in
terms of number of integration points (N = b−a

h
), rate of conver-

gence (ROC = log2

(
e2h

eh

)
, where eh is the maximum absolute error

for h) and maximum absolute error (Max||yi − y (xi) ||). Higher-
order ODEs are converted to the first-order form (2) given any
scalar differential equation,

um = f
(
x, u, u′, . . . , um−1

)
, a < x < b (22)

let y (x) = (y1 (x) , y2 (x) , . . . , ym (x))T be defined by

y1 (x) = u(x)

y2 (x) = u′(x)

... (23)

ym (x) = u(m−1)(x)

then the ODE can be converted to the equivalent first-order form

y1 = y

y′1 = y2
... (24)

y′m−1 = ym

y′m = f(x, y1, y2, . . . , ym)

Problem 1: Consider the non-linear stiff BVP due to Troesch ([2],
[9] and [27])

y′′ = λ Sinh (λy) , 0 <x< 1

y (0) = 0, y (1) = 1

The solution of the problem has a boundary layer near x = 1. The
linearized exact solution provided for the problem by [27] is given

as y (x) = sinh(λx)
sinh(λ)

.

We solve this problem using the RETR of order p = 4 (RETR1). In
Table 3, our results are compared with those in [9]. It is observed
that the fourth order RETR performs better than the conventional
ETR and TOM of orders 4 and 6 respectively in terms of accu-
racy. From the computed ROC, we observe that the fourth order
RETR experiences a high rate of convergence. We also note that
the problem becomes strongly stiff and more difficult to solve as λ
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increases ([2], [9] and [27]). In Fig. 2, we give the solution plot of
the problem for λ = 5, 7, 9 and 20.

Table 3. Comparison of results for Problem 1, λ = 5, in terms of
maximum absolute error.

h ETR
k = 3, p = 4

ROC TOM
k = 2, p = 6

ROC RETR1
k = 1, p = 4

ROC

0.1 1.8051e− 01 9.0884e− 02 1.1791e− 03
0.05 3.2912e− 02 2.46 1.4653e− 02 2.63 6.7284e− 06 7.45
0.025 5.3195e− 03 2.63 1.7345e− 03 3.08 1.3588e− 07 5.63
0.0125 6.8539e− 04 2.96 1.3131e− 04 3.72 3.8089e− 09 5.16
0.00625 6.9570e− 05 3.30 6.1618e− 06 4.41 1.1584e− 10 5.04
0.003125 5.8186e− 06 3.58 1.9127e− 07 5.01 3.5958e− 12 5.01
0.0015625 4.2736e− 07 3.77 4.4208e− 09 5.44 1.1218e− 13 5.00

Fig. 2. Solution of Problem 1, using RETR order 4 with N = 150

Problem 2: Consider the non-linear perturbed BVP giving in
([12]: Test Problem 20).

λ
d2y

dx2
= −

(
dy

dx

)2

+ 1, 0 < x < 1

y (0) = 1 + λlog

(
cosh

(
−0.745

λ

) )
,

y (1) = 1 + λlog

(
cosh

(
0.255

λ

))
Exact : y (x) = 1 + λlog

(
cosh

(
x− 0.745

λ

) )
.
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The solution of the problem has a corner layer at x = 0.745. The
maximum absolute error is obtained for Problem 2 using RETR3
within the range of integration. In Table 4 and Table 5, we compare
our solution with those of the ETR of order 6 given in [9] and the
BVM4 of order 6 given in [6] for λ = 1 and 0.1 respectively. We
observe from the numerical results in Table 4 and Table 5 that the
RETR of order 6 is more accurate compared with the ETR and
BVM4. In Fig. 3, we give the plot of the solution to Problem 2
using RETR3 with N = 100, λ = 1, 0.5, 0.1, 0.05.

Table 4. Comparison of results for Problem 2, λ = 1, in terms of
maximum absolute error.

N ETR ROC BVM4 ROC RETR3 ROC
20 2.235e-09 1.664e-09 9.673e-10
40 3.370e-11 5.96 2.823e-11 5.88 3.419e-12 8.14
80 5.607e-13 5.99 4.370e-13 6.01 1.310e-14 8.03
160 9.104e-15 5.94 6.883e-15 5.99 0.0000 ∞

Table 5. Comparison of results for Problem 2, λ = 0.1, in terms of
maximum absolute error.

N ETR ROC BVM4 ROC RETR3 ROC
20 7.808e-05 2.000e-04 1.712e-06
40 1.838e-06 5.41 4.090e-06 5.61 2.245e-11 16.2
80 3.163e-08 5.86 5.784e-08 6.14 2.742e-14 9.68
160 5.176e-10 5.93 7.066e-10 6.36 6.661e-16 5.36

Fig. 3. Solution of Problem 2 with RETR of order 6 with N = 100
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Problem 3: Consider the non-linear BVP given in [26].

y′′ =
(y′)2 + y2

2ex
, 0 < x < 1

y (0)− y′ (0) = 0, y (1) + y′ (1) = 2e

Exact : y (x) = ex

We solve this problem using RETR3. In Table 6, we compare our
solution in terms of the maximum absolute error with those of the
ETR, BVM4 and HyBVM of the same order 6 given in [9], [6] and [1]
respectively. The solution plot of the problem is obtained at N = 40
using RETR3 and reported in Fig. 4. It can be observed from Table
6 that the RETR3 performs better than the other standard schemes
considered.

Table 6. Comparison in terms of maximum absolute error for
Problem 3.

N ETR ROC BVM4 ROC HyBVM ROC RETR3 ROC
20 2.476e-10 1.505e-10 1.592e-11 2.805e-11
40 6.019e-12 5.36 2.347e-12 6.00 2.495e-13 6.00 1.850e-13 7.24
80 6.402e-14 6.55 3.642e-14 6.01 4.082e-15 5.93 1.332e-15 7.12
160 1.010e-15 5.99 6.661e-16 5.77 6.280e-16 2.70 0.000 ∞

Fig. 4. Solution of Problem 3, using RETR order 6 with N = 40

Problem 4: Consider the non-linear perturbed BVP giving in
([12]: Test Problem 21).

εy′′ = y + y2 − e
(
− 2x√

ε

)
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y (0) = 1, y (1) = e(−1/
√
ε)

Exact : y (x) = e

(
− x√

ε

)
The solution has a boundary layer of width O (

√
ε) at x = 0. Prob-

lem 4 is solved using RETR1 and RETR3 for ε = 0.2, 0.1, 0.01 and
0.005. The maximum absolute error obtained using the methods,
RETR1 and RETR3 are computed for ε = 0.1 and reported in Ta-
ble 7 to show the consistency of the class of methods as k increases.
The solutions of the problem for ε = 0.2, 0.1, 0.01 and 0.005 are
given in Fig. 5 using RETR3 with N = 150.

Table 7. Comparison of methods for Problem 4, ε = 0.1, in terms of
maximum absolute error.

N RETR1 ROC RETR3 ROC
4 8.312e−02 9.642e−03
8 4.151e−04 7.65 3.637e−05 8.05
16 2.208e−06 7.55 1.866e−07 7.61
32 2.039e−08 6.76 1.579e−09 6.88
64 1.641e−09 3.64 1.449e−11 6.77

Fig. 5. Solution of Problem 4 with RETR order 6 with N = 150

6. CONCLUDING REMARKS

Although a great deal has been done to proffer numerical solutions
to two-point BVPs, the schemes that can handle stiff and/or sin-
gularly perturbed nonlinear BVPs are not nearly plentiful. The
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applicability and suitability of BVMs on BVPs cannot be overem-
phasized. The RETRs which are modified extension of the conven-
tional ETRs have not only shown good theoretical potentials over
the conventional ETRs, being of higher order with smaller error
constants but have also shown practical superiority on the problems
considered. The efficiency and accuracy of the RETRs on standard
stiff and/or singularly perturbed nonlinear BVPs have proven very
promising and well placed amongst standard existing methods for
the solution of two-point BVPs judging by the comparison made
with standard methods and the solution plots. Hence, we would
like to extend its application to multipoint BVPs in the future.
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