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INVESTIGATING THE EFFECTS OF CORE-SHELL

PARTICLES ON NON-ISOTHERMAL REACTIVE

LIQUID CHROMATOGRAPHY

U. D. UCHE,1 M. UCHE, F. M. OKAFOR

ABSTRACT In this work, a two-dimensional general rate model
of reactive liquid chromatography is extended to incorporate the
effects of core-shell particles in non-isothermal operating condi-
tions. The aim is to determine whether better conversion and
separation of chemical components can be achieved by applying
core-shell particles while operating under non-isothermal con-
ditions when compared with fully porous particles. The model
equations are derived for pulse injections into a chromatographic
column of cylindrical geometry. The model equations form a
nonlinear system of convection-diffusion-reaction partial differ-
ential equations coupled with algebraic equations for isotherms
and reactions. A semi-discrete high resolution finite volume
scheme is implemented to approximate the solutions of the sys-
tem of partial differential equations. A few consistency checks
are carried out to verify the model and numerical scheme accu-
racy. The obtained results show that although they offer shorter
retention times and sharper profiles, the use of core-shell parti-
cles in reactive chromatography operations does not offer better
separation of the components.
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1. Introduction

Liquid chromatography is a very useful technique used to separate
components of complex chemical formations in laboratories and in-
dustries. The technique is a vital element of separation science and
is regarded as a powerful purification and separation technique used
in medicine, petrochemical, pharmaceutical, fine chemical, as well
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as in food and bio-technical industries for refinement and subse-
quent analysis [1, 2, 3]. It has been used for the separation of chiral
molecules, sugar, enzymes, and for the purification of proteins or
insulin production [1, 2].

Various types of particles and particle sizes have been devel-
oped and applied in liquid chromatography processes successfully
[4, 5, 6, 7, 8, 9, 10, 11]. These particles are manufactured in var-
ious forms which include fully porous, nonporous and core-shell
particles. [5, 6, 7] showed nonporous particles to be successful in
analytical liquid chromatography because they provided fast sepa-
ration times. This however reduces the retention time and selec-
tivity which causes poor peak resolution due to present low surface
area. On the other hand, application of fully porous particles re-
duces the column efficiency due to its intraparticle mass transfer
limitations. These particles can offer large binding capacities with
only moderate intraparticle mass transfer resistances [11].

The use of core-shell particles (termed as superficially porous by
[4], fused-core by [9] and cored beads by [10]) have been shown to
provide optimum conditions by avoiding the shortcomings of both
fully porous and nonporous particles. The core-shell particles used
in liquid chromatography are a class of particles that are made up
of a solid inert core and a porous shell. The core radius fraction
is obtained as the ratio of the radius of the solid inert core to the
radius of the particle (c.f. Fig. 1). The core particle size, thickness
of the shell and level of porosity in the shell are designed to suit
different types of chromatographic applications. [12] showed that
the core-shell particle size and the porous layer thickness, influence
the parameters of separation greatly. A decrease in the porous
layer thickness results in an improved column efficiency and faster
elution, while a larger sized core-shell particle minimizes the back
pressure [13, 14].

The combination of chromatographic separation and chemical re-
actions under non-isothermal conditions in a single-unit operation,
can lead to the production of high quality products [15]. This
means that chemical reaction and separation of the chemical com-
ponents are occurring at the same time as the temperature changes
inside the chromatography column. This process is known as a non-
isothermal reactive chromatographic process. The type of reaction,
together with the desired order of components elution, largely influ-
ence the reactive chromatographic process. The situation in which
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reactant elutes in the middle of the products, provides a high pu-
rity separation of products. The weakest adsorbed product can be
collected outside the column with high purity when the reactant is
the strongest adsorbed component, while the intermediate eluting
component is obtained along with the reactant [16].

In this work, a nonlinear chromatography with reversible reac-
tions of the type A
B+C, has been considered. Here, the reactant
A is injected as a rectangular pulse into the chromatographic col-
umn. With the presence of the catalyst inside the column, the
reactant A reacts and produces products B and C. This process is
also expressed as conversion of component A to produce products
B and C. For a sufficiently long elution time of reactant A inside
the column, a complete conversion of component A and production
and separation of products B and C can be achieved. In order to
accomplish a high purity separation, the backward reaction driving
force has to be suppressed by the forward reaction [3].

The application of mathematical modeling in representing the
complex nature of liquid chromatographic process without carry-
ing out extensive experiments has been shown to be very useful.
There are several one-dimensional (1D) and two-dimensional (2D)
mathematical models, considering different levels of complexities
used to describe the mass transfer and partitioning in chromato-
graphic processes, which exist in the literature [1, 2, 17, 18, 19, 20].
This work extends the work carried out recently in [21] consider-
ing fully porous particles for a two-dimensional general rate model
(2D-GRM) of reactive liquid chromatography operated under non-
isothermal conditions, to incorporate the use of core-shell particles.

In the previous work, it was determined that the conversion and
separation of mixture components for columns packed with fully
porous particles are better achieved under non-isothermal operating
conditions for reactive chromatography. Core-shell particles have
been shown to achieve better separation and column performance
in multi-component mixture of non-reactive liquid chromatography
for both 1D and 2D models, see [11, 22] and the references there in.
Here, we investigate the application and performance of core-shell
particles in conversion and separation of components in reactive
non-isothermal liquid chromatography. The goal is to determine
whether conversion rate of reactants and separation of components
are better achieved with columns packed with core-shell or fully
porous particles, when operated under non-isothermal conditions.
The same second-order semi-discrete finite volume scheme used in
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[21], is extended and applied to obtain approximate solutions of the
equations of the model. Case studies of chemical reactions involving
the suggested three-component mixtures above are given to show
the coupling of thermal waves and concentration fronts.

2. THE GOVERNING EQUATIONS

In non-isothermal liquid chromatography, the transport of multi-
component concentration bands is a particular case of the convection-
diffusion-reaction processes. Such phenomena can be modeled math-
ematically by using partial differential equations, obtained by writ-
ing the mass and energy balances in a chromatographic column
slice. The column is assumed to be thermally insulated and homo-
geneously packed, with a constant volumetric flow rate and hetero-
geneous reaction taking place in the solid phase. Moreover, mass
and energy transfer between the stationary and mobile phases, axial
and radial dispersions, and intraparticle pore diffusion are incorpo-
rated in the following mass and energy balance equations.

Let t denote the time coordinate, z represent the axial coordinate
along the column length, and r denote the radial coordinate along
the column radius of a cylindrical geometry. Both the reactant
and products travel along the column axis in the z-direction by
convection and axial dispersion, spreads along the column radius
in the r-direction by radial dispersion and the reactant decays and
produces the products due to chemical reactions in the solid phase.
The solute is considered to be injected in the same process described
in [21], which leads to three possible ways of injection; via an inner
core region, an outer core and through the whole cross-section of
the cylindrical column. Thus, the mass balance equations is given
for i = 1, 2, · · · , Nc as

∂cb,i
∂t

+ u
∂cb,i
∂z

= Dz,i
∂2cb,i
∂z2 +Dr,i

(
∂2cb,i
∂r2 + 1

r

∂cb,i
∂r

)
− 3
Rp
Fbkext,i (cb,i − cp,i(rp = Rp)) , (1)

where cb,i is the concentration of ith component in the bulk phase,
cp,i denotes the same component concentration in the pores of the
particle, u denotes the velocity, Dz,i denotes the dispersion coeffi-
cient of the ith component in the axial direction, the phase ratio is
denoted by Fb = (1− εb)/εb, where εb denotes the external porosity,
Dr,i denotes the dispersion coefficient of the ith component in the
radial direction and kext,i denotes the coefficient of external mass
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transfer. Lastly, rp is the radial coordinate of spherical particles of
radius Rp and Nc stands for the number components in the mixture.

The corresponding equation of mass for the solute in the particles
pores can be given as

∂cp,i
∂t

+ Fp
∂qp,i
∂t

= Dp,i

(
∂2cp,i
∂r2

p

+
2

rp

∂cp,i
∂rp

)
+ Fpνir

het, i = 1, 2, · · · , Nc, (2)

where qp,i is the solid phase concentration at local equilibrium for
ith component, Dp,i is the pore diffusivity for the ith component,

Fp = 1−εp
εp

, where εp is the internal porosity, νi are the correspond-

ing stoichiometric coefficients of components, and rhet denotes the
heterogeneous reaction rate in the solid phase.

Due to the non-isothermal nature of the column, the correspond-
ing energy balance of the column, assuming also heat conductivity
in the radial direction of the column, is given as

∂Tb
∂t

+ u
∂Tb
∂z

=
λeff,z

εbρLcLp

∂2Tb
∂z2

+
λeff,r

εbρLcLp

(
∂2Tb
∂r2

+
1

r

∂Tb
∂r

)
− 3Fb
RpρLcLp

heff (Tb − Tp(rp = Rp)) , (3)

where, Tb and Tp are respectively temperatures of the bulk fluid and
fluid inside the particles pores, λeff,z represents the effective axial
heat conductivity, λeff,r denotes the effective radial heat conductiv-
ity, and heff is the effective particle to fluid heat transfer coefficient.

An energy balance law for the radial temperature profile inside
particles pores is expressed as(

1 + Fp
ρScSp
ρLcLp

)
∂Tp
∂t
− Fp

Nc∑
j=1

(−∆HA,j)

ρLcLp

∂qp,i
∂t

=
λp
ρLcLp

(
∂2Tp
∂r2

p

+
2

rp

∂Tp
∂rp

)

+ Fp
(−∆HR)

ρLcLp
rhet. (4)

Here, λp denotes the internal heat diffusivity coefficient, ρL and ρS

are the densities of liquid and solid phases and cLp and cSp are the

corresponding heat capacities. The ρL, ρS, cLp and cSp are consid-
ered independent of temperature, which is valid in a small range
of temperature. Furthermore, ∆HA,i is the enthalpy of adsorption
of ith component and ∆HR denotes the enthalpy of reaction. The
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nonlinear adsorption isotherm is given as

qp,i =
aref
i cp,i exp

(
−∆HA,i
Rg

(
1
Tp
− 1

T ref

))
1 +

∑Nc
j=1 b

ref
j exp

(
−∆HA,j
Rg

(
1
Tp
− 1

T ref

))
cp,j

, (5)

where aref
i and bref

i are the Henry’s constant and nonlinearity coeffi-
cient of the ith component at reference temperature respectively, Rg

is the gas constant, and Tref represents the reference temperature.
The chemical reactions inside a chromatographic reactor can be

catalyzed homogeneously (occurring in the liquid phase), heteroge-
neously (occurring in the solid phase) or both homogeneously and
heterogeneously. In this study, only the heterogeneous (solid phase)
reaction is considered. The reaction rate for a three-component
model reaction (A� B + C) is given as

rhet = khet(Tp)

(
qp,A −

qp,Bqp,C
Khet
eq

)
. (6)

Here, khet and Khet
eq respectively represent the forward heteroge-

neous rate of reaction constant and reaction equilibrium constant.
The Arrhenius equation is used to characterize the temperature ef-
fects on the chemical reaction rates using the activation energies
Ehet
A :

khet(Tp) =khet(T ref) exp

(
−Ehet

A

Rg

(
1

Tp
− 1

T ref

))
. (7)

Next, the following dimensionless variables are introduced for a
reduction of the equations parameters

τ =
ut

L
, x =

z

L
, ρp =

rp
Rp

, ρ =
r

Rc
, Pez,i =

Lu

Dz,i
, P ez,T =

εbLuρ
LcLp

λeff,z
, (8a)

Peρ,T =
εbR

2
cuρ

LcLp
λeff,rL

, Peρ,i =
R2
cu

Dr,iL
, ζi =

kextRp
Dp,i

, ζT =
heffRp
λp

, (8b)

ηi =
Dp,iL

R2
pu

, ηT =
λpL

R2
puρLcLp

, ξi = 3ζiηiFb, ξT = 3ζT ηTFb, (8c)

where L denotes the column length, Pez,i and Pez,T are the axial
Peclet numbers, Peρ,i and Peρ,T are the radial Peclet numbers,
and ζi and ζT are Biot numbers for mass and energy, respectively.
Further, ηi, ηT , ξi, and ξT are the dimensionless constants. After
using the above dimensionless parameters in the mass and energy
balances (c.f. Eqs. (1)-(4)), the following equations are obtained for
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i = 1, 2, · · · , Nc:

∂cb,i
∂τ

+
∂cb,i
∂x

=
1

Pez,i

∂2cb,i
∂x2

+
1

Peρ,i

(
∂2cb,i
∂ρ2

+
1

ρ

∂cb,i
∂ρ

)
− ξi [cb,i − cp,i(ρp = 1)] , (9)

∂cp,i
∂τ

+ Fp
∂qp,i
∂τ

= ηi

(
∂2cp,i
∂ρ2

p

+
2

ρp

∂cp,i
∂ρp

)
+ Fp

L

u
νir

het, (10)

∂Tb
∂τ

+
∂Tb
∂x

=
1

Pez,T

∂2Tb
∂x2

+
1

Peρ,T

(
∂2Tb
∂ρ2

+
1

ρ

∂Tb
∂ρ

)
− ξT [Tb − Tp(ρp = 1)] , (11)(

1 + Fp
ρScSp
ρLcLp

)
∂Tp
∂τ
− Fp

Nc∑
j=1

(−∆HA,j)

ρLcLp

∂qp,i
∂τ

= ηT

(
∂2Tp
∂ρ2

p

+
2

ρp

∂Tp
∂ρp

)
+ Fp

(−∆HR)

ρLcLp

L

u
rhet. (12)

Recently, the case where the chromatographic column is packed
with fully porous particles was investigated, see [21]. Here, in order
to study the effects of core-shell particles for non-isothermal oper-
ating condition, the same procedures as described in [10] and [22]
are applied. Figure 1 describes a core-shell particle for arbitrary
core radius fraction ρcore = Rcore/Rp. Hence, in Eqs. (10) and (12),

Figure 1. Schematic diagram of a core-shell particle.

0 ≤ ρp ≤ 1 for fully porous particles, and ρcore ≤ ρp ≤ 1 for core-
shell particles. This implies that ρcore = 0 for fully porous particles
and ρcore 6= 0 for core-shell particles. Therefore, the ρp-axis is re-
placed by a new axis 0 ≤ γ ≤ 1, given in its dimensionless form
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as

γ =
ρp − ρcore

1− ρcore

. (13)

From Eq. (13), the following expression is obtained

ρp = γ(1− ρcore) + ρcore (14)

and substituted in Eqs. (10) and (12) to obtain the mass and energy
balance equations for columns packed with core-shell particles, for
i = 1, 2, · · · , Nc

∂cb,i
∂τ

+
∂cb,i
∂x

=
1

Pez,i

∂2cb,i
∂x2

+
1

Peρ,i

(
∂2cb,i
∂ρ2

+
1

ρ

∂cb,i
∂ρ

)
− ξi (cb,i − cp,i|γ=1) ,

(15)

∂cp,i
∂τ

+ Fp
∂qp,i
∂τ

= ηi

[
1

(1− ρcore)2

∂2cp,i
∂γ2

+
2

γ(1− ρcore)2 + ρcore(1− ρcore)

∂cp,i
∂γ

]
+ Fp

L

u
νir

het,

(16)

∂Tb
∂τ

+
∂Tb
∂x

=
1

Pez,T

∂2Tb
∂x2

+
1

Peρ,T

(
∂2Tb
∂ρ2

+
1

ρ

∂Tb
∂ρ

)
− ξT [Tb − Tp|γ=1] , (17)

α∗ ∂Tp
∂τ

+ Fp

∑Nc
j=1(∆HA,j)

ρLcLp

∂qp,i
∂τ

= ηT

[
1

(1− ρcore)2

∂2Tp
∂γ2

+
2

γ(1− ρcore)2 + ρcore(1− ρcore)

∂Tp
∂γ

]
+ Fp

ϑL

u
rhet,

(18)

where α∗ =
(

1 + Fp
ρScSp
ρLcLp

)
and ϑ = (−∆HR)

ρLcLp
.

To proceed, the following initial and boundary conditions are
described. The initial conditions are given as

cb,i(ρ, x, 0) = 0, Tb(ρ, x, 0) = T init
b , 0 ≤ x ≤ 1, 0 ≤ ρ ≤ 1, (19)

cp,i(γ, ρ, x, 0) = 0, Tp(γ, ρ, x, 0) = T init
p , 0 ≤ x ≤ 1, 0 ≤ ρ ≤ 1, 0 ≤ γ ≤ 1, (20)

where T init
b and T init

p represent the initial bulk and particle temper-
atures. The following boundary conditions are considered for Eqs.
(15) and (17) at ρ = 0 and ρ = 1:

∂cb,i(ρ = 0, x, τ)

∂ρ
= 0 ,

∂cb,i(ρ = 1, x, τ)

∂ρ
= 0 , (21)

∂Tb(ρ = 0, x, τ)

∂ρ
= 0 ,

∂Tb(ρ = 1, x, τ)

∂ρ
= 0 . (22)

Also, for Eqs. (15) and (17), the following Danckwerts boundary
conditions are used for injections via the inner region:

cb,i(ρ, x = 0, τ)− 1

Pez,i

∂cb,i(ρ, x = 0, τ)

∂x
=

{
cinj
b,i , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , ρ̃ < ρ ≤ 1 or τ > τinj ,
(23a)
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Tb(ρ, x = 0, τ)− 1

Pez,T

∂Tb(ρ, x = 0, τ)

∂x
=

{
T inj
b , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ τ ≤ τinj ,

0 , ρ̃ < ρ ≤ 1 or τ > τinj .
(23b)

Here, the symbols cinj
b,i and T inj

b are used to denote the inlet con-
centration of component i and the bulk temperature. In this work,
T inj
b , T init

b and T ref are taken to be identical. At the column outlet
(x = 1), the zero Neumann boundary conditions are utilized:

∂cb,i
∂x

= 0 ,
∂Tb
∂x

= 0 . (23c)

For Eqs. (16) and (18), the boundary conditions at γ = 0 and γ = 1
are given as

∂cp,i
∂γ

∣∣∣∣
γ=0

= 0,
∂cp,i
∂γ

∣∣∣∣
γ=1

= (1− ρcore)ζi(cb,i − cp,i|γ=1), (23d)

∂Tp
∂γ

∣∣∣∣
γ=0

= 0,
∂Tp
∂γ

∣∣∣∣
γ=1

= (1− ρcore)ζT (Tb − Tp|γ=1) . (23e)

3. NUMERICAL SCHEME IMPLEMENTATION

Numerical schemes are important to obtain approximate solu-
tions of nonlinear equations, such as the ones governing the above
described model. There are several numerical schemes that can be
used to approximate the solutions of the above model equations
[18, 2, 23, 24] and the references therein. Here, the semi-discrete fi-
nite volume method used in [22], is again applied. The method has
been shown to be simple, compact, easily implemented, and sec-
ond order accurate [23, 25]. The order of accuracy of the suggested
scheme has already been verified analytically and numerically, see
(c.f. [23]). The process of formulating the numerical is described
below.

The following system of equations are obtained from Eqs. (15)-
(18) by using the adsorption isotherm described in Eq. (5) for a
mixture of three components:

∂cb
∂τ

+
∂cb
∂x

= Pz
∂2cb
∂x2

+ Pρ

(
∂2cb
∂ρ2

+
1

ρ

∂cb
∂ρ

)
− ξ(cb − cp(γ = 1)), (24)

J
∂cp
∂τ

= η

(
1

(1− ρcore)2

∂2cp
∂γ2

+
2

γ(1− ρcore)2 + ρcore(1− ρcore)

∂cp
∂γ

)
+ Fp

L

u
Rrhet,

(25)
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where

cb =


cb,1
cb,2
cb,3
Tb

 , cp =


cp,1
cp,2
cp,3
Tp

 , Pz =


1

Pez,1
0 0 0

0 1
Pez,2

0 0

0 0 1
Pez,3

0

0 0 0 1
Pez,T

 ,

ξ =


ξ1 0 0 0
0 ξ2 0 0
0 0 ξ3 0
0 0 0 ξT

 , η =


η1 0 0 0
0 η2 0 0
0 0 η3 0
0 0 0 ηT

 ,

Pρ =


1

Peρ,1
0 0 0

0 1
Peρ,2

0 0

0 0 1
Peρ,3

0

0 0 0 1
Peρ,T

 , R =


ν1 0 0 0
0 ν2 0 0
0 0 ν3 0
0 0 0 ϑ

 ,

J =


1 + Fp

∂qp,1
∂cp,1

Fp
∂qp,1
∂cp,2

Fp
∂qp,1
∂cp,3

Fp
∂qp,1
∂Tp

Fp
∂qp,2
∂cp,1

1 + Fp
∂qp,2
∂cp,2

Fp
∂qp,2
∂cp,3

Fp
∂qp,2
∂Tp

Fp
∂qp,3
∂cp,1

Fp
∂qp,3
∂cp,2

1 + Fp
∂qp,3
∂cp,3

Fp
∂qp,3
∂Tp

β∗
3∑
j=1

∂qp,j
∂cp,1

β∗
3∑
j=1

∂qp,j
∂cp,2

β∗
3∑
j=1

∂qp,j
∂cp,3

α∗ + β∗
3∑
j=1

∂qp,j
∂Tp

 ,
(26)

where β∗ = Fp
∆HA
ρLcLp

. For the case where all the nonlinearity co-

efficients bref
j are zero, then the above Jacobian matrix J becomes

easier to handle. In order to derive the scheme, we first discretize
the domain of computations.
Discretizing the domains: A domain [0, 1]× [0, 1]× [0, 1], en-

closed by the cells Ωklm ≡ [xk− 1
2
, xk+ 1

2
]× [ρl− 1

2
, ρl+ 1

2
]× [γm− 1

2
, γm+ 1

2
]

for 1 ≤ k ≤ Nx, 1 ≤ l ≤ Nρ and 1 ≤ m ≤ Nγ, is considered. The
coordinate points in the cell Ωklm are represented by (xk, ρl, γm).
Here,

xk =
xk− 1

2
+ xk+ 1

2

2
, ρl =

ρl− 1
2

+ ρl+ 1
2

2
, γm =

γm− 1
2

+ γm+ 1
2

2
(27)

and for this uniform mesh

∆x = xk− 1
2
− xk+ 1

2
, ∆ρ = ρl− 1

2
− ρl+ 1

2
, ∆γ = γm− 1

2
− γm+ 1

2
.

(28)

Note that

cb := cb(ρ, x, τ) and cp := cp(γ, ρ, x, τ). (29)
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Therefore, for Ikl := [xk− 1
2
, xk+ 1

2
]× [ρl− 1

2
, ρl+ 1

2
] and Ωklm, the aver-

aged values of the cell cb,k,l(τ) and cp,k,l,m(τ) are expressed at any
time τ as

cb,k,l = cb,k,l(τ) =
1

∆xk∆ρl

∫
Ikl

cb(ρ, x, τ)dρdx, (30)

cp,k,l,m = cp,k,l,m(τ) =
1

∆xk∆ρl∆γm

∫
Ωklm

c(γ, ρ, x, τ)dγdρdx. (31)

By integrating Eq. (24) over the interval Ikl and using Eqs. (30)
and (31), the following expression is obtained:

dcb,k,l
dτ

=−
cb,k+ 1

2
,l − cb,k− 1

2
,l

∆x
+

Pz

∆x

[(
∂cb
∂x

)
k+ 1

2
,l

−
(
∂cb
∂x

)
k− 1

2
,l

]
(32)

+
Pρ

∆ρ

[(
∂cb
∂ρ

)
k,l+ 1

2

−
(
∂cb
∂ρ

)
k,l− 1

2

+
cb,k,l+ 1

2
− cb,k,l− 1

2

ρl+ 1
2

]
− ξ

(
cb,k,l − cp,k,l,Nγ

)
,

where k = 1, 2, ..., Nx and l = 1, 2, ..., Nρ. The derivatives appearing
in the above equations are approximated as(

∂cb
∂x

)
k± 1

2
,l

= ± (cb,k±1,l − cb,k,l)

∆x
,

(
∂cb
∂ρ

)
k,l± 1

2

= ± (cb,k,l±1 − cb,k,l)

∆ρ
. (33)

Integration of equation (25) over the interval Ωij leads to:

dcp,k,l,m
dτ

= J−1
k,l,mη

1

εpγ2
m+1/2∆γ

[
(cp)k,l,m+1/2 − (cp)k,l,m−1/2

]
+Fp

L

u
J−1
k,l,mRrhet

k,l,m,

(34)

with the interface flux given as

(cp)k,l,m+1/2 = max

(
(cp)k,l,m+1 − (cp)k,l,m

∆γ
, 0

)
γ2
m+1

+ min

(
(cp)k,l,m+1 − (cp)k,l,m

∆γ
, 0

)
γ2
m. (35)

Similarly, (cp)k,l,m−1/2 can be defined by just lowering the index m
by one in the above equation. The fluxes at the cell interfaces xk± 1

2
,

ρl± 1
2

and γm± 1
2

in Eqs. (32) and (34) are approximated by using the

following schemes along with the total variation diminishing Runge-
Kutta (TVD-RK) scheme to get a second order accuracy in time
[23, 26].
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First order scheme: The axial flux vectors cb and cp at the
interfaces of the cell are approximated as follows

cb,k,l+ 1
2

= cb,k,l cb,k,l− 1
2

= cb,k,l−1, (36)

cp,k,l,m+ 1
2

= cp,k,l,m cp,k,l,m− 1
2

= cp,k,l,m−1. (37)

The approximations above, provide a first order accuracy of the
scheme along the axial-coordinate.
Second order scheme: Here, the axial flux vectors are approx-

imated by using the following expressions:

cb,k,l+ 1
2

= cb,k,l +
1

2
ϕ(αk,l)(cb,k,l − cb,k,l−1),

αk,l =
cb,k,l+1 − cb,k,l + ξ∗

cb,k,l − cb,k,l−1 + ξ∗
, (38)

cp,k,l,m+ 1
2

= cp,k,l,m +
1

2
φ(βk,l,m)(cp,k,l,m − cp,k,l,m−1),

βk,l,m =
cp,k,l,m+1 − cp,k,l,m + ξ∗

cp,k,l,m − cp,k,l,m−1 + ξ∗
. (39)

Eqs. (38) and (39) produces a flux-limiting high resolution scheme.
A small value of ξ∗, e.g. ξ∗ = 10−10, is selected to avoid the situ-
ation of division by zero. The local monotonicity of the scheme is
preserved by utilizing the flux limiting functions ϕ and φ as defined
below (c.f. [23])

ϕ(αk,l) = max

(
0,min

(
2αk,l,min

(
1

3
+

2

3
αk,l, 2

)))
, (40)

φ(βk,l,m) = max

(
0,min

(
2βk,l,m,min

(
1

3
+

2

3
βk,l,m, 2

)))
. (41)

It is impossible to apply the high resolution scheme up to the bound-
ary intervals. To overcome this difficulty, the aforementioned first
order approximation of fluxes is used at the interfaces of bound-
ary cells, while the suggested second order approximation of fluxes
is well applicable at the interfaces of interior cells. In the current
study, the interstitial velocity u is positive. Thus, a first order ap-
proximation is taken in the left boundary cell only, while such an
approximation is not needed in the right boundary cell. Further, it
has been found that global accuracy of the suggested algorithm is
not diminished by such first order approximations in the boundary
cells [23, 25].
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Lastly, to solve Eqs. (32)-(41), a second order TVD-RK scheme
is applied to get the second order accuracy in time [26]. The TVD-
RK scheme ensures the changes in the solution do not increase as
the order is increased. The right-hand-side of Eqs. (32) and (34)
are represented by F(cb, cp |γ=1) and G(cp). To update the stages
of cb and cp, the following second order TVD-RK scheme is utilized
[26]:

c
(1)
b = cnb + ∆τF(cnb , c

n
p |γ=1), cn+1

b =
1

2
[cnb + c

(1)
b + ∆τF(c

(1)
b , c(1)

p |γ=1)], (42)

c(1)
p = cnp + ∆τG(cnp ), cn+1

p =
1

2
[cnp + c(1)

p + ∆τG(c(1)
p )]. (43)

In the above expressions, solutions at previous time-step τn are
represented by cnb and cnp , while solutions at new time-step τn+1, the

solutions are represented by cn+1
b and cn+1

p . A Courant-Friedrichs-
Lewy (CFL) condition defined below is used to choose the time step
∆τ :

∆τ ≤ 12

min

(
∆x,∆x2 min(Pez,i, P ez,T ),

∆γ2(1− ρcore)2

2 max(J−1
k,l,mη)

,
ρcore(1− ρcore)∆γ

max(J−1
k,l,mη)

)
.

(44)

The above method was programmed in C language with a mesh
size of 60× 30× 10.

4. RESULTS CONSISTENCY VALIDATION

The integral consistency tests for mass and energy balance equa-
tions are useful tools for the validation of numerically obtained re-
sults and the accuracy of the developed model. These tests are used
to evaluate the accuracy of numerical schemes and the conservation
of mass and energy balances.

Given a reversible chemical reaction of the form A � B+C, the
following expressions are utilized to validate the consistency of the
results obtained from our numerical scheme [21, 27], let ξ describe
a change in the number of moles due to the chemical reaction, i.e.

ξ = ninj
1 − nout

1 = nout
2 + nout

3 . (45)

The total mass injected in the column is defined as

ninj
i = cinj

b,iV
inj, (46)

where V inj is the volume injected and cinj
b is the concentration in-

jected.
Furthermore, at the column outlet, we have

nout
i = V̇

∫ t∗

0

cb,i(t, z = L)dt , i = 1, 2, 3, (47)
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where V̇ is the volumetric flow rate.
Standard deviations for the three values of ξi are calculated as

σξ,i[%] = 100×

√∑i
j=1(ξi − ξ̄)2

3
, i = 1, 2, 3. (48)

ξ̄ represents the average of ξi for i = 1, 2, 3.
For the energy balance, we have

∆H inj = ρLcL
p V̇

∫ t∗

0

(T inj
b − T

ref)dt ,

∆Hout = ρLcL
p V̇

∫ t∗

0

(Tb(t, z = L)− T ref) dt , (49)

where ∆H inj is the enthalpy entering and ∆Hout is the enthalpy
leaving the system.

Lastly, a relative percentage error EH[%] is defined as

EH[%] = 100×
∣∣∣∣∆Herr

∆HRξ̄

∣∣∣∣ , (50)

where

∆Hout + (∆HR)ξ̄ = ∆Herr . (51)

In the above equation (Eq. (51)), ∆Herr = 0 only if the model
equation is perfectly satisfied. However, several sources of numer-
ical errors are involved in the computations, such as errors due to
domain discretization, round off, and errors in the numerical inte-
grations of the outlet profiles. As a result of these errors, ∆Herr

cannot be zero. Therefore, the smaller the value of ∆Herr, the
better is the fulfillment of the coupled mass and energy balances.

5. TEST CASES

In this section, the effects of the core radius fraction on the conver-
sion and separation of mixture components in non-isothermal reac-
tive liquid chromatography are analyzed. The value of the heat of
adsorption for all components is taken the same, i.e. ∆HA,j = ∆HA.
Furthermore, the values of the kinetic parameters Pez,i and Peρ,i
are also assumed the same for all the components, although in prac-
tical terms, they may vary according to components. The reac-
tant (component 1) was injected in the inner core as a Danckwerts
boundary condition for all test cases. All parameters used in these
test cases are listed in Table 1, which were used by [28] and [29]
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in their experimental studies for exothermic esterification reaction
catalyzed by an acidic ion-exchange resin.

We begin by considering a column operating under isothermal
condition for fully porous particles. In Fig. 2, the isothermal case
(∆HA = 0 kJ/mol, ∆HR = 0 kJ/mol) is presented for ρcore = 0
(fully porous particles). The behavior of the concentration profiles
and temperature profile is shown for the considered reversible reac-
tion process in which only the reactant cb,1 (component 1) is injected
into the chromatographic reactor. The presence of the products cb,2
and cb,3 can been seen in Fig. 2(a) as a result of the values of the
adsorption coefficients chosen. The temperature profile given in
Fig. 2(b) shows no changes, this is true for the isothermal case be-
ing considered. In Figs. 3(a) and (b), the effects of the core radius
fraction are displayed for ρcore = 0.5 and ρcore = 0.8 respectively. It
can be seen that increasing the core radius fraction from ρcore = 0 to
ρcore = 0.8, leads to more narrower peak and shorter retention time
inside the column. But this has caused a reduction in the conver-
sion and separation of the reactant to products, because the use of
core-shell particles offer lesser binding capacities as compared with
fully porous particles which provide larger binding capacities with
only moderate intraparticle mass transfer resistances. The temper-
ature profiles corresponding to Figs. 3(a) and (b) are identical to
the one presented in Fig. 2(b) because of the isothermal case con-
sidered, hence they are omitted here. For these obtained results,
the coefficient of nonlinearity in the suggested isotherm is taken as
zero for all components, i.e. bref

j = 0 for j = 1, 2, 3. The same condi-
tion holds for other results, except the last result in which we shall
consider the fully nonlinear isotherm where bref

j = 1 for j = 1, 2, 3.
Next we present the non-isothermal cases, where the results were

obtained under the influence of exothermic reaction (∆HA = −60
kJ/mol, ∆HR = −20 kJ/mol), beginning with Fig. 4, where the
result for ρcore = 0 is given. Again we see the appearance and
behavior of the components in the concentration profiles (Fig. 4(a))
as a result of the chosen adsorption coefficients. The fluctuations
in the temperature profiles can be seen in Fig. 4(b) as a result
of the non-isothermal condition being considered. In Fig. 5, the
result for ρcore = 0.8 is shown. Here we see again that although the
retention times of the concentration components inside the column
is shorter in the case of ρcore = 0.8 (Fig. 5(a)), better conversion
and separation are achieved by fully porous particles just as was
observed in the case of isothermal condition. This can also be seen
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in Table 2, where the conversion rate for ρcore = 0 is 28% and
that of ρcore = 0.8 is 14%. Other results given in Table 2 show
that fully porous particles perform better in terms of separation
of components for both isothermal and non-isothermal operating
conditions for reactive liquid chromatography. Furthermore, the
combined errors of integral energy and mass balances, expressed by
the error EH[%] (c.f. Eq. (50)) is less than 1% in all the test cases
considered and, therefore, verifies the accuracy of the numerical
results.

In order to show that this current 2D model fully captures the evo-
lution of radial disturbances in the column, the three-dimensional
(3D) plots of the 1D plots shown in Figs. 4 and 5, are given in Figs.
6 and 7. For the chosen value of radial Peclet number Peρ = 37.5,
which corresponds to the small radial dispersion Dr, radial vari-
ations can be easily seen on the concentration and temperature
profiles. The value of the concentration is larger at the center of
the column due to the injection through the inner core region, i.e.
at ρ = 0. In Figs. 8 and 9, the effects of altering the values of
the adsorption coefficients or Henry’s constants, are shown. Once
again, the results of the fully porous particles (Fig. 8) show a better
conversion and separation. Next, Figs. 10 and 11 show the effects
of the intraparticle diffusion coefficients for mass and energy (η and
ηT ) respectively. We see that a reduction in the values of η and ηT
lead to more diffusive profiles for ρcore = 0 as compared to the case
of ρcore = 0.8. Again for these results, the fully porous particles
achieve better conversion and separation of components. The re-
sults so far are further confirmed by the results given in Table 3,
showing the conversion rates for increasing values of ρcore for non-
isothermal condition (∆HA = −60 kJ/mol, ∆HR = −20 kJ/mol).
We see that increasing the core fraction radius, reduces the conver-
sion rate of the reactant (component 1) to products (components
2 and 3). This is true because increasing ρcore, reduces the binding
capacity of the reactant and results in reduced conversion. Lastly,
Figs. 12 and 13 give the results for the fully nonlinear isotherm
case. Here, the behavior of the well-known nonlinear Langmuir
isotherm, which displays peak tailings in the profiles, is evident.
Despite the fluctuations of the temperature profiles, the conversion
of the reactant to products for ρcore = 0.8 (Fig. 13) is less again, as
compared to that of fully porous particles case (Fig. 12).
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Table 1. Parameters for test problems
Description Symbols Value Unit

Bed void volume fraction εb 0.4 −
Particle porosity εp 0.333 −
Axial Peclet numbers Pez,i, Pez,T 1500 −
Radial Peclet numbers Peρ,i, Peρ,T 37.5 −
Dimensionless constant ηi 2.7 −
Dimensionless constant ηT 0.7 −
Dimensionless constants ζi, ζT 40 −
Adsorption constant for c1 a1 1.0 −
Adsorption constant for c2 a2 0.2 −
Adsorption constant for c3 a3 1.8 −
Interstitial velocity u 62× 10−4 m/min
Column length L 0.27 m
Injection time (dimensionless) τinj 1.0 −
Injected concentration of c1 cinj

b,1 3.0 mol/l

Injected concentrations of c2, c3 cinj
b,2, cinj

b,3 0.0 mol/l

Reaction equilibrium constant Khet
eq 2.0 mol/l

Heterogeneous reaction rate constant khet 6.0× 10−3 min−1

Reference temperature T ref 300 K

Activation energy Ehet
A 60 kJ/mol

General gas constant Rg 0.008314 kJ/molK
Density times heat capacity in liquid phase ρLcLp 4.0 kJ/Kl
Density times heat capacity in solid phase ρScSp 4.0 kJ/Kl

Table 2. Here, X1[%] = 100× ((ninj
1 − nout

1 )/ninj
1 )

Parameters [kJ/mol] XA[%] XA[%] ∆Herr[kJ ] EH [%]

(ρcore = 0) (ρcore = 0.8)

∆HA = 0,∆HR = 0 28 14 -

∆HA = 0,∆HR = −20, Ehet
A = 60 31 15 0.09 0.91

∆HA = 0,∆HR = −40, Ehet
A = 60 34 16 0.23 0.96

∆HA = −60,∆HR = −20, Ehet
A = 60 28 14 0.003 0.03

∆HA = −60,∆HR = −20, Ehet
A = 100 41 19 0.05 0.34

Table 3. Effects of increasing ρcore

ρcore XA[%]
0 (fully porous) 28
0.2 25
0.4 24
0.6 21
0.8 14
0.9 (thin shell) 9
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Figure 2. Isothermal Case: ∆HA = 0 kJ/mol,
∆HR = 0 kJ/mol, bref

j = 0 for j = 1, 2, 3.
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Figure 3. Isothermal Case: ∆HA = 0 kJ/mol,
∆HR = 0 kJ/mol, bref

j = 0 for j = 1, 2, 3.
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Figure 4. Non-isothermal Case: ∆HA = −60 kJ/mol,
∆HR = −20 kJ/mol, bref

j = 0 for j = 1, 2, 3.
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Figure 5. Non-isothermal Case: ∆HA = −60 kJ/mol,
∆HR = −20 kJ/mol, bref

j = 0 for j = 1, 2, 3.
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Figure 6. Non-isothermal Case: ∆HA = −60 kJ/mol,
∆HR = −20 kJ/mol, bref

j = 0 for j = 1, 2, 3.
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Figure 7. Non-isothermal Case: ∆HA = −60 kJ/mol,
∆HR = −20 kJ/mol, bref

j = 0 for j = 1, 2, 3.
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Figure 8. Non-isothermal Case: a1 = 6.0, a2 = 0.2,
a3 = 2.0, ∆HA = −60 kJ/mol, ∆HR = −20 kJ/mol,
bref
j = 0 for j = 1, 2, 3.
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Figure 9. Non-isothermal Case: a1 = 6.0, a2 = 0.2,
a3 = 2.0, ∆HA = −60 kJ/mol, ∆HR = −20 kJ/mol,
bref
j = 0 for j = 1, 2, 3.
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Figure 10. Non-isothermal Case: ∆HA =
−60 kJ/mol, ∆HR = −20 kJ/mol, bref

j = 0 for
j = 1, 2, 3.



INVESTIGATING THE EFFECTS OF CORE-SHELL PARTICLES . . . 123

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

τ

c b(ρ
=0

,x
=1

,τ)
 [m

ol
/l]

ρ
core

=0, η
T
=0.1

 

 

0 1 2 3 4 5 6 7 8
290

300

310

320

T b(ρ
=0

,x
=1

,τ)
 [K

]

 

 

c
b,1

 (reactant)

c
b,2

 (product)

c
b,3

 (product)

T
b

(a)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

τ

c b(ρ
=0

,x
=1

,τ)
 [m

ol
/l]

ρ
core

=0.8, η
T
=0.1

 

 

0 1 2 3 4 5 6 7 8
290

300

310

320

T b(ρ
=0

,x
=1

,τ)
 [K

]

c
b,1

 (reactant)

c
b,2

 (product)

c
b,3

 (product)

T
b

(b)

Figure 11. Non-isothermal Case: ∆HA =
−60 kJ/mol, ∆HR = −20 kJ/mol, bref

j = 0 for
j = 1, 2, 3.
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Figure 12. Non-isothermal Case: ∆HA =
−60 kJ/mol, ∆HR = −20 kJ/mol, bref

j = 1 for
j = 1, 2, 3.
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Figure 13. Non-isothermal Case: ∆HA =
−60 kJ/mol, ∆HR = −20 kJ/mol, bref

j = 1 for
j = 1, 2, 3.
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6. CONCLUSION

The effects of core-shell particles on 2D non-isothermal reactive
chromatography for conversion and separation of chemical compo-
nents were investigated by formulating and implementing a two-
dimensional general rate model of cylindrical geometry. The model
is made up of a system of convection-diffusion-reaction partial dif-
ferential equations. The formulated model is highly nonlinear and
its solutions were numerically approximated by applying a high
resolution finite volume scheme. The consistency of the results
were validated and several test cases were carried out. The results
show that the application of core-shell particles for separation and
conversion in non-isothermal reactive chromatography, provides no
advantage over the use of fully porous particles. Although they
achieve sharper and narrower concentration profiles, increasing the
value of the core radius fraction was found to cause reduction in
the conversion rate of the reactant to products.
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