
Journal of the Vol. 39, Issue 3, pp. 335-351, 2020

Nigerian Mathematical Society ©Nigerian Mathematical Society

MISES FLOW EQUATIONS FOR GRADIENT PLASTICITY
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ABSTRACT. This work provides a framework for which strain
gradient plasticity theories can be investigated and considered
admissible in the sense of thermodynamic consistency and max-
imum plastic dissipation in juxtaposition to the classical theory.
The classical plasticity theory is studied using the maximum
plastic dissipation principle on the assumption that the plastic
flow is associative. Furthermore, rate-independent strain gradi-
ent plasticity theories are investigated, and it is shown that these
theories mimic the classical yield criterion, the Mises flow rule,
codirectionality law and in addition can predict elastic region.
The simple constrained shear problem is studied with a view to
demonstrating the variance between some strain gradient the-
ories in literature. It is shown that Aifantis’ flow law differs
from that of the classical only in a nonlocal term accompanying
the Aifantis’ flow rule which involves an energetic length scale;
and as this length scale approaches zero, the Aifantis model ap-
proaches the classical theory.
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1. INTRODUCTION

Gradient plasticity deals with the study of plastic distortion gradi-
ent effect on deformed bodies at varying length scales. This subject-
which is over three decades old- has become a considerable aspect of
plasticity with keen interest in its theory and applications mainly
due to its ability to track size-effects phenomena as observed in
most metals undergoing inhomogeneous plastic flow (Ashby, 1970;
Fleck and Hutchinson, 1994, 1997; Hutchinson, 2000). The clas-
sical theory of plasticity does not track size-effects because length
scales are missing in the constitutive relations for the stresses, and
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by implication are absent in the flow rules of plastic materials. For
instance, in the classical von Mises flow rule for rate independent
materials, plastic deformation does not exhibit intrinsic material
length scales and hence such a theory is unaware of size-effects phe-
nomena. The gradient theory serves to bridge this gap by including
within the constitutive relations and the flow rules terms involving
gradient of plastic distortion and it rate (Willis, 2019; Gudmundson
and Dahlberg, 2019). This implies that the gradient plasticity is an
extension or generalization of the classical theory, so that the funda-
mental issues that confront research in classical plasticity apply- by
extension- to the gradient theory. Some of the fundamental issues
are; tracking the onset of plasticity and regime of strain hardening,
harmonization of the elastic and plastic regimes etc. Within the
classical theory, these issues have been considered over the years
with reasonable decision via established flow rules, concepts such
as hardening equations, yield surface, elastic region, boundedness,
codirectionality and the no flow condition (Hill, 1948; 1987; Gurtin
et al., 2010; Han and Reddy, 2013; Del Piero, 2018). The aforemen-
tioned issues addressed by the classical theory are limited to the
rate-independent plastic flow, whereas the rate-dependent plastic
materials cannot explain concept such as the elastic region because
basic to rate-dependent theory is the assumption that deviatoric
stress vanishes whenever there is no plastic flow. Still, the question
arise: How does the rate-independent strain gradient plasticity ac-
commodate these fundamental issues which include; appropriate
flow rules, elastic region and yield surface?

This study aims to obtain Mises flow equations for rate-independent
stain gradient plasticity with kinematic and isotropic hardening.
This work will discuss the classical Mises flow equations account-
ing for kinematic hardening using the principle of maximum plastic
dissipation. Also, we will obtain the Mises flow equations equiva-
lent to the Aifantis’ strain gradient plasticity (Aifantis, 1984, 1987)
and the Gurtin-Anand rate-independent strain gradient plasticity
(Gurtin and Anand, 2005; 2009; Reddy et al., 2008).

2. NOTATIONS

In component form, second-order tensor A is written as Aij for
i, j = 1, 2, 3. The expression Au is written in component form as
Aijuj, where the summation convention is adopted. The trace of a
second-order tensor A is denoted as trA and written as the sum of
the diagonal elements for the matrix of A. The symmetric and skew
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parts of a second-order tensor A would be denoted by symA and
skwA respectively, and are defined as symA = 1

2
(A+AT ), skwA =

1
2
(A−AT ), where AT is the transpose of A. The magnitude of A

is denoted as |A|, and defined as |A| = (AijAij)
1/2. We define

the inner-product ’:’ of nonzero second-order tensors A and B by

A : B = AijBij. Also, the inner product ’
...’ of the third order tensors

A and B is denoted by A...B and defined as A...B = AijkBijk. The
deviatoric part of a second-order tensor A would be denoted as Ao

or devA, and defined as Ao = devA = A− 1
3
(trA)I, where I is the

second-order unit tensor. Given any nonzero vector a, we define
second-order tensor (a×) in component form as (a×)ij = εikjak,
where εikj is the permutation symbol.

The partial derivative with respect to the material coordinate Xi

would be denoted as (·),i, and defined as (·),i = ∂(·)
∂Xi

for i = 1, 2, 3.
We denote the gradient of a vector field a and tensor field A as ∇a
and ∇A respectively, and these are defined in component forms
as (∇a)ij = ai,j and (∇A)ijk = Aij,k. The divergence of a and
A are denoted by diva and divA respectively, and are defined in
component forms as diva = ak,k and (divA)i = Aik,k. The curl of
a tensor A would be written as CurlA or ∇ × A and defined in
component form as (CurlA)ij = εipqAjq,p.

3. KINEMATIC RELATIONS

Let u be the displacement vector of an arbitrary point X at time
t in a polycrystalline occupying a region of space Ω of the Euclidean
space. Within the context of small deformation, the displacement
gradient ∇u(X, t) admits the additive decomposition

∇u = He + Hp, with trHp = 0 (1)

into elastic distortion He and plastic distortion Hp. Stretch and
rotation of material structure are measured by the elastic distor-
tion He, whereas the irreversible distortion in material structure
resulting from motion of dislocation are typically measured by the
plastic distortion Hp.
We will denote the elastic strain by E which admits additive de-
composition

E = Ee + Ep (2)

into elastic strain Ee and plastic strain Ep defined as

Ee = symHe and Ep = symHp, (3)



338 A. S. BOROKINNI et al.

At the outset, strain gradient plasticity theories ignore the skew-
symmetric part of the plastic distortion, and the relevant basic
kinematic field variables are; u,He, and Ep. Virtual power princi-
ple and interest in plastic flow allow the use of rate-like kinematic
fields consistent with eq. (1) satisfying

∇u̇ = Ḣ
e

+ Ė
p
, with trĖ

p
= 0. (4)

Here Ė
p

is called the plastic flow. To accommodate for the plastic
strain gradient rate, we defined the generalized plastic strain Ep and
its rate Ėp by

Ep = (Ep, l∇Ep) and Ėp =
(
Ė
p
, l∇Ėp

)
(5)

respectively. Where l is called the dissipative length scale associated
with the generalized flow rate. We define the magnitude of the
generalized plastic flow by

|Ėp| =
√
|Ė|2 + l2|∇Ėp|2. (6)

The most general hardening variable for rate-independent plastic
flow in the absence of strain gradient is the accumulated plastic
strain denoted by ep(X, t) and it is define via the ordinary differ-
ential equation (Gurtin et al., 2010)

ėp = |Ėp| with ep(X, 0) = 0. (7)

Similarly, we define the accumulated generalized plastic strain ep(X
, t) via

ėp = |Ėp| with ep(X, 0) = 0. (8)

Define the flow direction Np and generalized flow direction Np by

Np =
Ė
p

|Ėp|
for Ė

p 6= 0, and (9)

Np =
Ėp

|Ėp|
for Ėp 6= 0. (10)

4. THE CONVENTIONAL PLASTICITY WITH KINEMATIC
HARDENING

Here, the plastic strain gradient and its rate are absent. Basic to what
follows is the assumption that:

• The Cauchy stress T is power-conjugate to the elastic distortion
rate Ḣ

e
. This stress is also know as the macroscopic stress.
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• The symmetric and deviatoric plastic stress Tp is power-conjugate
to the plastic strain rate Ė

p
. It is also known as the microscopic

stress because it is associated with the dislocation in the mate-
rial structure.

The use of virtual power principle establishes the local macroscopic and
microscopic force balances in an arbitrary subregion Ω1 of the body Ω
following Gurtin et al. (2010) viz:

•
divT + b = 0 in Ω1 and Tn = t(n) on ∂Ω1, (11)

•
To = Tp in Ω1. (12)

b, t(n) and n are the body force in Ω1, traction and outward unit
normal on ∂Ω1 respectively. To is the deviatoric part of the Cauchy
stress tensor.

5. ENERGY IMBALANCE, DISSIPATION AND CONSTITUTIVE
RELATIONS OF THE CONVENTIONAL THEORY

Let ψ denote the free-energy per unit volume of an arbitrary portion
Ω1 of the body Ω. The free-energy imbalance has the form

ψ̇ −T : Ė ≤ 0. (13)

If there is plastic flow, then using eqs. (2) and (12), the free-energy
imbalance can be written as

ψ̇ −T : Ė
e −Tp : Ė

p ≤ 0. (14)

By convention and since elastic strain rate does not induce dissipation,
the elastic stress is defined by

T =
∂ψ

∂Ee
. (15)

In order to account for kinematic hardening, we assume that the free-
energy admits the additive decomposition

ψ̂(E) = ψ̂e(Ee) + ψ̂p(Ep) (16)

into elastic part ψe and plastic part ψp. Following eqs. (14) and (15),
the free-energy reduces to the plastic free-energy imbalance

ψ̇p −Tp : Ė
p ≤ 0. (17)

Assume also that the microscopic stress Tp admits additive decompo-
sition into energetic and dissipative parts Tp

en ,Tp
dis respectively, in the

sense: Tp = Tp
en+Tp

dis, where the energetic microscopic stress is defined
by

T̂
p
en(Ep) =

∂ψ̂p(Ep)

∂Ep
. (18)
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A consequence of eqs. (17) and (18) is the reduced plastic dissipation

δ(Ė
p
, ep) defined by

δ(Ė
p
, ep) = Tp

dis : Ė
p ≥ 0. (19)

Basic to what follows is the hypothesis of strict dissipativity which means
that dissipation is positive whenever there is flow. By eq. (19), it implies
that

Tp
dis 6= 0 whenever Ė

p 6= 0. (20)

The constitutive relation for the dissipative microscopic stress has the
form

Tp
dis = T̂

p
dis(Ė

p
, ep) for Ė

p 6= 0, (21)

where ep has been included as constitutive independent variable to ac-
count for accumulation of the plastic strain. For rate-independent pro-
cesses, the constitutive relation has the form

Tp
dis = T̂

p
dis(N

p, ep) for Ė
p 6= 0, (22)

where Np is the flow direction defined in eq. (9).

The flow resistance Y (Np, ep) is defined as dissipation per unit |Ėp|

Y (Np, ep) = T̂
p
dis(N

p, ep) : Np > 0. (23)

The hypothesis of strong isotropy renders the flow resistance indepen-
dent of the flow direction, and eq. (23) can be written as

Y (ep) = T̂
p
dis(N

p, ep) : Np for Ė
p 6= 0. (24)

5.1. Maximum Plastic Dissipation Principle

From eqs. (12), (18) and (22) the constitutive equation for the devia-
toric stress To has the form

To = T̂
p
en(Ep) + T̂

p
dis(N

p, ep), for Ė
p 6= 0. (25)

We say a stress To in the space SymDev of symmetric deviatoric tensors
is associated with the flow direction Np if it satisfies eq. (25).

The principle of maximum plastic dissipation states:
Theorem 5.1.1[Maximum Plastic Dissipation] Given that To ∈ SymDev
is associated with flow direction Np then

T∗
o : Np ≤ To : Np for all T∗

o ∈ SymDev. (26)

By eqs. (25) and (26) the maximum plastic dissipation can be re-
written as

[T∗
o−T̂

p
en(Ep)] : Np ≤ T̂

p
dis(N

p, ep) : Np for every T∗
o ∈ SymDev. (27)

Eq. (27) can be written in terms of the flow resistance following eq. (24)
as

[T∗
o − T̂

p
en(Ep)] : Np ≤ Y (ep) for every T∗

o ∈ SymDev. (28)
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If eq.(28) is satisfied, then T∗
o is said to admissible in the sense of max-

imum dissipation.

5.2 The Classical Mises Flow Rule

Theorem 5.2.1[Flow Rule] Given that To is associated with the flow
direction Np and admissible in the sense of maximum dissipation, then
constitutive relation for To is defined by

To − T̂
p
en(Ep) = Y (ep)Np, (29)

where T̂
p
en(Ep) is the energetic plastic stress satisfying eq. (25)

Proof. Let N be a unit sphere of symmetric deviatoric tensor so that N
defines a surface containing flow directions. Let Np(λ) be a smooth curve
defined on the surface N. It is assumed that the curve passes through
a fixed but artbitrary point λo such that Np(λo) = Np associated with
To. Then by maximum plastic dissipation principle we have

[To − T̂
p
en(Ep)] : Np(λ) ≤ Y (ep) for every Np(λ) ∈ N. (30)

Let M be an arbitrary symmetric deviatoric tensor tangent to the unit
sphere N such that

Np : M = 0. (31)

Define a function φ(λ) by

φ(λ) = Y (ep)− [To − T̂
p
en(Ep)] : Np(λ) ≥ 0. (32)

Then φ(λ) has a minimum at λ = λo so that we have

[To − T̂
p
en(Ep)] :

[
dNp(λ)

dλ

]
λ=λo

= 0. (33)

Since dNp(λ)
dλ is arbitrary and a tangent to the unit sphere N, then there

exist a scalar k such that

To − T̂
p
en(Ep) = kNp. (34)

Furthermore, by eqs. (24) and (25) we have

To − T̂
p
en(Ep) = Y (ep)Np. (35)

�

5.3. Yield Condition, Elastic Region and Boundedness
Eq. (29) is called the classical Mises Flow rule. It is clear that when-

ever To is associated with Ė
p 6= 0 then we have have the yield condi-

tion

|To − T̂
p
en(Ep)| = Y (ep). (36)
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Elastic Region is defined as the set of To ∈ SymDev that are admis-
sible in the sense of maximum dissipation. This implies that

|To − T̂
p
en(Ep)| ≤ Y (ep) for all Ė

p ∈ SymDev. (37)

This inequality is known as the boundedness property. The converse of
this statement is true i.e. Boundedness also implies elastic region.

Whenever the inequality (37) is strict, then it implies there is no flow

i.e. Ė
p

= 0.

6. MISES FLOW EQUATIONS FOR STRAIN GRADIENT PLASTICITY

6.1. Burgers Tensor and its Rate

In the absence of plastic rotation, the Burgers tensor and its rate are
defined by

G = ∇×Ep, (38)

Ġ = (∇ėp×)Np + (∇×Np)ėp. (39)

The microscopic force balance of the Gurtin-Anand model is given by
(Gurtin and Anand, 2005)

To = Tp − divKp with Kpn = K(n), (40)

where Kp is the polar microscopic stress, power-conjugate to the gradi-
ent of plastic strain rate ∇Ėp, and K(n) is the microtraction, power-

conjugate to the plastic strain rate Ė
p
.

6.2. Free Energy Imbalance, Codirectionality and Equivalent
Microscopic force balance

The free energy ψ satisfies the inequality

ψ̇ −T : Ė
e −Tp : Ė

p −Kp...∇Ėp ≤ 0. (41)

The plastic free-energy ψp satisfies

ψ̇p −Tp : Ė
p −Kp...∇Ėp ≤ 0. (42)

Following Borokinni (2018), the choice ψp = ψ̂p(G) renders the plastic
microscopic stress Tp dissipative.

The inner product Kp
...∇Ėp can be written as

Kp...∇Ėp = ~ξp · ∇ėp + φėp, (43)

where

ξpk = (Kp)ijkN
p
ij and φp = Kp...∇Np. (44)
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The defect free-energy imbalance in terms of ~ξp and φp is

ψ̇p − (Tp : Np)ėp − ~ξp · ∇ėp − φėp ≤ 0. (45)

Assume the codirectionality hypothesis holds i.e.

Np =
To

|To|
for Ė

p 6= 0, (46)

then the microscopic force balance eq. (40) can be written as∫
Ω1

[
To : Ė

p −Tp : Ė
p −Kp...∇Ėp

]
dV = −

∫
∂Ω1

Kp(n) : Ė
p
dA. (47)

In local form, following eq. (44), we have the microscopic force balance

To : Np = Tp : Np − (div~ξp − φp) with ~ξp · n = Kp(n) : Np. (48)

By comparing eq. (40) with eq. (48), it is clear that

Np : divKp = div~ξp − φp. (49)

Given that the plastic free energy ψp = ψ̂p(G) is a function of the
Burgers tensor, then increase in the plastic free energy is deduced as

ψ̇p = ~ξpen · ∇ėp + φpenė
p = Kp

en

...∇Ėp, (50)

where

(~ξpen)k =
∂ψp

∂Gij
εiksN

p
sj , φ

p
en =

∂ψp

∂Gij
εiksN

p
js,k and (Kp

en)jsk =
∂ψp

∂Gij
εiks.

(51)

The dissipative microscopic stresses ~ξpdis, φ
p
dis and Kp

dis are defined by

~ξpdis = ~ξp − ~ξpen, φ
p
dis = φp − φpen and Kp

dis = Kp −Kp
en. (52)

Hence following eqs. (45), (49)-(52), we have the force balance

Np : divKp
en = div~ξpen − φpen and Np : divKp

dis = div~ξpdis − φ
p
dis (53)

and the dissipation δ given by

δ = Tp : Ė
p

+ ~ξpdis · ∇ė
p + φpdisė

p = Tp : Ė
p

+ Kp
dis

...∇Ėp ≥ 0. (54)

6.3. Mises-Aifantis Flow Rule Accounting for Kinematic and Isotropic
Hardening

Here, we use the Gurtin-Anand model to establish the Aifantis flow
equation. The microscopic force balance eq. (40) can be written as

To + divKp
en = Tp − divKp

dis. (55)

This would imply that we have

(To + divKp
en) : Np = Tp : Np − div~ξpdis + φpdis. (56)
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To obtain the Aifantis flow equation, it would be assumed that

~ξpdis · n = 0 on ∂Ω1 ⇐⇒ div~ξpdis = 0 in Ω1. (57)

Hence, the dissipation per unit plastic flow is equivalent to the right
hand side of eq. (56). This is clear from∫

Ω1

δdV =

∫
Ω1

[
(Tp : Np)ėp + ~ξpdis · ∇ė

p + φpdisė
p
]
dV. (58)

Following eq. (57), the dissipation in local form is

δ = (Tp : Np)ėp + φpdisė
p. (59)

Given that

Tp = T̂
p
(Np, ep) and φpdis = φ̂pdis(N

p, ep), (60)

the flow resistance Y (ep) (assume strong isotropy) which is defined as
dissipation per unit unit magnitude of the plastic flow is given by

Y (ep) = T̂
p
(Np, ep) : Np + φpdis(N

p, ep). (61)

Hence, if the flow stress To is associated with the plastic flow Ė
p 6= 0,

then the Aifantis flow rule is of the form

(To + divKp
en) : Np = Y (ep). (62)

Using the principle of Maximum plastic dissipation, it is easy to show
that the flow rule also has the form

To + divKp
en = Y (ep)Np Compare eq. (35) (63)

To derive the specific form of the Aifantis flow rule, we assume the
Burgers tensor has the constitutive form as

G = Ĝ(ep,∇ep) (64)

Following eq. (30), we deduce that

∂G

∂ep
= curlNp and

(
∂G

∂∇ep

)
jik

= Np
jrεikr. (65)

Consequences of eqs. (51) and (65) are

~ξpen =
∂ψp

∂∇ep
and φpen =

∂ψp

∂ep
. (66)

Basic to Aifantis model is the assumption that φpen = 0 so that (Gurtin
and Anand, 2009)

ψ̂p(G) = ψ̂p(∇ep). (67)

The defect energy takes the quadratic form

ψ̂p(∇ep) =
β

2
|∇ep|2, (68)

where β is a constant. Eq. (62) can be written as

τ + div~ξpen − φpen = Y (ep), (69)
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where τ = To : Np. Substitute eq. (68) in eq. (66) and substitute
the result in eq. (69) (where φpen = 0) we have the Aifantis flow rule
specifically written as

τ + β∆ep = Y (ep). (70)

Hence, given that To is the flow stress associated with Np or Ė
p

the
Mises-Aifantis Flow Equation is given by

To + divKp = Y (ep)Np =⇒ τ + β∆ep = Y (ep). (71)

The yield criterion is given by

|To + divKp
en| = Y (ep), (72)

where the term −divKp
en is the backstress which accounts for kinematic

hardening.

6.4. Generalized Plastic Strain Rate and Dissipative Stresses

For a gradient theory that mimicks the conventional theory, we intro-
duce generalized plastic strain and dissipative plastic stress

Ep = (Ep, l∇Ep) and Tpdis = (Tp, l−1Kp
dis) (73)

respectively. The rate of the generalized plastic strain is denoted as Ėp

and magnitude |Ėp| are defined as

Ėp = (Ė
p
, l∇Ėp) and |Ėp| =

√
|Ėp|2 + l2|∇Ėp|2 (74)

respectively.
Define the operation � on the pair (Tpdis, Ė

p) by

Tpdis � Ėp = Tp : Ė
p

+ Kp
dis

...∇Ėp. (75)

Eq. (75) defines dissipation i.e.

δ = Tpdis � Ėp. (76)

We assume that whenever Ėp 6= 0 that the generalized plastic stress is
defined via the constitutive relation

Tpdis = T̂pdis(Ė
p, ep), (77)

where ep is an hardening variable which we will call accumulation of the
generalized plastic strain satisfying the initial value problem:

ėp = |Ėp| with ep(X, 0) = 0. (78)

For rate-independent plastic materials eq. (77) reduces to

Tpdis = T̂pdis(N
p, ep) for Ėp 6= 0, (79)

where Np is called generalized flow direction defined by eq. (10).
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We assume strong isotropy and define the generalized flow resistance
Y (ep) as the dissipation per unit magnitude of the generalized plastic
strain rate viz:

Y (ep) = Tpdis(N
p, ep)� Np. (80)

6.5. Mises-Gurtin-Anand Flow Equation

The Principle of Maximum Plastic dissipation requires that the gen-
eralized dissipative stress Tpdis is admissible in the sense of maximum
plastic dissipation written as

Tpdis : Np ≤ T̂pdis(N
p, ep) : Np for every Np. (81)

Now, following the arguments that established eq. (35), it is clear that
the generalized Mises flow rule for strain gradient plasticity is

Tpdis = Y (ep)Np for Ėp 6= 0. (82)

In Component form, following eqs. (10), (73) and (74) we have

Tp = Y (ep)
Ė
p

ėp
and Kp

dis = l2Y (ep)
∇Ėp

ėp
. (83)

The yield condition for Mises flow rule eq. (82) is given by

|Tpdis| = Y (ep) ⇐⇒
√
|Tp|2 + l−2|Kp

dis|2 = Y (ep). (84)

Eq. (84) can be written in the standard form that shows the presence
of kinematic and isotropic hardening terms as

|To − Tback| = Y (ep), (85)

where To is the generalized flow stress, and Tback is the generalized back
stress accounting for kinematic hardening defined as

To = (To + divKp, l−1Kp) and Tback = (0, l−1Kp
en). (86)

Clearly, we have

To − Tback = Tpdis. (87)

Hence the Generalized Mises flow rule is given by

To − Tback = Y (ep)Np for Ėp 6= 0. (88)

The generalized flow equations are given by eq. (88) with the bounded-
ness property

|To − Tback| ≤ Y (ep) for every Ėp, (89)

which defines the elastic region, and

Ėp = 0 for |To − Tback| < Y (ep), (90)

which is the no-flow condition.
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From eqs. (83) and (88), it is clear that

To + divKp = Y (ep)
Ė
p

ėp
and Kp −Kp

en = l2Y (ep)
∇Ėp

ėp
. (91)

Taking the divergence of eq. (91)2 and substituting in eq. (91)1 we have
the Gurtin-Anand rate-independent plastic flow rule given as

To + divK̂p
en(G) = Y (ep)

Ė
p

ėp
− div

(
l2Y (ep)

∇Ėp

ėp

)
. (92)

7. CONSTRAINED SHEAR STRIP PROBLEM
Consider an infinite slab of thickness h under a pure shear T along

the thickness of the slab. In this problem, the plastic strain is a function
of the single space variable y -measured along thickness of the slab-
and time t. If the body force is neglected then from the macroscopic
equation of motion, T is independent of y and we assume that T = T (t)
is a function of time only. Here we will denote the plastic shear strain
by e so that gradient of plastic strain is ∂e

∂y . Also, assume the absence of

energetic contribution from the plastic microstress Tp and that h = 1
so that y ∈ [0, 1].

7.1. Classical Theory Versus Aifantis Flow
We assume that the flow resistance Y (ep) in eqs. (35) and (70) takes

Y (e) = k · e, (93)

where k is a constant.
The classical flow rule Eq. (35) reduces to the form

e =
T (t)

k
(94)

and the Aifantis flow rule reduces to the non local form

T (t) + µL2 ∂
2e

∂y2
= k · e, (95)

where β = µL2 (see eq. (35)), µ is the shear modulus and L is an
energetic length scale. Assume the boundary conditions

e(0, t) = 0, and ey(0, t) = 0, (96)

where ey is the first partial derivative of e with respect to y. Given the
boundary condition eq. (96), the solution of eq. (95) is given by

e =
T (t)

k

1− 1

1 + e

(
−2
L

√
k
µ
h
)
(
e

(
−1
L

√
k
µ
y
)

+ e

(
1
L

√
k
µ

(y−2h)
)) ,
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Figure 1. Classical theory versus Aifantis model

which can be written as

e =
T (t)

k

[
1− sech

(
h

L

√
k

µ

)
cosh

(
y − h
L

√
k

µ

)]
. (97)

A plastic strain profile is shown in figure 1 for k = µ and varying values
of the energetic length scale L. It is shown from the graph that the
Aifantis’ model approaches the classical theory as L→ 0.

7.2. Gurtin-Anand Flow
Following Gurtin and Anand (2005), we assume that

divK̂p
en(G) = µL2∆Ep.

For the present constrained shear strip problem, eq. (92) reduces to

T (t) + µL2 ∂
2e

∂y2
= Y (ep)

ė

ėp
− ∂

∂y

(
l2
Y (ep)

ėp
∂ė

∂y

)
(98)

with the initial-boundary conditions

e(y, 0) = 0, e(0, t) = 0 and µL2ey(h, 0) + l2
Y (ep)

ėp
ė(h, t) = 0. (99)

Consistent with the classical theory we assume that the flow resistance
takes the form

Y (ep) = ktėp such that e = tė, (100)

where k is a constant. Then the solution eq. (98) with the given bound-
ary condition is

e =
T (t)

k

[
1− sech

(
h

L∗

√
k

µ

)
cosh

(
y − h
L∗

√
k

µ

)]
. (101)
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Figure 2. Aifantis versus Gurtin-Anand models

Figure 3. Classical, Aifantis and Gurtin-Anand theories

where L∗2 = L2 + kl2

µ .

Assuming the thickness of constrained strip is of unit length and k = µ,
the plastic strain profile is shown in figures 2 and 3. Figure 2 compares
the Aifantis model with the Gurtin-Anand (G&A) model where it is
observed that G&A model approaches the Aifantis’ model as the dissi-
pative length scale l approaches zero. Figure 3 shows the profiles of the
plastic strain for G&A model, Aifantis’ model and the classical theory.
It is observed that G&A model generalizes both classical theory and
Aifantis’ model because of the presence of dissipative length scales.
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8. CONCLUSION
This work obtains generalized Mises flow equations for rate indepen-

dent strain gradient plasticity with the aim of providing a framework
for which other gradient theories can be studied through thermody-
namic consistency and principle of maximum plastic dissipation. It was
deduced that gradient plasticity theories are simply extensions of the
conventional theory only by the inclusion of the plastic strain gradi-
ent and its rate. Even with that, it was obtained that the mathematical
structure leading to the classical theory and that leading to gradient the-
ories are similar as observed in the flow equations. It is demonstrated
by a simple constrained problem that the Gurtin-Anand model differs
from the Aifantis’ theory only in the dissipative length scale, so that as
this length scale vanishes the Gurtin-Anand flow rule and Aifantis’ flow
rule are the same.
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