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THERMAL STABILITY ANALYSIS OF REACTIVE

HYDROMAGNETIC THIRD-GRADE FLUID THROUGH

A CHANNEL WITH CONVECTIVE COOLING

SAMUEL OLUMIDE ADESANYA

ABSTRACT. This paper investigates the hydromagnetic flow
of a reactive third grade fluid between two parallel plates with
convective boundary conditions. Approximate solution of the
strongly nonlinear boundary value problem is obtained us-
ing modified Adomian decomposition method (mADM). The
rapidly convergent series solution is combined with the diag-
onal Pade‘ approximants to determine the singularity inherent
in the solution. Parametric study of the fluid flow are conducted
and discussed including bifurcation conditions.
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1. INTRODUCTION

Studies on the combustible fluid flow have been on the increase
in recent times due to its usefulness in many real life applications
like; fuel combustion during industrial and engineering processes,
bush burning, releases from automobile engines, waste burning, pro-
duction of liquid steel, burning of crude oil leakages on high sea
and thermal explosions in refineries to mention just a few. It is
well known that excessive production of CO2 that is not needed by
plants leads to the depletion of the ozone layer which is a threat to
life.
Up till today, there is no known single constitutive equation that

can adequately describe the complex rheological properties of all
non-Newtonian fluids. In view of this, the third grade fluid model
has been used in studies [1-6] for combustible non-Newtonian fluids
due to its ability to predict the shear thickening/thinning of the
fluid.
Due to the effect of magnetic field on fluid dynamics (for instance,

it is very useful in controlling fluid in thermal engineering at a very
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high temperature). Several important studies have been conducted
on hydromagnetic fluids with or without reactive term by many
researchers in literature some of which can be found in ref. [6-9,
12-14].
In the present investigation, attention is focused on the influence

of magnetic field on the flow thermal structure. Of particular in-
terest, is the effect of magnetic field on the development of thermal
instability which was not accounted for in previously obtained re-
sult [5]. The present study is important in enhancing the safety of
lives and properties that is unavoidable in so many petro-chemical
engineering applications. For instance, when working with com-
bustible fluids of high flash points. To achieve the set objective, a
new modification of the Adomian decomposition method together
with Pade approximation of the solution will be used to obtain the
solution of the nonlinear differential equation. Similar approach has
been used in literature [10-22] to obtain solution to several nonlin-
ear problems.
The rest of the paper is organized as follows. Section 2 presents

the formulation of the problem. In section 3, the method of solution
is described while section 4 deals with the discussion of results based
on the physics of the problem. Finally, section 5 concludes the
paper.

2. MATHEMATICAL MODEL

Consider the steady flow of a viscous incompressible combustible
internal heat generating fluid in the x-direction between imperme-
able boundaries at y = ±h. The fluid is assumed to be under the
influence of an external uniform magnetic field placed across the
channel subjected to convective cooling at the boundaries as shown
in the figure below. Neglecting the reactant consumption, the

dimensionless governing equations from the momentum and energy
equations are [5]:

0 = A+ u′′ + 6γu′′(u′)2 −H2u, (1)

0 = θ′′ + λe
θ

1+εθ + α[(u′)2(1 + 2γ(u′)2) +H2u2], (2)

together with the following boundary conditions

u′(0) = 0, u(1) = 0, θ′(0) = 0, θ′(1) = Biθ(1). (3)
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Fig. 1. Problem geometry

Additional term in the momentum equation is the Hartmann num-
ber H2that measures the magnetic field intensity while the last
terms in the energy equation is the Ohmic heating or Joule dissi-
pation term.
The following dimensionless variables have been used for the above
expressions
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where u is the fluid velocity, a is the channel half width, Ta is the
fluid reference temperature, h is the heat transfer coefficient, T the
fluid temperature, p is the pressure, β3 is the material coefficient, k
the thermal conductivity, μ is the dynamic viscosity, C0 is the initial
concentration of the reactant specie, R is the universal gas constant,
Q is the heat of reaction,A is the rate constant, E is the activation
energy, γ is the dimensionless third grade material parameter, λ is
the Frank-Kameneskii parameter, α viscous heating parameter, θ
is the dimensionless temperature, u is the dimensionless velocity,
ε is the activation energy and H2 is the Hartmann Number, Bi is
the Biot number, B0 is the intensity of magnetization and k is the
thermal conductivity coefficient.

3. ADOMIAN DECOMPOSITION METHOD OF SOLUTION
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To obtain the approximate solution of the velocity and temper-
ature profiles, the differential equations (1) - (2) is converted to
integral equations. Using the boundary conditions, one obtains

u(y) = a0 +

∫ y

0

∫ y

0

{(H2u−A− 6γu′′(u′)2)dY dY , (4)

θ(y) = b0 −
∫ y

0

∫ y

0

{(λe θ
1+εθ + α[(u′)2(1 + 2γ(u′)2) +H2u2])dY dY ,

(5)
Where the constants a0 and b0 are to be determined later using
the other boundary conditions. Adomian decomposition method
assumes series solutions in the form:

u =

∞∑
n=0

un(y), θ =

∞∑
n=0

θn(y), (6)

Using (6) in (4) - (5) leads to

u0(y) = a0 −
∫ y

0

∫ y

0

{(A)dY dY

un+1(y) =

∫ y

0

∫ y

0

{(H2un − 6γBn)dY dY ;n ≥ 0, (7)

together with the modified algorithm

θ0(y) = b0

θ1(y) = −
∫ y

0

∫ y

0

{λC0 + α(u′)2}dY dY

θ2(y) = −
∫ y

0

∫ y

0

{λC1 + 2γα(u′)4}dY dY

θn+1(y) = −
∫ y

0

∫ y

0

{λCn + αH2u2}dY dY, n ≥ 2, (8)

the approximate solutions are given by the partial sum

u =

k∑
n=0

un(y), θ =

k∑
n=0

θn(y). (9)

The nonlinear terms in (4) and (5) are identified as

B = u′′(u′)2, C = e
θ

1+εθ , (10)

are decomposed into Adomian polynomials

B0 = u′′
0(u

′
0)

2
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0u

′
1u

′
0 + u′′
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2 + 2u′′
0u

′
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′
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with other terms and

C0 = e
θ0

1+εθ0

C1 =
θ1

(1 + εθ1)2
e

θ0
1+εθ0

C2 =
(1− 2ε− 2ε2θ0)θ

2
1 + 2(1 + εθ2θ

2
0)

2(1 + εθ1)4
e

θ0
1+εθ0 , (12)

respectively.
3.1 PADE APPROXIMANT

It is well known that power series solution may not be useful as
n goes to ∞ and could not provide adequate information on the
behaviour of the solution especially at the critical points. Hence
it is necessary to obtain the continuation of the series solution (9)
by using Pade-approximant. The solution continuation using Pade
approximant has been shown to be more reliable and convergent
on the entire real axis if the underlying series solution is free of
singularities on the real axis. Nowadays, the Pade approximant is
built in many symbolic packages like Mapple, Mathematica, Matlab
etc. Using Mathematica built-in Pade-approximant procedure, the
diagonal form of the series solution (9) is evaluated at y = 1 so as
to obtain expressions for the two unknown constants in the form

u(1) = 0, θ′(1) = Biθ(1). (13)

Taking the diagonal Pade approximants [M/M] of (13) at various
values of M leads to an eigenvalue problem. As a criterion for
convergence of the method, the unknown constants are evaluated
at specific parameter values as shown in Tables 1-2. While the
critical values of the Frank-Kameneskii parameter (λc ) for the non-
existence of solution or thermal runaway is presented in Table 3.

4. RESULTS AND DISCUSSION

In this section, the mADM - Pade approximant solution of the
hydromagnetic fluid flow is presented. The rapid convergence of
the two solutions is shown in Tables 1-2. Table 3 shows that an
increase in the Biot number stabilizes the fluid flow, this is in perfect
agreement with previously obtained result in [5]. Interestingly, an
increase in the magnetic field intensity is observed to delay the
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development of thermal runaway thereby stabilizing the flow. This
is due to fact that the convective cooling suppresses the additional
heat generated due to Ohmic heating of the fluid. Figure 2 shows
the velocity profile for variations in the magnetic field intensity. As
observed from the graph, maximum flow occurs at minimum value
of the Hartmann’s number. Therefore, an increase in the magnetic
field intensity leads to a decrease in the velocity. This is physically
true due to the retarding effect of Lorentz forces present in the
magnetic field when applied perpendicularly to the flow channel.

Table 1: Numerical values of a0

Pade H γ ul um

2/2 1 0.1 -9.91861456 0.3315775
3/3 1 0.1 -9.91861456 0.3315775
5/5 1 0.1 -9.91861456 0.3315775
10/10 1 0.1 -9.91861456 0.3315775
20/20 1 0.1 -9.91861456 0.3315775

Table 2: Numerical values of b0 for Bi = 10, α = 1, ε = 0.1 = γ

Pade H λ θL θU
2/2 1 0.5 0.584186 4.10862
3/3 1 0.5 0.584185 4.11214
4/4 1 0.5 0.584186 3.69915
5/5 1 0.5 0.584186 3.69868
8/8 1 0.5 0.584186 3.73301
10/10 1 0.5 0.584186 3.73300
30/30 1 0.5 0.584186 3.73300
50/50 1 0.5 0.584186 3.73300

Table 3: Effect of different parameters on the development of thermal
runaway

Pade H γ ε Bi α λc

2/2 1 0.1 0.1 10 1 0.749345825095
2/2 2 0.1 0.1 10 1 0.760652140485
2/2 3 0.1 0.1 10 1 0.771113308470
2/2 1 0.1 0.1 10 1 0.749345825095
2/2 1 0.1 0.1 20 1 0.825329078304
2/2 1 0.1 0.1 200 1 0.905752170696
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Fig. 2. Fluid velocity profile with variations in Magnetic field intensity

Fig. 3. Fluid velocity profile with variations in third grade material
parameter

Figure 3 shows the velocity profile for variations in the non-Newtonian
material parameter. As observed from the graph, an increase in the ma-
terial parameter decreases the velocity maximum within the channel.
This is due to the fact that fluid thickening leads to reduction in the
degree of freedom of the fluid particles. Figure 4 shows the temperature
profile for variations in the Hartmann’s number. The result shows that
an increase in the Hartmann’s number lead to an increase in the fluid
temperature due to the contribution of Joule heating of the fluid.In fig-
ure 5, the variation of temperature with Frank-Kameneskii parameter is
presented. From the result, it is noticed that an increase in the Frank-
Kameneskii parameter leads to increase in the fluid temperature, due to
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Fig. 4. Fluid temperature profile with variations in magnetic field
intensity

Fig. 5. Fluid temperature profile with variations in Frank-Kameneskii
parameter

increase in the heat liberated during the exothermic chemical reaction.
Figure 6 presents the temperature profile for variations in the viscous
heating parameter. The graph shows that an increase in the viscous
heating parameter increases the fluid temperature due to conversion of
kinetic energy in the moving fluid to internal energy. In figure 7, the
plot of temperature against the non-Newtonian material parameter is
presented. The graph shows that an increase in the material parameter
decreases the fluid temperature due to increase in the fluid viscosity. Fig-
ure 8 shows the temperature profile with variations in convective cooling
parameter. It is observed that an increase in the Biot number decreases
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Fig. 6. Fluid temperature profile with variations in viscous heating
parameter

Fig. 7. Fluid temperature profile with variations in third grade
material effects

the fluid temperature. This is true since increase in Biot number im-
plies a decrease in the fluid thermal conductivity. Finally, as observed
in Figure 9 the problem has two solutions whenever λ < λc and a single
solution at λ = λc after which solutions ceases to exist wheneverλ > λc

.

5. CONCLUSION

The mADM-Pade approximant is used to examine the hydromagnetic
flow of reactive third grade fluid though parallel plates with convective
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Fig. 8. Fluid temperature profile with variations in Biot number

Fig. 9. A slice of approximate bifurcation diagram

cooling. An increase in the Hartmann’s number and third grade material
effect decreases the velocity profiles. However, an increase in the Hart-
mann’s number, Frank-Kameneskii parameter and viscous heating pa-
rameters increases the temperature distribution within the channel while
increase in the symmetrical convective cooling and non-Newtonian ma-
terial parameters decreases the temperature profiles. Additionally, the
result of the computation shows that increase magnetic field intensity
across the channel has stabilizing effect on the fluid flow. Comparisons
made with existing results in literature shows that the combination of
mADM-Pade is a promising efficient and effective method in solving
nonlinear problems with blow-up solutions.
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