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1. INTRODUCTION

Since the celebrated pioneering work of Prandtl [1] in 1904, sev-
eral analyses of the boundary layer theory have been carried out
under various conditions. Magnetohydrodynamic (MHD) flows are
examples of such analyses. In the current analysis, we shall be con-
cerned with two dimensional boundary layer problems. For an in-
troduction to two dimensional boundary layer problems, the reader
is referred to [2].
MHD flow of electrically conducting fluid in the presence of an

applied magnetic field has received considerable attention because
of the numerous applications to geophysics, astrophysics, engineer-
ing and other industrial areas. Magnetic fields are produced by
charged particles in motion, and depend on the charge and veloc-
ity of these particles. In particular, moving point charges, such as
electrons, produce complicated but well known magnetic fields that
depend on the charge, velocity, and acceleration of the particles [5].
In the study of MHD flows, magnetic fields are either assumed to
be uniform or time or/and space variables dependent. For the ex-
amples of a few of such studies, we refer the reader to [6]–[16] and
the literature cited in them. To our knowledge, there is, to date,
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no analysis where the MHD flow has been considered with velocity
dependent magnetic field.
Motivated by previous works, we study, first in our series of in-

tended analyses, the MHD flow in nonlinear velocity dependent
magnetic fields near the leading edge of a flat plate of negligible
thickness.
The remaining part of this paper is organized as follows: The

mathematical formulation is presented in Section 2. Some auxil-
iary results are stated and proved in Section 3. In Section 4, the
existence of unique classical solution to the problem is proved in a
convex subset of C2(0, 1) for some small non-negative parameters;
while the existence of non-unique classical solution is proved in a
convex and compact subset of C2(0, 1), without restriction on the
parameters. Finally, we give illustrative examples for which our
results apply in Section 5.

2. MATHEMATICAL FORMULATION

We consider a steady two-dimensional laminar flow of an incom-
pressible and electrically conducting fluid of density ρ, near the
leading edge of a flat plate of negligible thickness. We assume that
(x, y) is the Cartesian coordinates of any point in the domain of
flow, where x − axis is along the plate and y − axis is normal to
it. We assume that u and v are the velocity components in the x
and y directions respectively; and that a nonlinear magnetic field
H(x, u) is applied normally to the plate.
Within the boundary-layer approximation, the continuity and

Navier-Stokes equations can be simplified to the following equa-
tions:

∂u

∂x
+
∂v

∂y
=0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σμ2H2(x, u)

ρ
(u− u∞) . (2)

(1)–(2) are to be solved with the boundary conditions

v(x, 0)= 0, (3)

u(x, 0) = 0, u(x,∞)= u∞, u(0, y) = u∞, (4)

where ν is the kinematic viscosity, σ is the electrical conductivity of
the fluid and μ is the magnetic permeability. In the absence of the
magnetic field (the case H = 0), an approximate solution of (1)–(3)
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is obtained in [2]; while the exact numerical solution is obtained by
Blasius [17].
Now, (1) can be solved for v with the boundary condition (3) and

substituted into (2) to get the integro-differential equation

u
∂u

∂x
+

(∫ y

0

∂u

∂x

)
∂u

∂y
= ν

∂2u

∂y2
− σμ2H2(x, u)

ρ
(u− u∞) . (5)

Thus the nonlinear problems (1)–(4) are now reduced to the non-
linear problems (4)–(5). Consequently, we seek the solution to the
problems (4)–(5).
We assume, as in [2], that the velocity profiles at various values

of x have the same shape:

u

u∞
= U(Y ) where Y =

y

δ(x)
, (6)

where δ(x) is the boundary layer thickness at a distance x down
the plate. Further, we assume that u = u∞ outside the boundary
layer. For our current analysis we set

H(x, u) :=
A

δ(x)
f (U(Y )) , (7)

where A is the current (in amperes) and the nonlinear function
f : R → R satisfies

|f(u)− f(v)| ≤ L|u− v| (Lipschitz continuity). (8)

Using (6)–(7), (4)–(5) transform to the similarity problems

U ′′ =Rm

[
−UU ′Y +

(∫ Y

0

U ′(s)sds
)
U ′

]
+Mf 2(U)(U − 1)

=−RmU
′
∫ Y

0

U(s)ds+Mf 2(U)(U − 1), Y ∈ (0, 1), (9)

U(0)= 0, U(1) = 1, (10)

where

Rm :=
u∞δ
ν

dδ

dx
is a modified Reynold’s number, (11)

M :=
σμ2A2

ρν
is the Hartmann number. (12)

Notice that (11) implies that the boundary layer thickness is

δ(x) =

√
2νRmx

u∞
=

√
2Rm

√
νx

u∞
, (13)



76 S. A. SANNI

where we have imposed the condition δ(0) = 0. (13) implies that
the boundary layer thickness depends on the modified Reynolds
number Rm. We mention that the approximate solution presented
in [2] is the special case where Rm = 140

13
.

The following Lemma can be easily proved:

Lemma 1. The boundary value problems (9)–(10) are equivalent
to the integral equation

U =

[
1 +Rm

∫ 1

0

∫ s

0

[
U(s)U(t)− U2(t)

]
dtds−

M

∫ 1

0

∫ s

0

f 2(U(t))(U(t) − 1)dtds

]
Y −

Rm

∫ Y

0

∫ s

0

[
U(s)U(t)− U2(t)

]
dtds+

M

∫ Y

0

∫ s

0

f 2(U(t))(U(t) − 1)dtds. (14)

We apply the following theorems in this paper:

Theorem 1. A set S of real numbers is compact if and only if it
is closed and bounded. (see [3]).

Theorem 2. (Schauder’s Fixed Point Theorem). Let X be a real
Banach space. Suppose K ⊂ X is compact and convex; and assume

A : K → K

is a continuous mapping. Then A has a fixed point in K. (see [4]).

3. AUXILIARY RESULTS

In this section, we state and prove two useful lemmas and a the-
orem.

Lemma 2. Let w ∈ C(0, 1). Suppose the condition (8) holds. Then
f(w) ∈ C(X), where

X := {w(Y ) ∈ R | 0 ≤ Y ≤ 1}. (15)

Proof. Notice that the condition (8) implies that f is continuous.
Hence, we need only to prove that supX |f(w)| <∞. Using (8), we
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deduce:

|f(w)− f(0)|2= f 2(w) + f 2(0)− 2f(w)f(0) ≤ L2|w|2 or

f 2(w)≤L2|w|2 − f 2(0) +
1

2
f 2(w) + 2f 2(0)

(by Young’s inequality)

≤L2|w|2 + f 2(0) +
1

2
f 2(w) (16)

sup
X

|f(w)| ≤ γ(‖w‖C(0,1) + 1) <∞, (17)

here γ is defined as

γ :=
√

2max{L2, f 2(0)} (18)

�
Lemma 3. Let U, Ũ ∈ C(0, 1) and f satisfy (8), then we have the
estimates:

|U2 − Ũ2| ≤
(
‖U‖C(0,1) + ‖Ũ‖C(0,1)

)
‖U − Ũ‖C(0,1) (19)

|f 2(U)(U − 1)− f 2(Ũ)(Ũ − 1)|
≤ γ2

(
‖U‖C(0,1) + ‖Ũ‖C(0,1) + 1

)2

‖U − Ũ‖C(0,1), (20)

Proof. The proof of (19) is trivial, and therefore omitted. We render
the proof of (20):

|f2(U)(U − 1)− f2(Ũ )(Ũ − 1)|
= |f2(U)(U − 1)− f2(U)(Ũ − 1) + f2(U)(Ũ − 1)− f2(Ũ)(Ũ − 1)|
≤ |f2(U)(U − Ũ) + (Ũ − 1)(f2(U)− f2(Ũ))| (21)

≤ L
(
‖Ũ‖C(0,1) + 1

)(
‖f(U)‖C(X) + ‖f(Ũ )‖C(X)

)
‖U − Ũ‖C(0,1)

+‖f(U)‖2C(X)‖U − Ũ‖C(0,1), (22)

where we have used (8) and (19) to estimate the second term on
the right side of (21). Using (17) in (22) and simplifying, we deduce
(20). �
Consider the linear boundary value problem:

U ′′ =−Rmr
′
∫ Y

0

r(s)ds+Mf 2(r)(r − 1), Y ∈ (0, 1), (23)

U(0)= 0, U(1) = 1, (24)

where r ∈ C2(0, 1) is a known function of Y ; and Rm, M are fixed
positive numbers.



78 S. A. SANNI

Theorem 3. (A priori estimates). Let ψ be a solution of (23)–
(24). Then ψ ∈ C2(0, 1), and we have the estimate:

‖ψ‖C2(0,1) ≤ 2 + 9Rm‖r‖2C2(0,1) + 5M‖f‖2C(X)(‖r‖C2(0,1) + 1) =: Λ

(25)

Proof. Using Lemma 1, the problem (23)–(24) admits the unique
solution:

ψ=

[
1 +Rm

∫ 1

0

∫ s

0

[
r(s)r(t)− r2(t)

]
dtds−

M

∫ 1

0

∫ s

0

f 2(r(t))(r(t)− 1)dtds

]
Y −

Rm

∫ Y

0

∫ s

0

[
r(s)r(t)− r2(t)

]
dtds+

M

∫ Y

0

∫ s

0

f 2(r(t))(r(t)− 1)dtds. (26)

It is clear that ψ is twice continuously differentiable. We readily
estimate:

sup
C(0,1)

|ψ| ≤ 1 + 4Rm‖r‖2C2(0,1) +

2M‖f‖2C(X)(‖r‖C(0,1) + 1) <∞, (27)

sup
C(0,1)

|ψ′| ≤ 1 + 4Rm‖r‖2C2(0,1) +

2M‖f‖2C(X)(‖r‖C(0,1) + 1) <∞, (28)

sup
C(0,1)

|ψ′′| ≤ Rm‖r‖2C2(0,1) +

M‖f‖2C(X)(‖r‖C2(0,1) + 1) <∞, (29)

where we have used Lemma 2 to estimate f . Combining (27)–(29)
yields (25). �

4. MAIN RESULT

Theorem 4. (i) Let max{9Rm, 5γ
2M} > 0 be sufficiently small.

Then there exist unique classical solutions to the boundary value
problems (9)–(10).

(ii) For any max{9Rm, 5γ
2M} > 0, there exists classical solutions

to the boundary value problems (9)–(10).
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Proof. We split the proof in 8 steps.
Step 1. The fixed point argument to (9)–(10) is

w′′=−RmU
′
∫ Y

0

U(s)ds+Mf 2(U)(U − 1), Y ∈ (0, 1), (30)

w(0)= 0, w(1) = 1 (31)

Define a mapping

A : C2(0, 1) → C2(0, 1)

by setting A[U ] = w whenever w is derived from U via (30)–(31).

Step 2. Choose U, Ũ ∈ C2(0, 1), and define A[U ] = w, A[Ũ ] = w̃.
For two solutions w, w̃ of (30)–(31), we employ (26) to deduce:

w − w̃ =[
Rm

∫ 1

0

∫ s

0

[
U(s)U(t) − Ũ(s)Ũ(t)− (U2(t)− Ũ2(t))

]
dtds

−M
∫ 1

0

∫ s

0

[f 2(U(t))(U(t)− 1)− f 2(Ũ(t))(Ũ(t)− 1)]dtds

]
Y

−Rm

∫ Y

0

∫ s

0

[
U(s)U(t)− Ũ(s)Ũ(t)− (U2(t)− Ũ2(t))

]
dtds

+M

∫ Y

0

∫ s

0

[f 2(U(t))(U(t)− 1)− f 2(Ũ(t))(Ũ(t)− 1)]dtds. (32)

Using Lemma (3) and (32) we deduce:

‖w − w̃‖C2(0,1)

≤ C
(
‖U‖C2(0,1) + ‖Ũ‖C2(0,1) + 1

)2

‖U − Ũ‖C2(0,1) (33)

where C := max{9Rm, 5γ
2M}.

Notice that the bound in (33) is not uniform. Consequently, we
need to prove the existence of solutions in a subset of C2(0, 1).
Define a convex set

K := {U ∈ C2(0, 1)| ‖U‖C2(0,1) ≤ 2Λ}, (34)

where Λ = constant is the bound in (25) of Theorem 3.
Step 3. We now prove Theorem 4(i). We claim that, if
max{9Rm, 5γ

2M} > 0 is sufficiently small, then A is a contraction
mapping. We will show that if max{9Rm, 5γ

2M} is sufficiently
small, then

A[K] ⊆ K, ‖A[U ]−A[Ũ ]‖C2(0,1) ≤ 1

4
‖U − Ũ‖C2(0,1), (35)
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for all U, Ũ ∈ K. Using (25), we have

‖A[r]‖C2(0,1) = ‖ψ‖C2(0,1) ≤ Λ < 2Λ. (36)

Thus, ψ defined by (25) belongs to K; so that the set K is not
empty. Using (33) and (36), we have for any U ∈ K,

‖A[U ]‖C2(0,1) ≤ ‖A[r]‖C2(0,1) + ‖A[U ]− A[r]‖C2(0,1)

≤ Λ+ C
(‖U‖C2(0,1) + ‖r‖C2(0,1) + 1

)2 ‖U − r‖C2(0,1)

≤ Λ+ C (4Λ + 1)2 (4Λ) ≤ 2Λ,

for C := max{9Rm, 5γ
2M} > 0 sufficiently small that

max{9Rm, 5γ
2M} (4Λ + 1)2 <

1

4
. (37)

Thus A[K] ⊆ K. Furthermore, using (37), (33) implies that

‖A[U ]−A[Ũ ]‖C2(0,1) = ‖w − w̃‖C2(0,1) <
1

4
‖U − Ũ‖C2(0,1),

for all U, Ũ ∈ K. Consequently, the mapping A is a strict contrac-
tion for sufficiently small parameter max{9Rm, 5γ

2M} > 0.
Step 4. Write U0 = Y . For k = 0, 1, 2, ..., inductively define Uk+1 ∈
K to be the unique weak solution of the linear boundary value
problem

U ′′
k+1 = −RmU

′
k

∫ Y

0

Uk(s)ds+Mf 2(Uk)(Uk − 1), Y ∈ (0, 1),(38)

Uk+1(0) = 0, Uk+1(1) = 1. (39)

By the definition of the mapping A, we have for k = 0, 1, 2, ...:

Uk+1 = A[Uk].

Since A is a contraction mapping, there exists, by the Banach fixed
point theorem (see for example [18]), a unique U ∈ K such that

lim
k→∞

Uk+1 = lim
k→∞

A[Uk] = A[U ] = U (40)

Step 5. Using (17), we deduce

sup
X

|f(Uk)| ≤ γ(‖Uk‖C(0,1) + 1) <∞, (41)

where γ and X are defined by (15) and (18) respectively. We now
use (40) to take the limit on the right side of (41) to conclude

sup
k

‖f(Uk)‖C(X) <∞. (42)

(42) implies the existence of a subsequence of {f(Uk)}∞k=1, still de-
noted by {f(Uk)}∞k=1, converging strongly in X to f(U) in X.
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Step 6. We now verify that U is the classical solution of (9)–(10).
Using (40) and the deduction of the last step, we let k → ∞ in
(38)–(39) to obtain (9)–(10) as desired.
Step 7. We next prove 4(ii). For any U ∈ K, define

U∗ :=
αΛ

1 + 2Λ2
U for some α ∈ [1, ‖r‖C2(0,1)],

where r = r(Y ) is the assumed known function in (23). It is not
difficult to check that

U∗ ∈ K∗ := {V ∗ ∈ C2(0, 1)| ‖V ∗‖C2(0,1) ≤ αΛ}.
Notice that the set K∗ is bounded and closed; and hence, by Theo-
rem 1, compact. Notice also that K is convex. Without restriction
on the parameters, we claim that A is a continuous mapping. We
will prove our claim in the next step. We will show that

A[K∗] ⊆ K∗, ‖A[U ]−A[Ũ ]‖C2(0,1) ≤ C‖U − Ũ‖C2(0,1),

for all U, Ũ ∈ K∗, where C := max{9Rm, 5γ
2M} (2αΛ+ 1)2 .

Step 8. Using (25), we deduce that:

‖A[r]‖C2(0,1) = ‖ψ‖C2(0,1) ≤ Λ ≤ αΛ. (43)

Thus ψ defined by (25) belongs to K∗; so that K∗ is not empty. We
have for any U ∈ K∗ that U = αΛ

1+2Λ2V for some V ∈ K. Employing

(25) once more, we compute:

‖A[U ]‖C2(0,1) =

∥∥∥∥A
[

αΛ

1 + 2Λ2
V

]∥∥∥∥
C2(0,1)

≤ 2 + 9Rm
α2Λ2

(1 + 2Λ2)2
‖V ‖2C2(0,1)

+5M‖f‖2C(X)

(
αΛ

1 + 2Λ2
‖V ‖C2(0,1) + 1

)

≤ 2 + 9Rm
α2Λ2(2Λ)2

(1 + 2Λ2)2

+5M‖f‖2C(X)

(
αΛ(2Λ)

1 + 2Λ2
+ 1

)
(since V ∈ K)

≤ 2 + 9Rmα
2 + 5M‖f‖2C(X)(α + 1)

≤ 2 + 9Rmα
2 + 5M‖f‖2C(X)(α + 1) (44)

≤ 2 + 9Rm‖r‖2C2(0,1) + 5M‖f‖2C(X)(‖r‖C2(0,1) + 1) = Λ ≤ αΛ,
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using 1 ≤ α ≤ ‖r‖C2(0,1). Thus A[K
∗] ⊆ K∗, since U was arbitrarily

chosen. Hence for all U, Ũ ∈ K∗, (33) implies that

‖A[U ]−A[Ũ ]‖C2(0,1) ≤ max{9Rm, 5γ
2M} (2αΛ + 1)2 ‖U−Ũ‖C2(0,1).

(45)
Thus, the mapping A is Lipschitz continuous on K∗, and hence
continuous on K∗. Since the set K∗ is convex and compact; and the
mapping A is continuous onK∗, by Schauder’s fixed point Theorem
2, A has a fixed point in K∗. Consequently, employing once more
the linear boundary value problem (38)–(39), there exists U ∈ K∗

such that

lim
k→∞

Uk+1 = lim
k→∞

A[Uk] = A[U ] = U. (46)

Steps 5 and 6 can now be repeated to conclude the proof of Theorem
(4)(ii). �

Remark Notice that for sufficiently small Rm and M , we can infer
from (14) that U is approximately linear. Since we have proved
uniqueness of solutions for small parameters, we infer that the
uniqueness of solution is provable when U is sufficiently approx-
imately linear.

5. ILLUSTRATIVE EXAMPLE

Example 1: Consider the boundary value problem

U ′′ =−0.0002U ′
∫ Y

0

U(s)ds +

2
(
0.01

√
U2 + 1

)2

(U − 1), Y ∈ (0, 1), (47)

U(0)= 0, U(1) = 1. (48)

Here Rm = 0.0002, M = 2, f(U) = 0.01
√
U2 + 1, γ =

√
0.0002.

Consider the auxiliary linear problem

U ′′ =−0.0002Y ′
∫ Y

0

sds+

2
(
0.01

√
Y 2 + 1

)2

(Y − 1), Y ∈ (0, 1), (49)

U(0)= 0, U(1) = 1. (50)

It is clear that ‖Y ‖C(0,1) = 1 and ‖Y ‖C2(0,1) = 2. By analogy with
(23)–(24), Λ for the current auxiliary problem can be obtained,
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using (25), as

Λ = 2 + 9(0.0002)× 2 + 5× 2(.01
√
2)2 × 2 = 2.0076.

Hence, using (34), we thus have the convex set

K := {U ∈ C2(0, 1)| ‖U‖C2(0,1) ≤ 4.0152},
in which we seek the solution of (47)–(48). Now

max{9Rm, 5γ
2M} (4Λ + 1)2

= max{9(.0002), 5(.0002)× 2}(4(2.0076) + 1)2 =

= (0.002)(9.0304)2 <
1

4
, (51)

so that the condition (37) is satisfied. By Theorem 4(i), there exists
a unique solution U ∈ K of (47)–(48). We display in Figure 1, the
numerical solution of (47)–(48), which is approximately linear; and
shows monotonic increase of the dimensionless velocity U from the
plate across the dimensionless normal space variable Y within the
boundary layer. The observed approximate linearity jells with the
remark at the end Section 4.

FIG. 1: Profile of the unique U against Y .
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Example 2: Consider next, the boundary value problem

U ′′ =−0.2U ′
∫ Y

0

U(s)ds + (52)

M
(
0.1

√
U2 + 1

)2

(U − 1), Y ∈ (0, 1),

U(0)= 0, U(1) = 1. (53)

Theorem 1(ii) is applicable to this example, in which the operator
A defined for (52)–(53) is not contractive; so that uniqueness of
solutions are not guaranteed. Numerical solutions of (52)–(53) are
displayed in Figure 2 for various values of the Hartmann number
M. The figure shows that the effects of the magnetic field on the
dimensionless velocity become more pronounced with increase in
the field. This result is in agreement with the deduction of DePuy
[19], in investigating the steady state channel flow of an electrically
conductive liquid exposed to transverse magnetic and electric fields.

FIG 2: Profiles of U against Y for various values of M .
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