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A NONLINEAR DETERMINISTIC MODEL FOR HIV-

INFECTION DYNAMICS WITH OPTIMAL CONTROL
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ABSTRACT. A non-linear deterministic model representing the
interaction of a chronic retrovirus HIV and immune system of
the human body is presented. The Optimal control of this model
is explored using a power series method. We obtain the dis-
critized control function 0 � u(t) � 1 which maximizes the total
count of CD+

4 T cells and minimizes the costs of the chemother-
apy of HIV. Moreover, the numerical results are obtained using
an iterative method by Runge-Kutta fourth order scheme.
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1. INTRODUCTION

Several mathematical models describing the interaction of the hu-
man immune-deficiency virus (HIV) with the immune system of the
human body have been developed by researchers, see the references
therein for examples. These models have become important tools
for controlling the spread of the retrovirus HIV from developing
into a full blown acquired immune-deficiency syndrome (AIDS).
The spread of HIV/AIDS epidemic continues around the world

since its discovery in the early 1980’s. HIV is a ”retrovirus”, a virus
that is able to incorporate its own genome into the DNA of a cell
that is infecting, thereby reversing the process of DNA replication
[6]. In particular, the CD+

4 T (white blood cells) that HIV infects
are the very ones that are necessary to ward off the invasion. The
CD4 represents a protein marker on the surface of the CD+

4 T cell
and the T in the CD+

4 T cell describes the connection to the thymus
gland where the cells mature [2].
The count of CD+

4 T cells is a primary indicator used to measure
progression of HIV infection. Whereas, in a normal person, the level
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of CD+
4 T cells in the peripheral blood is related at a level between

800 and 1200mm−3 [10]. Once the disease has progressed and the
CD+

4 count in the body falls below 200 cells, a person is diagnosed
with AIDs, and immunity to infection is lost [9]. Due to the devas-
tating effects HIV/AIDs epidemic has on lives and economic growth
[8], control and preventive measures such as affinity hemodialysis
of the infected blood [1] and the use of condoms [4] are proposed.
However, in [4], it is shown that HIV may not be controlled using
condoms alone in a population where the average number of HIV
infected partners is large and preventability threshold is perhaps
unattainable.
Thus, the therapeutic strategies appear promising for retarding

the progression of HIV infection but because of the high cost and
high risk of side effects (poisoning) of the therapeutic treatment, it
is pertinent to use mathematical models in obtaining the optimal
amount of medicine consumption in the control program of HIV.
See [2,7,11,12] for some techniques used.
In this paper, we present a new system of ordinary differential

equations modelling the interaction between the retrovirus HIV and
the immune system of the human body. Unlike the previous tech-
niques, we adopt a power series method to explore the optimal
control of the formulated model.

2. MODEL FORMULATION

Let the concentration of the uninfected CD+
4 T cells be represented

by X(t) and let Y (t) represent the concentration of latently infected
CD+

4 T cells. Z(t) denotes the concentration of actively infected
T-cells and V (t) represents the free virus particles concentration.
With modification on [11,12],we obtain a new system of nonlinear
equations as follows:

dX

dt
= s+ rX

(
1− X + Y + Z

Nmax

)
− μ1X − k1V X (2.1)

dY

dt
= k1V X − μ2Y − k2Y (2.2)

dZ

dt
= k2Y − μ3Z + k3V Y (2.3)

dV

dt
= β(1− u)

(
1− Z

L

)
− μ4V − k3V Y (2.4)

together with the initial conditions

X(0) = 820mm−3, Y (0) = 0, Z(0) = 0, V (0) = 1mm−3
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Where s is a source term for uninfected cells produced from the
bone marrow and represents the rate of generation of new CD+

4 T
cells. r is the coefficient of the growth rate of uninfected CD+

4 T
cells in the thymus gland, which is a logistic-type growth. This
growth ensures that the uninfected CD+

4 T never grow larger than
the maximum T-cells level denoted by Nmax. μ1, μ2, μ3, μ4 with neg-
ative signs indicate the rate of normal death of uninfected CD+

4 T
cells, latently infected CD+

4 T cells, actively infected CD+
4 T cells

and free infectious virus respectively. k1 is the rate that free virus
infects T-cells, and k2, rate latently infected T-cells convert to ac-
tively infected cells. In the chronic stage of infection, the term
k3V Y emerges. This shows that the free virus is lost by connecting
to already infected but latent cells at a rate k3 and instantly boosts
the actively infected cells population. Thus k3V Y is added to the
population equation (2.3) describing the concentration of actively
infected CD+

4 T cells. However, the actively infected CD+
4 T cells,

Z(t), enhances the increase of virus to a maximum level L at a rate
β. Moreover, the optimal chemotherapy treatment is considered
with the control u(t) affecting the production of the free virus.

3. OPTIMAL CONTROL

For most HIV chemotherapy drugs, the length of treatment is less
than 2 years. To prevent the transmission of uninfected CD+

4 T cells
to infected ones and keep the side effects of the medicine therapy
in low level, the following target function is used [2,7,11].

J(u) =

∫ t1

t0

(
X(t)− B

2
u(t)2

)
(3.1)

The interest is to maximize (3.1). That is, maximizing the total
count of CD+

4 T cells and minimizing the cost and high risk of the
chemotherapy. The parameter B > 0 represents the desired weight
on the benefit and cost. The control for the chemotherapy, u(t),
is chosen to be measurable functions defined on [t0, t1], with the
condition 0 � u(t) � 1. The most drug efficacy is in the case u = 1,
which means that CD+

4 T cells are not infected by viral load any
more while u = 0 indicates that the drug does not change the
disease progression.

4. POWER SERIES METHOD

In [3], theoretical considerations and applications of the power series
method have been discussed. In the sequel, we use this method to
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obtain the control u(t), satisfying 0 � u(t) � 1, for the chemother-
apy of HIV. The procedure follows:
From initial conditions, the solution of (2.1) - (2.4) can be expressed
as:

X(t) = 820 + a1t (4.1)

Y (t) = b1t (4.2)

Z(t) = c1t (4.3)

V (t) = 1 + d1t (4.4)

Substituting (4.1) - (4.4) into (2.1) - (2.4) and neglect high order
term O(t), we obtain

a1 = 4.73232, b1 = 0.019680, c1 = 0 and d1 = −(6.76 + 0.24u).

We have used some of the following data [2, 11] in the process

μ1 = 0.02/d, μ2 = 0.03/d, μ3 = 0.24/d, μ4 = 7/d

k1 = 0.000024mm3/d, k2 = 0.003/d, k3 = 0.0002/d, r = 0.03/d

β = 0.24/d, L = 1200, Nmax = 1500mm−3, s = 10mm−3

Next, suppose
X(t) = 820 + a1t+ a2t

2 (4.5)

Y (t) = b1t + b2t
2 (4.6)

Z(t) = c1t + c2t
2 (4.7)

V (t) = 1 + d1t+ d2t
2 (4.8)

On substitution into (2.1) - (2.4) and neglecting O(t2) yields

a2 = 5.012351790 + 0.0023616u, b2 =
−(0.06652065 + 0.0023616u), c2 = 0.00003148 and

d2 = 23.77999803 + 0.72u.

Consequently, repeating the same procedure by extending the series
solutions term by term we have

X(t) = 820+ a1t+ a2t
2+ a3t

3+ a4t
4+ a5t

5+ a6t
6+ a7t

7+ ... (4.9)

Y (t) = b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5 + b6t
6 + b7t

7 + ... (4.10)

Z(t) = c1t + c2t
2 + c3t

3 + c4t
4 + c5t

5 + c6t
6 + c7t

7 + ... (4.11)

V (t) = 1 + d1t+ d2t
2 + d3t

3 + d4t
4 + d5t

5 + d6t
7 + d2t

7 + ... (4.12)

Where the values of the coefficients are given in the tables below:
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Table 1. Values of the coefficients ai of the power series.

i ai
3 3.139672051-0.00471917092u
4 2.753 + 0.008654u + 3.4007 × 10−9u2

5 1.6070 − 0.011872u − 1.3583 × 10−8u2

6 2.10374 + 0.01401u + 3.8350 × 10−8u2 − 4.5343 × 10−16u3

7 0.9781 − 0.01389u − 8.3454 × 10−8u2 − 5.0729 × 10−15u3

Table 2. Values of the coefficients bi of the power series.

i bi
3 0.1559 + 0.004719u
4 0− .2723 − 0.008653u − 3.4007 × 10−9u2

5 0.3814 + 0.01187u + 1.3490 × 10−8u2

6 −0.4448 − 0.01401008264u − 3.8035 × 10−8u2 + 4.5343
×10−16u3

7 0.4449 + 0.01389u + 8.2688 × 10−8u2 + 4.8179 × 10−15u3

Table 3. Values of the coefficients ci of the power series.

i ci
3 −0.00008234 − 0.000002834u
4 0.0001756 + 0.00000625u + 2.8339 × 10−8u2

5 −0.0003318 − 0.00001416u − 1.1468 × 10−7u2

6 0.0005882 + 0.00002875u + 3.2562 × 10−7u2 + 2.7206
×−14u3 + 0.0005882

7 −0.0009898 − 0.00005378u − 7.1166 × 10−7u2 − 1.61472
×10−13u3

Table 4. Values of the coefficients di of the power series.

i di
3 −55.4067 − 1.7599u
4 97.0216 + 3.0199u − 2.8481 × 10−8u2

5 −135.7821 − 4.2759u + 1.5344 × 10−7u2 + 1.1336 × 10−12u3

6 −135.7821 − 4.2759u + 1.5344 × ∗10−7u2 + 1.1336 × 10−12u3

7 −158.4169 − 4.9829u + 0.12018 × 10−5u2 + 1.4636 × 10−11u3

+7.7730 × 10−19u4
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Now, since the therapeutic period requires that t1− t0 < 2 years,
it suffices to assume that the objective function (3.1) becomes

J(u) =

∫ 1

0

(
X(t)− B

2
u(t)2

)
(4.13)

Applying (4.9) into (4.13) and differentiating J(u) with respect to
u, we have

J ′(u) = −0.0003762−2.0967×10−15u2+(−1.307390475×10−8−B)u.
(4.14)

For B = 30 [2,12], the control u is obtained by setting J ′(u) = 0
and since the second derivative J ′′(u) < 0, we show that J(u) is
maximized.

5. DISCUSSION OF RESULTS

Beside the power series method, numerical solutions for the CD+
4 T

cells and virus concentrations are generated using an iterative meth-
od by Runge-Kutta fourth order scheme with Mapple 13 package.
The graphical illustrations are presented hereunder:

Fig. 1. Healthy cells behavior in the optimal control B = 30.
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Fig. 2. Latently infected cells behavior in the optimal control B = 30.

Fig. 3. Actively infected cells behavior in the optimal control B = 30.

Fig. 4. Viral load behavior in the optimal control B = 30.
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In Figure 1, the count of uninfected CD+
4 T cells is maximized

by selecting proper amount of drugs for the control of HIV. In
reality, the number of CD+

4 T cells experiences less decrease and
later picks up during the therapeutic period. Figures 2 and 3 show
the behavior of latently and actively infected cells as the cells grow
due to the mutation of free virus particles but later reduce as a
result of the therapeutic treatment.
Aslo in Figure 4, the viral load behavior experiences decrease dur-

ing therapeutic period. Thus the control u, satisfying 0 � u(t) � 1,
ensures that the cost and risk of the medicine consumption for the
treatment of HIV is minimized.

6. CONCLUDING REMARKS

We have presented a deterministic model which describes the inter-
action between HIV and CD+

4 T of the human body. We demon-
strated how power series method could be used to generate control
0 � u(t) � 1 that maximizes the count of the T-cells and mini-
mizes the viral load with the side effects of the chemotherapy used
for HIV positive patient.
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