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ABSTRACT. An analytic approach based on the functional
framework method is employed to solve a linear model for the
flow of a Maxwell fluid past an infinite plate with or without
the upper surface being free. Explicit solutions are given in the
form of a theorem and the results are compared with those of
Newtonian fluid when the relaxation time λ = 0 and the kine-
matical viscosity (ν) is unity. Also, we recover earlier known
analytical solutions when λ → ∞ and ν/λ = O(1).
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1. INTRODUCTION

Many fluids in manufacturing processes have been treated as vis-
coelastic fluids possessing both elastic and viscous properties. In
[6], for instance, an exact solution corresponding to a Maxwell fluid
was obtained. It was found that the solution for the special limiting
case of Newtonian fluid cannot be obtained from the solution of the
linear problem.
Recently, Fetecau and Fetecau [8] obtained a new exact solution
for the Maxwell fluid using Fourier Sine Transform and deduced
the well-known solution for Newtonian fluid.
However, other traditional analytic techniques for linear problems
are Fourier Series, Laplace transform, and method of separation of
variables [12]. For the fully nonlinear equations, the above tech-
niques have no meanings at all. Perturbation techniques [13] can
be applied to nonlinear case scenarios by regarding the variable, t,
as a small variable. Consequently, such kind of solutions are often
only valued for small time t (see for examples [4], [5], [11], [15]).
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It is worth noting that other techniques are Lyapunov’s small pa-
rameter method [14], the δ-expansion method [11] and Adomian’s
decomposition method [2], [1] [16], [17].
Quite recently, a kind of analytic method, namely the homotopy
analysis method [13] was developed to solve highly nonlinear prob-
lems (see for examples [3], [10], [19]). This technique does not de-
pend upon any small or large parameters. Another method that
is non-parameter dependent and useful for linear and nonlinear
problem is the functional framework technique (see [20]-[22]) for
nonlinear cases as well as [18], [23] and [24] for the linear cases)
In this paper, exact analytical solutions are obtained by the stan-
dard technique of separation of variables through the use of func-
tional framework to reduce the governing partial differential equa-
tions to various ordinary differential equations. As a check on the
functional scheme, it gives precisely the well known simple exact
solutions for the Newtonian fluids when the relaxation time, λ → 0
and ν = 1 i.e Rubel, [24]. Also, simple solutions of Laplace and
wave equations in two variables appear in limiting cases of our so-
lutions. The general closed-form solutions derived in this study can
be employed as a benchmark to validate numerical results.

2. PROBLEM STATEMENT

In this section, we discuss the formulation of the problem using the
concept of the continuity equation, conservation of momentum and
constitutive equations.
Let us consider a Maxwell fluid at rest lying over an infinitely ex-
tended plate which is situated in the (x, z)− plane with the geom-
etry to be of the form of Fig. 1. Here the y axis is perpendicular
to the plate while the x-axis have negligible side effects. The fluid
is set into motion through the action of the stress at the plate. Its
velocity field can be written in the form

V(t,W ) = (0, 0,W (t, y)). (1)

Hence, the continuity equation reduces to

∂W/∂z = 0, (2)

and the momentum equation is given by

ρV̇ = ρb+∇.T, (3)

where b is the body force, ρ is the density of the fluid, T is the
stress tensor, and the dot denotes the material time derivative.
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Fig. 1 : Direction of flow over an extended plate.

The incompressible Maxwell fluid is characterized by a stress ten-
sor T which is related to kinematic variables by

T = −pI + S (4)

S+ λ(Ṡ− LS− SLT ) = μA, (5)

where p is the pressure, I is a unit tensor, S is the extra-stress
tensor, L is the velocity gradient, A = L+ LT which is the Rivlin-
Ericksen tensor, μ is the dynamic viscosity, λ is the relaxation time
and T is the transpose.
The classical formulation of this type of problem assume that the
extra-stress S is a function of t and y only. Substituting equation
(2) into equation (5) and taking into account the initial condition
(the fluid being at rest up to the moment t = 0).

S(t; 0, y, 0) = 0, (6)

we obtain Sxx = Sxy = Sxz = Syy = 0, and Syz = Szy (symmetry
principle) is the shear stress and Szz is the normal stress (see [8] for
example).
Then (5) reduces to

τ + λ
∂τ

∂t
= μ

∂W

∂y
, (7)

where τ = Szy.
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Neglecting body forces and in the absence of pressure gradient in
the z-direction, the linear momentum balance equation take the
form [7]

0 = −∂P

∂x
, (8)

0 = −∂P

∂y
, (9)

ρ
∂W

∂t
=

∂τ

∂y
. (10)

On differentiating equation (7) with respect to y, we obtain

∂τ

∂y
+ λ

∂2τ

∂y∂t
= μ

∂2W

∂y2
. (11)

Substituting equation (10) into (11), we finally obtain

∂W (t, y)

∂t
+ λ

∂2W (t, y)

∂t2
= ν

∂2W (t, y)

∂y2
, y > t > 0 (12)

where ν = μ/ρ is the kinematic viscosity.

3. MAIN RESULTS

We now state and prove our main theorem.

Theorem: Suppose W (t, y) = φ(A(y) + B(t)) is a non-constant
real solution of the Maxwell fluid equation λWtt +Wt = νWyy for
non-negative constants λ, ν, m0, α1, α4, α44, m1, a0, e, R, C, D,
D∗, F , G0, G1, H0, H1, K0, K1, L0 and L1 such that A(y) and B(t)
are real-analytic functions. Then w must have at least one of the
following:

W (t, y) = m0(a0y − Cλ exp

(
− t

λ

)
+R) +m1, (13)

W (t, y) = m0(
α

2ν
y2 + e0y + αt− λD exp

(
− t

λ

)
+D∗) +m1, (14)

W (t, y) = F exp

((√
1

ν
(α1 + λα2

1)

)
y + α1t

)
, (15)

W (t, y) = F exp

((
−
√

1

ν
(α1 + λα2

1)

)
y + α1t

)
, (16)

W (t, y) = G1 exp(α1t) sinh

(√
1

ν
(α1 + λα2

1)

)
(y−G0), (17)



SOLUTIONS IN CLOSED-FORM FOR UNSTEADY UNIDIRECTIONAL. . .101

W (t, y) = H1 exp(−α1t) sin

(√
1

ν
(α1 − λα2

1)

)
(y −H0), (18)

W (t, y) = K1 exp

(
α4y − t

2λ

)
sinh

√
να2

4

λ
+

1

4λ2
(t−K0), (19)

W (t, y) = L1 exp

(
±iα44y − t

2λ

)
cos

√
να2

44

λ
− 1

4λ2
(t+ L0). (20)

In addition, each of (13)-(20) is a solution of the form φ(A(y) +
B(t)).

Proof : We start by supposing

W (t, y) = φ(A(y) +B(t)). (21)

In what follows, the argument of φ, φ
′′
, φ

′′′
is always A +B, the

argument of A, A
′
, A

′′
, A

′′′
is always y and the argument of B, B

′
,

B
′′
, B

′′′
is always t, So that

λWtt +Wt = νWyy, (22)

becomes

φ
′′
(ν(A

′
)2 − λ(B

′
)2) = φ

′
(B

′
+ λB

′′ − νA
′′
), (23)

which can also be written as

φ
′′

φ′ =
B

′
+ λB

′′ − νA
′′

ν(A′)2 − λ(B′)2
. (24)

We suppose that,
B

′
+ λB′′ − νA

′′
= 0, (25)

then
B

′
+ λB

′′
= νA

′′
= α, (26)

for some constant α.

Case 1: Let α = 0, then it is easy to show that

B = −Cλ exp(−t/λ) and A = a0y + a1, (27)

which leads to equation (13). When λ = R = m1 = 0 and ν =
m0 = a0 = 1 then we obtain W (t, y) = y, which is in accordance
with Theorem 3 and equation (3.1) of Rubel [24].

Case 2: Let us do the case for any positive or negative number
α. In this case, it is evident that A = αy2/2ν + e0y + e1 and
B = αt− λD exp(−t/λ) +D1) satisfied equation (26). Then

W (t, y) = m0(
1

2ν
y2 + e0y + t− λD exp(−t/λ) +D1) +m1, (28)
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so that we have the solution given in eqn (14).
In the limit case when λ = 0 and ν = 1,m0 = 1 and e0 = D∗ =
m1 = 0 our solution goes to W (t, y) = (y2/2+ t) which is Theorem
3 and equation (3.2) of (Rubel [24]).

Case 3 & 4: We will now provide arguments for the case

B
′
+ λB

′′ − νA
′′ �= 0. (29)

First, we suppose that B
′′′
= 0 then we have B = α0t

2 + α1t + α2

with αi (i = 1, 2 and 3) being constants. Then, from equation (24),
we have

φ
′′

φ′ =
α1 − νA

′′

ν(A′)2 − λα2
1

= Φ(A+B), (30)

provided α0 = 0. and taking ∂/∂t, we get

Φ
′
B

′
= 0, (31)

so that,
Φ

′
(s) = 0, (32)

where s = A+B, then

Φ = σ = constant. (33)

From (30), we have
φ

′′

φ′ = σ. (34)

Therefore,

φ(s) =
D3

σ
exp(σs) +D4, (35)

where D3 and D4 are constants. Without loss of generality, we
assume that D3 = 1 and D4 = 0. Take σ = 1 and since the solution
is of the form W (t, y) = φ(A(y) +B(t)), then

W (t, y) = exp(A(y) + α1t+ α2). (36)

Substituting (36) into (12), we get the nonlinear ordinary differen-
tial equation

A
′′
+ (A

′
)2 =

1

ν
(α1 + λα2

1). (37)

The simple solution of the differential equation (37) is found to be

A = ±
√

1

ν
(α1 + λα2

1)y + F1, (38)

where F1 is a constant. Then we have (15) and (16) after substi-
tuting (38) into (36).
Investigating the limiting cases with the value of λ = F1 = 0
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and ν = α1 = F = 1, we have the W (t, y) = exp(y + t) and
W (t, y) = exp(−y+ t) which yields Theorem 3, equations (3.3) and
(3.4) in Rubel [24].

Case 5: To obtain another solution of equation (37), we employed
the method of reduction of order.
Let A

′
= P , so we have

dP

dy
+ P 2 =

1

ν
(α1 + λα2

1). (39)

Using method of separation of variables in (39), we have

dP(√
1
ν
(α1 + λα2

1)
)2

− P 2

= dy. (40)

Integrating (40), we obtain

y =
1(√

1
ν
(α1 + λα2

1)
) coth−1

⎛
⎝ P√

1
ν
(α1 + λα2

1)

⎞
⎠ +G0, (41)

where G0 is a constant. It follows that

P =

√
1

ν
(α1 + λα2

1) coth

(√
1

ν
(α1 + λα2

1)

)
(y −G0) = A

′
. (42)

Hence

A = ln sinh

(√
1

ν
(α1 + λα2

1)

)
(y −G1) (43)

Substituting (43) into (36), we have (17).
The solution gives the fifth solution of an existing one () with the
value of Let λ = G0 = 0 and ν = α1 = G1 = 1 then we have
precisely the form W (t, y) = exp(t) sinh y. It follows that we have
Theorem 3 and equation (3. 5) of Rubel [24].

Case 6: Next we continue the solution by considering the case
when B(t) = −α1t+α2, so that W (t, y) = φ(A(y)+B(t)) becomes

W (t, y) = exp(A(y)− α1t+ α2). (44)

Substituting (44) into (12), we get

A
′′
+ (A

′
)2 = −1

ν
(α1 − λα2

1) (45)
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The computation for (45) is similar to the previous case and there-
fore

A = ln sin

(√
1

ν
(α1 − λα2

1)

)
(y −H0) +H1. (46)

Substituting A into (44), we get

W (t, y) = H1 exp(−α1t) sin

√
1

ν
(α1 − λα2

1)(y −H0), (47)

which is equivalent to (18). Suppose λ = H0 = 0, ν = α1 = H1

we obtain the solution W (y, t) = exp(−t) sin y verifying Theorem
3 and equation (3.6) in Rubel [24].

Case 7: Secondly, we suppose that A
′′′

= 0 then we have A =
α3y

2 + α4y + α5 with αi (i = 3, 4 and 5) being constants which
means that (24) reduces to

λ(B
′′
+ (B

′
)2) +B

′
= να2

4, (48)

provided that α3 = 0. Using the method of reduction of order,
separation of variables and integrating twice, it can be verified that

B = ln sinh

(√
να2

4

λ
+

1

4λ2
(t−K0)

)
− t

2λ
+K2, λ �= 0, (49)

where k0 and K2 are constants.
Therefore, the general solution is

W (t, y) = K1 exp(α4y − t

2λ
) sinh

√
να2

4

λ
+

1

4λ2
(t−K0), λ �= 0.

(50)

Case 8: Finally, we suppose A = iα44y+α5 where α44 is a constant
and i2 = −1, it follows that the equation for B is

λ(B
′′
+ (B

′
)2) +B

′
= −να2

44. (51)

Problem (51) has the solution

B = ln cos

(√
να2

44

λ
− 1

4λ2
(t+ L0)

)
− t

2λ
+ L2, λ �= 0, (52)

The general solution can be written as

W (t, y) = L1 exp(±iα44y − t

2λ
) cos

√
να2

44

λ
− 1

4λ2
(t + L0), λ �= 0.

(53)
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Observations 1: It is not difficult to show that when 1/λ → 0
and ν/λ = O(1), then equation (12) reduces to the wave equation
wtt = wyy with the solution w(t, y) = cos t cos y when L0 = 0 and
L1 = 1. Hence Theorem 2 and equation (2.1) holds in Rubel [24].

Observations 2: Since W(t, y) is the solution of Laplace equation
in two variables, if W(t, iy) is a solution of the wave equation in
two variables, then we have that W (t, y) = cos t cosh y as contained
in Theorem 1 and equation (1.1) of Rubel [24]..

Observations 3: When both of the plates (at a distance h apart)
execute simple harmonic motion with the same amplitude and fre-
quency in the form W = α exp(−iλ0t) as contained in [7], we have
for this special case that

W (t, y) = α exp(−iλ0t)
cosα44(h/2− y)

cosα44h/2
, (54)

where λ0 =
√

να2
44/λ− 1/(4λ2) and λ �= 0.

A quantity of interest is the frictional force at the upper plate z = h
which is given by the following equation

Px = μ
∂W

∂z

∣∣∣∣
z=h

= −αα44μ exp(−iλ0t) tan
α44h

2
. (55)

Observations 4: When the lower plate at time t = 0+ is impul-
sively brought to the constant velocity and the upper surface being
free as in [6] and [8], our solution satisfied only three out of the five
conditions.
For the second (”In addition”) part, we can easily check by hand

computation.
The proof of the theorem is now complete.

Remarks: (1) At this point, we want to scrutinize the only case
remaining. Here,

B
′′
(t) �= 0, B

′
+ λB

′′ − νA
′′ �= 0. (56)

Then equation (22) reduces to

− φ
′

φ′′ =
ν(A

′
)2 − λ(B

′
)2

B′ + λB′′ − νA′′ = Φ(A+B). (57)

Making use of the Jacobian determinant J, we can also write

J

(
ν(A

′
)2 − λ(B

′
)2

B′ + λB′′ − νA′′ , A+B

)
= 0. (58)



106 O. M. OGUNMILADE AND S. S. OKOYA

Expanding (58) and simplifying, we get

ν
B

′′
+ λB

′′′

B′ =
F (A

′
, A

′′
, A

′′′
, B

′
, B

′′
, B

′′′
)

(A′)3
, (59)

where F (·) = −λA
′
B

′
B

′′ − 2νA
′
A

′′
B

′ − 2λ2A
′
(B

′′
)2 + νA

′
(A

′′
)2 −

ν(A
′
)2A

′′′
+ λ2A

′
B

′
B

′′′
+ νλA

′′′
(B

′
)2. Differentiating equation (59)

with respect to t, this yields the equation(
ν
B

′′
+ λB

′′′

B′

)′

=
Ft(·)
(A′)3

, (60)

where Ft(·) = −λA
′
(B

′
B

′′
)
′ − 2νA

′
A

′′
B

′′ − 2λ2A
′{(B′′

)2}′

+λ2A
′
(B

′
B

′′′
)
′
+νλA

′′′{(B′
)2}′

. Continuing with the differentiation
reveals that the variables are not separable. Letting λ = 0 and
ν = 1 in equation (60) and supposing also that B

′′ �= 0, we get

2A
′′

(A′)2
=

(
B

′′

B′

)′

/B
′′
. (61)

The solution to equation (61) which satisfies the functional depen-
dence (24) was obtained by Rubel [24], who also showed that

w = erf

(
y√
t

)
. (62)

(2) We present new possible set of solutions for the Maxwell fluid
flow and our results generalizes earlier known solutions.

4. CONCLUDING REMARKS

Emerging equations from an unsteady flow of a non-Newtonian fluid
past an infinite plate is investigated analytically using functional
framework. Maxwell rheological model is used as the constitutive
relation. The results show that at least eight solutions can be ob-
tained using separation of variables method.
The investigation carried out in this study gives possible general
solutions of a Newtonian fluid (heat equation) which can be ob-
tained when the relaxation time λ = 0 and the kinematic viscosity
ν = 1. In addition, when λ → ∞ and ν/λ = O(1), we recover
earlier published exact solutions.
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