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ON THE DYNAMIC ANALYSIS OF A TAPERED

TIMOSHENKO BEAM UNDER A UNIFORM

PARTIALLY DISTRIBUTED MOVING LOAD

H. A. ISEDE1 AND J. A. GBADEYAN

ABSTRACT. In this paper, the analysis of a variable cross-
section Timoshenko beam subjected to a moving partially dis-
tributed load was carried out. Finite element method with
Langrangian interpolation functions and reduced integration el-
ement was used to model the structure by discretizing the struc-
ture’s domain into finite beam elements and deriving the semi-
discrete differential equations which are the elemental and as-
sembled stiffness, mass, and centripetal matrices and load vec-
tor. The Newmark direct integration method was used to solve
the resulting semi-discrete time dependent equations to obtain
the desired responses. Important features of the analysis were
investigated and discussed.
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1. INTRODUCTION

It is well known that static loads (forces) are functions of the spa-
tial variables only, while dynamic loads are functions of time as well
as the spatial variables. However, dynamic loads which are, in ad-
dition, continuously changing their positions are known as moving
loads. Examples include trains, cars, trucks, cranes, and pedestri-
ans walking or running across bridges. Moving loads usually cause
elastic structures, such as beams, on which they act to vibrate in-
tensively particularly when high velocities are involved. The prob-
lem of assessing the response of elastic structures to moving loads
known as moving load problem is of technological importance. For
instance, elastic structures are commonly used in the design of air-
crafts which are under the influence of various types of moving
pressure loads during flight [5]. Hence, problems of analysing the
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dynamic response of elastic structures under the action of mov-
ing loads continue to motivate a variety of investigations [1-13, 15-
21, 23-25, 28-30]. Such investigations are found in civil, mechani-
cal, transport, astronautical and marine engineering as well as ap-
plied mathematics, since moving loads are present in all these fields
[9]. Significant early contribution towards solving various types of
moving load problems were made by Wills[28], Stokes[25], Zim-
mermann[30], Krylov[17], Timoshenko[27], Lowan[19], Bolotin[4],
Inglis[15], Hillerborg[13], and Kolousek[16]. Later, an extended re-
view on this subject was carried out by Fryba[9] in his excellent
monograph. The dynamic response of a simply supported beam tra-
versed by a concentrated moving load was determined by Stanistic
and Hardin [24]. They developed an interesting technique which,
however, cannot easily be applied to various boundary conditions
which are of practical interest. Akin and Mofid [3] presented an ana-
lytic numerical method that can be used to determine the dynamic
behaviours of beams carrying a concentrated moving mass. The
problem of dynamic behaviour of an elastic beam subject to a mov-
ing concentrated mass was also studied by Sadiku and Leipholz [23].
Gbadeyan and Oni [12] presented a more versatile technique which
can be used to determine the dynamic behaviour of beams having
arbitrary end supports. Michaltos, Sophianopoulos and Kaounadis
[21] studied the effect of the mass of a moving load on the dy-
namic response of a simply supported beam. A detailed analysis
of the effect of centripetal and coriolis forces on the dynamic re-
sponse of light (steel) bridges under moving loads was also carried
out by Michaltos and Kounadis [20]. It is remarked at this juncture
that the elastic parameter of the beams in all the work discussed
hitherto, are assumed constant. In other words, uniform beams
were considered. The reason for this is not farfetched since by
making such an assumption, the various researchers ended up with
the governing partial differential equations having constant coeffi-
cients only and thereby based the aforementioned investigations, in
general, on analytical approaches. Otherwise, the researcher could
have found it very difficult, if not impossible, to obtain analytical
closed form solutions to the problems. However, practical struc-
tures for which the elastic properties are functions of spatial coor-
dinates abound. Hence in this paper, beams that are not uniform
are considered.
Some of the previous works involving non-uniform beams include

that of Wu and Dai [29]. They studied the dynamic response of
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multi-span non-uniform beams under moving loads using the trans-
fer matrix method. Dugush and Eisenberger [6] also investigated
the dynamic behaviour of multi-span non-uniform beams traversed
by a moving load at constant and variable velocities. They used
both modal analysis and direct methods. The analysis of a vari-
able cross-section beam subject to a moving concentrated mass is
investigated in [2] using finite element method.
Although, the above completed works on both uniform and non-

uniform beams are impressive, only concentrated moving loads were
considered. However, such loads do not represent the physical re-
ality of the problem formulation. As a matter of fact, concentrated
loads do not exist physically. For practical applications, it is real-
istic to consider the moving loads as distributed moving loads as
opposed to concentrated moving loads. Hence, the present paper
deals with the more realistic moving load, namely, uniform par-
tially distributed moving load. The first work on moving loads, to
the best knowledge of the authors, to consider distributed moving
loads was that of Esmailzade and Ghorashi [7]. The work in [7]
was extended by the same authors [8] to include the vibration of
a Timoshenko beam. In [10], the vibration analysis of beams tra-
versed by distributed moving masses was studied. Gbadeyan and
Dada [11] also studied, recently, the effect of linearly varying dis-
tributed moving load on beams. Abiala[1] studied the effects of
lateral loads on the dynamic response of beams using finite element
method, where he showed that the velocity of the moving load and
span length had significant affects on the dynamic response of the
beam.
Furthermore, most of these studies on moving load problems are

limited to Euler-Bernoulli beam elements with the assumption that
the transverse shear strain is equal to zero. When the transverse
shear strain is not equal to zero the beam in question becomes
a Timoshenko beam. The dynamic analysis of Timoshenko beam
using finite element method has been studied for a while. Lou,
Dai and Zeng[18] presented a finite element formulation of a Tim-
oshenko beam, where the equation of motion was derived from the
variational approach and the equation was solved by the step-by-
step integration method. Thomas and Abbas[26] presented a finite
element model with nodal degrees of freedom which can satisfy all
the forces and natural boundary conditions of a Timoshenko beam.
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In the context discussed so far, this paper therefore, focuses on
the dynamic behaviour of a tapered Timoshenko beam that is sub-
jected to uniform partially distributed moving loads. Specifically,
the elastic properties of the beam such as the cross-sectional area
and moment of inertia which are usually assumed constants are
hereby expressed as functions of the spatial variables. The dynamic
responses of the non-uniform beams subjected to uniform partially
distributed moving loads were then analysed using the finite ele-
ment technique with quadratic Langrange interpolation functions.
Firstly the non-uniform continuous beam was replaced by a non-
continuous (discrete) system made up of beam elements. The semi-
discrete, time dependent elemental and overall stiffness, mass, and
centripetal matrices as well as the elemental and overall load vec-
tors were then derived. Newmark method was used to obtain the
desired responses. The key points of interest in this paper were
to evaluate the effect of the following parameters: (i) the speed of
the moving load; (ii) the length of the moving load; (iii) the span
length of the beam; (iv) different boundary conditions of the beam;
(v) the time history on the mid-span and end of the beam; and (vi)
the load-beam mass ratio on the response of the beam.

2. MATHEMATICAL PROBLEM STATEMENT

We consider the problem of determining the behaviour of a non-
uniform Timoshenko beam carrying a load moving at a specified
speed.
The governing equation is given as:

∂

∂x

[
kGA

(
−∂u

∂x
+ w

)]
+ ρA

∂2u

∂t2
− q(x, t) = 0

− ∂

∂x

[
EI

∂w

∂x

]
+ ρI

∂2w

∂t2
+ kGA

[
−∂u

∂x
+ w

]
+ ρqIq

d2w

dt2
D = 0 (1)

u(x, t) is the deflection of the beam axis, and w(x, t) is the rotation
of its cross-section. ρ and ρq are the respective densities of the
beam and the load; while I and Iq are the corresponding moments
of inertia of their cross-sectional areas, respectively. A(x) is the
cross-sectional area of the beam; E - the elastic modulus; G - the
shear modulus; k - the shear coefficient; q(x, t) - the distributed
load; t is time, and x is the position coordinate in the axial direction
[xε(0, L)].
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The boundary conditions are: (simply-supported)

u(0, t) = u(L, t) = 0 ; EI
∂w

∂x

∣∣∣∣
x=0

= EI
∂w

∂x

∣∣∣∣
x=L

= 0 (2)

The associated initial conditions are:

u(x, 0) = ut(x, 0) = 0 ; w(x, 0) = wt(x, 0) = 0 (3)

For uniformly distributed load q(x, t) , we have

q(x, t) =
1

ε

[
−pg − p

(
d2u

dt2

)]
D (4)

The factor D and total derivatives in (1) and (4) are:

D = H
[
x− ξ +

ε

2

]
−H

[
x− ξ − ε

2

]
;
ε

2
≤ t ≤ L

v

d2u

dt2
=

∂2u

∂t2
+ 2v

∂2u

∂x∂t
+ v2

∂2u

∂x2

d2w

dt2
=

∂2w

∂t2
+ 2v

∂2w

∂x∂t
+ v2

∂2w

∂x2
(5)

p is the mass of the load, and g is the acceleration due to gravity, ε
is the load’s length, ξ is the distance covered by the load, v is the
moving speed of the load, and H(x) is the Heaviside function.
Now, using (4) and (5) in (1), we obtain

− ∂

∂x

[
kGA

(
∂u

∂x
+ w

)]
+ ρA

∂2u

∂t2
− 1

ε

[
−pg − p

(
∂2u

∂t2

+2v
∂2u

∂x∂t
+ v2

∂2u

∂x2

)] [
H

(
x− ξ +

ε

2

)
−H

(
x− ξ − ε

2

)]
= 0

− ∂

∂x

[
EI

∂w

∂x

]
+ ρI

∂2w

∂t2
+ kGA

[
∂u

∂x
+ w

]
+ ρqIq

[
∂2w

∂t2

+2v
∂2w

∂x∂t
+ v2

∂2w

∂x2

] [
H

(
x− ξ +

ε

2

)
−H

(
x− ξ − ε

2

)]
= 0 (6)

Also, the moment of inertia and area of beam cross-section of the
beam are defined respectively as

I(x) = I0

[
1− βb

x

L

] [
1− βh

x

L

]3
A(x) = A0

[
1− βb

x

L

] [
1− βh

x

L

]
(7)

By [14], I is the variable moment of inertia of the beam, and A, the
variable area of beam cross-section. L is the length of the element,
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βb and βh are functions of the taper ratios of the beam αb and αh

respectively.
The initial boundary value problem (IBVP) describing the be-

haviour of a non-uniform Timoshenko beam, traversed by uniform
partially distributed moving load is governed by (6), (7), (2), and
(3).

3. FINITE ELEMENT FORMULATION OF THE PROBLEM

The coupled equations (1), of the Timoshenko beam theory are
time-dependent second order equations. The finite element for-
mulation of such problems involves spatial approximation, which
results in a semi-discrete system of equations in time; and time ap-
proximation, where the semi-discrete system of equations which are
a set of ordinary differential equations, are further approximated to
obtain a set of algebraic equations.
The semi-discrete formulation involves approximation of the spa-

tial variation of the dependent variables, the first step of which is
the construction of the weak form of equations (6) over a typical
element Ωe = (0, le).
With the direct integration of the expression of D in (6) given as,∫ le

0

f(x)
[
H

(
x− ξ +

ε

2

)
−H

(
x− ξ − ε

2

)]
dx =

∫ ξ+ ε
2

ξ− ε
2

f(x)dx

(8)
the weak form becomes,∫ le

0

[
kGA

dR1

dx

(
∂u

∂x
+ w

)
+R1ρA

∂2u

∂t2

]
dx

+
pg

ε

∫ ξ+ ε
2

ξ− ε
2

R1dx+
p

ε

∫ ξ+ ε
2

ξ− ε
2

∂2u

∂t2
R1dx+

2pv

ε

∫ ξ+ ε
2

ξ− ε
2

∂2u

∂x∂t
R1dx

+
pv2

ε

∫ ξ+ ε
2

ξ− ε
2

∂2u

∂x2
R1dx− R1(le)Q

e
3 +R1(0)Q

e
1 = 0 (9)

∫ le

0

[
EI

dR2

dx

∂w

∂x
+R2ρI

∂2w

∂t2
+R2kGA

(
∂u

∂x
+ w

)]
dx

+ ρqIq

∫ ξ+ ε
2

ξ− ε
2

∂2w

∂t2
R2dx+ 2vρqIq

∫ ξ+ ε
2

ξ− ε
2

∂2w

∂x∂t
R2dx
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+ v2ρqIq

∫ ξ+ ε
2

ξ− ε
2

∂2w

∂x2
R2dx−R2(le)Q

e
4 +R2(0)Q

e
2 = 0 (10)

In (9) and (10), R1(x) and R2(x) are the weight functions. Q
e
i (i =

1, 2, 3, 4), as defined in (11), are the shear forces and bending mo-
ments respectively at the boundaries.

Qe
1 =

[
kGA

(
∂u

∂x
+ w

)]
x=0

; Qe
2 =

[
EI

∂w

∂x

]
x=0

Qe
3 =

[
kGA

(
∂u

∂x
+ w

)]
x=le

; Qe
4 =

[
EI

∂w

∂x

]
x=le

(11)

Having constructed the weak form of (7) as (9) and (10), we
next obtain the approximation functions for the variables u and
w. Using the same degree of interpolation to approximate both u
and w in the usual manner, results in shear locking [22]. To avoid
locking, the present study employs an equal interpolation for u and
w, with reduced integration of the shear stiffnesses. The resulting
approximation functions are:

u(x, t) =
∑3

j=1Φj(x)uj(t) = [Φ] {u}

w(x, t) =
∑3

j=1Ψj(x)wj(t) = [Ψ] {w}

⎫⎬
⎭ j = 1, 2, 3 (12)

where

Φ1(x) =
(
1− 3x

l
+ 2x2

l2

)
, Φ2(x) =

(
4x
l
− 4x2

l2

)
,

Φ3(x) =
(
−x

l
+ 2x2

l2

)
, Ψ1(x) =

(
1− 3x

l
+ 2x2

l2

)
,

Ψ2(x) =
(

4x
l
− 4x2

l2

)
, Ψ3(x) =

(
−x

l
+ 2x2

l2

) (13)

Φj(x) and Ψj(x), j = 1, 2, 3, are the Lagrange quadratic approxi-
mation functions.

4. THE FINITE ELEMENT EQUATIONS

The discrete equations of motion for a typical element of the prob-
lem under consideration are obtained by employing the Rayleigh-
Ritz technique. Hence we have:

3∑
j=1

[∫ le

0

kGA
dΦi

dx

dΦj

dx
ujdx+

∫ le

0

ρAΦiΦj
d2uj

dt2
dx
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+
p

ε

∫ ξ+ ε
2

ξ− ε
2

ΦiΦj
d2uj

dt2
dx+

2pv

ε

∫ ξ+ ε
2

ξ− ε
2

Φi
dΦj

dx

duj

dt
dx

+
pv2

ε

∫ ξ+ ε
2

ξ− ε
2

Φi
d2Φj

dx2
ujdx+

∫ le

0

kGA
dΦi

dx
Ψkwkdx

]

+
pg

ε

∫ ξ+ ε
2

ξ− ε
2

Φidx+Qi = 0 (14)

Qi = Φi(0)Q
e
1 − Φi(le)Q

e
3 ; i = 1, 2, 3.

3∑
j=1

[∫ le

0

[
EI

dΨi

dx

dΨk

dx
wk + kGAΨiΨkwk

]
dx+

∫ le

0

ρIΨiΨk
d2wk

dt2
dx

+ρqIq

∫ ξ+ ε
2

ξ− ε
2

ΨiΨk
d2wk

dt2
dx+ 2vρqIq

∫ ξ+ ε
2

ξ− ε
2

Ψi
dΨk

dx

dwk

dt
dx

+v2ρqIq

∫ ξ+ ε
2

ξ− ε
2

Ψi
d2Ψk

dx2
wkdx+

∫ le

0

kGAΨi
dΦj

dx
ujdx

]
+Qι = 0 (15)

Qj = Ψj(0)Q
e
2 −Ψj(le)Q

e
4 ; j = 4, 5, 6.

Equations (14) and (15) are re-written as:

3∑
j=1

[
K∗

ij +K∗∗
ij

]
uj +

3∑
k=1

Kikwk +

3∑
j=1

[
M∗

ij +M∗∗
ij

]
üj

+

3∑
j=1

Cij u̇j + F 1
i = 0 (16)

3∑
k=1

[K∗
ik +K∗∗

ik ]wk +
3∑

j=1

Kijuj +
3∑

k=1

[M∗
ik +M∗∗

ik ] ẅk

+
3∑

k=1

Cikẇk + F 2
i = 0 (17)

where in (16)

K∗
ij =

∫ le

0

kGAΦ′
iΦ

′
jdx;M

∗
ij =

∫ le

0

ρAΦiΦjdx;

M∗∗
ij =

p

ε

∫ ξ+ ε
2

ξ− ε
2

ΦiΦjdx;Cij =
2pv

ε

∫ ξ+ ε
2

ξ− ε
2

ΦiΦ
′
jdx
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K∗∗
ij =

pv2

ε

∫ ξ+ ε
2

ξ− ε
2

ΦiΦ
′′
jdx;Kik =

∫ le

0

kGAΦ′
iΨkdx;

F 1
i =

pg

ε

∫ ξ+ ε
2

ξ− ε
2

Φidx+Qi ; i = 1, 2, 3. (18)

and in (17)

K∗
ik =

∫ le

0

(EIΨ′
iΨ

′
k + kGAΨiΨk) dx;M

∗
ik =

∫ le

0

ρIΨiΨkdx;

M∗∗
ik = ρqIq

∫ ξ+ ε
2

ξ− ε
2

ΨiΨkdx; Cik = 2vρqIq

∫ ξ+ ε
2

ξ− ε
2

ΨiΨ
′
kdx;

K∗∗
ik = v2ρqIq

∫ ξ+ ε
2

ξ− ε
2

ΨiΨ
′′
kdx; Kij =

∫ le

0

kGAΨiΦ
′
jdx;

F 2
i = Qι i = 1, 2, 3 ; ι = 4, 5, 6. (19)

Where the (′) and (′′) in (18) and (19) denotes first and second
derivatives w.r.t. x respectively.
Equations (16) and (17) can be put compactly as

3∑
j=1

K11
ij uj +

3∑
j=1

K12
ij wj +

3∑
j=1

M11
ij üj +

3∑
j=1

C11
ij u̇j + F 1

i = 0

3∑
j=1

K21
ij uj +

3∑
j=1

K22
ij wj +

3∑
j=1

M22
ij ẅj +

3∑
j=1

C22
ij ẇj + F 2

i = 0 (20)

this in matrix form becomes:[
[K11] [K12]
[K21] [K22]

]{ {u}
{w}

}
+

[
[M11] [0]
[0] [M22]

]{ {ü}
{ẅ}

}

+

[
[C11] [0]
[0] [C22]

]{ {u̇}
{ẇ}

}
+

{ {F 1}
{F 2}

}
(21)

Or simply

[K] {v(t)}+ [M ] {v̈(t)}+ [C] {v̇(t)} + {F} = 0 (22)

Equation (22) is a semi-discrete system of equations in time. Where
[K] is the element stiffness matrix; [M ] is the element mass matrix;
[C] is the element centripetal matrix; {F} is the sum of the element
applied force vector {f} and the element internal generalized force
of {Q} (boundary term vector); and v is a vector of generalized

displacements {u, w}T . It is the desired finite element model for
a typical element of the tapered (non-uniform) Timoshenko beam
under the present study.
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5. THE ELEMENT STIFFNESS MATRIX

From the stiffness expression of (18) and (19); and using (7) and
(13), the entries of the stiffness coefficient matrix are obtained:
For [K11]:

ke
ij =

∫ le

0

φij

{
kGAe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]}
dx+

(
pv2

ε

)
pij

i, j = 1, 2, 3. (23)

For [K12]:

ke
mn =

∫ le

0

dijkGAe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]
dx

i, j,m = 1, 2, 3; n = 4, 5, 6. (24)

For [K21]:

ke
mn =

∫ le

0

gijkGAe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]
dx

i, j, n = 1, 2, 3; m = 4, 5, 6. (25)

For [K22]:

ke
mn =

∫ le

0

αij

{
EIe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]3}

+σij

{
kGAe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]}
dx+

(
v2ρqIq

)
qij

i, j = 1, 2, 3; m,n = 4, 5, 6. (26)

Where, for (23) to (26),

φ11 =

[
9

l2e
− 24x

l3e
+

16x2

l4e

]
, φ12 =

[
−12

l2e
+

40x

l3e
− 32x2

l4e

]

φ13 =

[
3

l2e
− 16x

l3e
+

16x2

l4e

]
, φ21 =

[
−12

l2e
+

40x

l3e
− 32x2

l4e

]

φ22 =

[
16

l2e
− 64x

l3e
+

64x2

l4e

]
, φ23 =

[
− 4

l2e
+

24x

l3e
− 32x2

l4e

]

φ31 =

[
3

l2e
− 16x

l3e
+

16x2

l4e

]
, φ32 =

[
− 4

l2e
+

24x

l3e
− 32x2

l4e

]

φ33 =

[
1

l2e
− 8x

l3e
+

16x2

l4e

]
(27)

p11 =
pv2

ε

[[
4η

l2e
− 6η2

l3e
+

8η3

3l4e

]
−

[
4μ

l2e
− 6μ2

l3e
+

8μ3

3l4e

]]
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p12 =
pv2

ε

[[
−8η

l2e
+

12η2

l3e
− 16η3

3l4e

]
−

[
−8μ

l2e
+

12μ2

l3e
− 16μ3

3l4e

]]

p13 =
pv2

ε

[[
2η2

l2e
− 4η3

l3e
+

2η4

l4e

]
−

[
2μ2

l2e
− 4μ3

l3e
+

2μ4

l4e

]]

p21 =
pv2

ε

[(
8η2

l3e
− 16η3

3l4e

)
−
(
8μ2

l3e
− 16μ3

3l4e

)]

p22 =
pv2

ε

[(
−18η2

l3e
+

32η3

3l4e

)
−
(
−18μ2

l3e
+

32μ3

3l4e

)]

p23 =
pv2

ε

[(
16η3

3l3e
− 4η4

l4e

)
−
(
16μ3

3l3e
− 4μ4

l4e

)]

p31 =
pv2

ε

[(
−2η2

l3e
+

8η3

3l4e

)
−
(
−2μ2

l3e
+

8μ3

3l4e

)]

p32 =
pv2

ε

[(
4η2

l3e
− 16η3

3l4e

)
−
(
4μ2

l3e
− 16μ3

3l4e

)]

p33 =
pv2

ε

[(
−4η3

3l3e
+

2η4

l4e

)
−
(
−4μ3

3l3e
+

2μ4

l4e

)]
(28)

d11 =

[
− 3

le
+

13x

l2e
− 18x2

l3e
+

8x3

l4e

]
, d12 =

[
−12x

l2e
+

28x2

l3e
− 16x3

l4e

]

d13 =

[
3x

l2e
− 10x2

l3e
+

8x3

l4e

]
, d21 =

[
4

le
− 20x

l2e
+

32x2

l3e
− 16x3

l4e

]

d22 =

[
16x

l2e
− 48x2

l3e
+

32x3

l4e

]
, d23 =

[
−4x

l2e
+

16x2

l3e
− 16x3

l4e

]

d31 =

[
− 1

le
+

7x

l2e
− 14x2

l3e
+

8x3

l4e

]
, d32 =

[
−4x

l2e
+

20x2

l3e
− 16x3

l4e

]

d33 =

[
x

l2e
− 6x2

l3e
+

8x3

l4e

]
(29)

g11 =

[
− 3

le
+

13x

l2e
− 18x2

l3e
+

8x3

l4e

]
g12 =

[
4

le
− 20x

l2e
+

32x2

l3e
− 16x3

l4e

]

g13 =

[
− 1

le
+

7x

l2e
− 14x2

l3e
+

8x3

l4e

]
g21 =

[
−12x

l2e
+

28x2

l3e
− 16x3

l4e

]

g22 =

[
16x

l2e
− 48x2

l3e
+

32x3

l4e

]
g23 =

[
−4x

l2e
+

20x2

l3e
− 16x3

l4e

]

g31 =

[
3x

l2e
− 10x2

l3e
+

8x3

l4e

]
g32 =

[
−4x

l2e
+

16x2

l3e
− 16x3

l4e

]
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g33 =

[
x

l2e
− 6x2

l3e
+

8x3

l4e

]
(30)

α11 =

[
9

l2e
− 24x

l3e
+

16x2

l4e

]
, α12 =

[
−12

l2e
+

40x

l3e
− 32x2

l4e

]

α13 =

[
3

l2e
− 16x

l3e
+

16x2

l4e

]
, α21 =

[
−12

l2e
+

40x

l3e
− 32x2

l4e

]

α22 =

[
16

l2e
− 64x

l3e
+

64x2

l4e

]
, α23 =

[
− 4

l2e
+

24x

l3e
− 32x2

l4e

]

α31 =

[
3

l2e
− 16x

l3e
+

16x2

l4e

]
, α32 =

[
− 4

l2e
+

24x

l3e
− 32x2

l4e

]

α33 =

[
1

l2e
− 8x

l3e
+

16x2

l4e

]
(31)

σ11 =

[
1− 6x

le
+

11x2

l2e
− 6x3

l3e

]
σ12 =

[
4x

le
− 16x2

l2e
+

20x3

l3e
− 8x4

l4e

]

σ13 =

[
−x

le
+

5x2

l2e
− 8x3

l3e
+

4x4

l4e

]
σ21 =

[
4x

le
− 16x2

l2e
+

20x

l3e
− 8x4

l4e

]

σ22 =

[
16x2

l2e
− 32x3

l3e
+

16x4

l4e

]
σ23 =

[
−4x2

l2e
+

12x3

l3e
− 8x4

l4e

]

σ31 =

[
−x

le
+

5x2

l2e
− 8x3

l3e
+

4x4

l4e

]
σ32 =

[
−4x2

l2e
+

12x3

l3e
− 8x4

l4e

]

σ33 =

[
x2

l2e
− 4x3

l3e
+

4x4

l4e

]
(32)

q11 =
pv2

ε

[(
4η

l2e
− 6η2

l3e
+

8η3

3l4e

)
−

(
4μ

l2e
− 6μ2

l3e
+

8μ3

3l4e

)]

q12 =
pv2

ε

[[
−8η

l2e
+

12η2

l3e
− 16η3

3l4e

]
−

[
−8μ

l2e
+

12μ2

l3e
− 16μ3

3l4e

]]

q13 =
pv2

ε

[(
2η2

l2e
− 4η3

l3e
+

2η4

l4e

)
−

(
2μ2

l2e
− 4μ3

l3e
+

2μ4

l4e

)]

q21 =
pv2

ε

[(
8η2

l3e
− 16η3

3l4e

)
−
(
8μ2

l3e
− 16μ3

3l4e

)]

q22 =
pv2

ε

[(
−18η2

l3e
+

32η3

3l4e

)
−
(
−18μ2

l3e
+

32μ3

3l4e

)]

q23 =
pv2

ε

[(
16η3

3l3e
− 4η4

l4e

)
−
(
16μ3

3l3e
− 4μ4

l4e

)]
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q31 =
pv2

ε

[(
−2η2

l3e
+

8η3

3l4e

)
−
(
−2μ2

l3e
+

8μ3

3l4e

)]

q32 =
pv2

ε

[(
4η2

l3e
− 16η3

3l4e

)
−
(
4μ2

l3e
− 16μ3

3l4e

)]

q33 =
pv2

ε

[(
−4η3

3l3e
+

2η4

l4e

)
−
(
−4μ3

3l3e
+

2μ4

l4e

)]
(33)

where for (28) and (33), η = ξ − ε
2
, μ = ξ + ε

2

6. THE ELEMENT MASS MATRIX

From the mass expressions of (18) and (19); and using (7) and
(13), the entries of the mass coefficient matrix are obtained:
For [M11]:

me
ij =

∫ le

0

oij

{
ρAe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]}
dx

+
(p
ε

)
χij i, j = 1, 2, 3. (34)

For [M22]:

me
mn =

∫ le

0

nij

{
ρIe−1

[
1− βe

b

x

le

] [
1− βe

h

x

le

]3}
dx

+ (ρqIq)ϑij i, j = 1, 2, 3; m,n = 4, 5, 6. (35)

Where, for (34) and (35),

o11 =

[
1− 6x

le
+

11x2

l2e
− 6x3

l3e

]
, o12 =

[
4x

le
− 16x2

l2e
+

20x3

l3e
− 8x4

l4e

]

o13 =

[
−x

le
+

5x2

l2e
− 8x3

l3e
+

4x4

l4e

]
, o21 =

[
4x

le
− 16x2

l2e
+

20x3

l3e
− 8x4

l4e

]

o22 =

[
16x2

l2e
− 32x3

l3e
+

16x4

l4e

]
, o23 =

[
−4x2

l2e
+

12x3

l3e
− 8x4

l4e

]

o31 =

[
−x

le
+

5x2

l2e
− 8x3

l3e
+

4x4

l4e

]
, o32 =

[
−4x2

l2e
+

12x3

l3e
− 8x4

l4e

]

o33 =

[
x2

l2e
− 4x3

l3e
+

4x4

l4e

]
(36)

χ11 =
p

ε

[[
η − 3η2

le
+

11η3

3l2e
− 3η4

2l3e

]
−

[
η − 3μ2

le
+

11μ3

3l2e
− 3μ4

2l3e

]]
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χ12 =
p

ε

[[
2η2

le
− 16η3

3l2e
+

5η4

l3e
− 8η5

5l4e

]
−

[
2μ2

le
− 16μ3

3l2e
+

5μ4

l3e
− 8μ5

5l4e

]]

χ13 =
p

ε

[[
− η2

2le
+

5η3

3l2e
− 2η4

l3e
+

4η5

5l4e

]
−

[
− μ2

2le
+

5μ3

3l2e
− 2μ4

l3e
+

4μ5

5l4e

]]

χ21 =
p

ε

[[
2η2

le
− 16η3

3l2e
+

5η4

l3e
− 8η5

5l4e

]
−

[
2μ2

le
− 16μ3

3l2e
+

5μ4

l3e
− 8μ5

5l4e

]]

χ22 =
p

ε

[[
16η3

3l2e
− 8η4

l3e
+

16η5

5l4e

]
−

[
16μ3

3l2e
− 8μ4

l3e
+

16μ5

5l4e

]]
(37)

χ23 =
p

ε

[[
−4η3

3l2e
+

3η4

l3e
− 8η5

5l4e

]
−
[
−4η3

3l2e
+

3η4

l3e
− 8η5

5l4e

]]

χ31 =
p

ε

[[
− η2

2le
+

5η3

3l2e
− 2η4

l3e
+

4η5

5l4e

]
−

[
− μ2

2le
+

5μ3

3l2e
− 2μ4

l3e
+

4μ5

5l4e

]]

χ32 =
p

ε

[[
−4η3

3l2e
+

3η4

l3e
− 8η5

5l4e

]
−

[
−4μ3

3l2e
+

3μ4

l3e
− 8μ5

5l4e

]]

χ33 =
p

ε

[[
η3

3l2e
− η4

l3e
+

4η5

5l4e

]
−
[
μ3

3l2e
− μ4

l3e
+

4μ5

5l4e

]]
(38)

n11 =

[
1− 6x

le
+

11x2

l2e
− 6x3

l3e

]
, n12 =

[
4x

le
− 16x2

l2e
+

20x3

l3e
− 8x4

l4e

]

n13 =

[
−x

le
+

5x2

l2e
− 8x3

l3e
+

4x4

l4e

]
, n21 =

[
4x

le
− 16x2

l2e
+

20x

l3e
− 8x4

l4e

]

n22 =

[
16x2

l2e
− 32x3

l3e
+

16x4

l4e

]
, n23 =

[
−4x2

l2e
+

12x3

l3e
− 8x4

l4e

]

n31 =

[
−x

le
+

5x2

l2e
− 8x3

l3e
+

4x4

l4e

]
, n32 =

[
−4x2

l2e
+

12x3

l3e
− 8x4

l4e

]

n33 =

[
x2

l2e
− 4x3

l3e
+

4x4

l4e

]
(39)

ϑ11 =
p

ε

[[
η − 3η2

le
+

11η3

3l2e
− 3η4

2l3e

]
−

[
η − 3μ2

le
+

11μ3

3l2e
− 3μ4

2l3e

]]

ϑ12 =
p

ε

[[
2η2

le
− 16η3

3l2e
+

5η4

l3e
− 8η5

5l4e

]
−

[
2μ2

le
− 16μ3

3l2e
+

5μ4

l3e
− 8μ5

5l4e

]]

ϑ13 =
p

ε

[[
− η2

2le
+

5η3

3l2e
− 2η4

l3e
+

4η5

5l4e

]
−

[
−μ2

2le
+

5μ3

3l2e
− 2μ4

l3e
+

4μ5

5l4e

]]

ϑ21 =
p

ε

[[
2η2

le
− 16η3

3l2e
+

5η4

l3e
− 8η5

5l4e

]
−

[
2μ2

le
− 16μ3

3l2e
+

5μ4

l3e
− 8μ5

5l4e

]]
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ϑ22 =
p

ε

[[
16η3

3l2e
− 8η4

l3e
+

16η5

5l4e

]
−
[
16μ3

3l2e
− 8μ4

l3e
+

16μ5

5l4e

]]
(40)

ϑ23 =
p

ε

[[
−4η3

3l2e
+

3η4

l3e
− 8η5

5l4e

]
−
[
−4η3

3l2e
+

3η4

l3e
− 8η5

5l4e

]]

ϑ31 =
p

ε

[[
− η2

2le
+

5η3

3l2e
− 2η4

l3e
+

4η5

5l4e

]
−

[
−μ2

2le
+

5μ3

3l2e
− 2μ4

l3e
+

4μ5

5l4e

]]

ϑ32 =
p

ε

[[
−4η3

3l2e
+

3η4

l3e
− 8η5

5l4e

]
−

[
−4μ3

3l2e
+

3μ4

l3e
− 8μ5

5l4e

]]

ϑ33 =
p

ε

[[
η3

3l2e
− η4

l3e
+

4η5

5l4e

]
−
[
μ3

3l2e
− μ4

l3e
+

4μ5

5l4e

]]
(41)

where for (37), (38), (40) and (41), η = ξ − ε
2
, μ = ξ + ε

2

7. THE ELEMENT CENTRIPETAL MATRIX

From the centripetal expressions of (18) and (19); and using (13),
the entries of the centripetal coefficient matrix are obtained:
For [C11]:

ceij =
2pv

ε
(γij) i, j = 1, 2, 3. (42)

For [C22]:
cemn = 2vρqIq (βij) m,n = 4, 5, 6. (43)

Where for (42) and (43)

γ11 =

[
−3x

le
+

13x2

2l2e
− 6x3

l3e
+

2x4

l4e

]
, γ12 =

[
4x

le
− 10x2

l2e
+

32x3

3l3e
− 4x4

l4e

]

γ13 =

[
−x

le
+

7x2

2l2e
− 14x3

3l3e
+

8x3

l4e

]
, γ21 =

[
−6x2

l2e
+

28x3

3l3e
− 4x4

l4e

]

γ22 =

[
8x2

l2e
− 16x3

l3e
+

8x4

l4e

]
, γ23 =

[
−2x2

l2e
+

20x3

3l3e
− 4x4

l4e

]

γ31 =

[
3x2

2l2e
− 10x3

3l3e
+

2x4

l4e

]
, γ32 =

[
−2x2

l2e
+

16x3

3l3e
− 4x4

l4e

]

γ33 =

[
x2

2l2e
− 2x3

l3e
+

2x4

l4e

]
(44)

β11 =

[
−3x

le
+

13x2

2l2e
− 6x3

l3e
+

2x4

l4e

]
, β12 =

[
4x

le
− 10x2

l2e
+

32x3

3l3e
− 4x4

l4e

]

β13 =

[
−x

le
+

7x2

2l2e
− 14x3

3l3e
+

8x3

l4e

]
, β21 =

[
−6x2

l2e
+

28x3

3l3e
− 4x4

l4e

]
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β22 =

[
8x2

l2e
− 16x3

l3e
+

8x4

l4e

]
, β23 =

[
−2x2

l2e
+

20x3

3l3e
− 4x4

l4e

]

β31 =

[
3x2

2l2e
− 10x3

3l3e
+

2x4

l4e

]
, β32 =

[
−2x2

l2e
+

16x3

3l3e
− 4x4

l4e

]

β33 =

[
x2

2l2e
− 2x3

l3e
+

2x4

l4e

]
(45)

8. THE ELEMENT LOAD VECTOR

From the load expressions of (18) and (19); and using (13), the
entries of the load coefficient vector are obtained:
For {F 1}:

f e
i =

pg

ε
(κi) +Qi i = 1, 2, 3. (46)

For {F 2}:
f e
j = Qj j = 4, 5, 6. (47)

where

κ1 =

[(
η − 3η2

2le
+

2η3

3l2e

)
−

(
μ− 3μ2

2le
+

2μ3

3l2e

)]

κ2 =

[(
2η2

le
− 4η3

3l2e

)
−
(
2μ2

le
− 4μ3

3l2e

)]

κ3 =

[(
− η2

2le
+

2η3

3l2e

)
−

(
− μ2

2le
+

2μ3

3l2e

)]

η = ξ − ε

2
, μ = ξ +

ε

2
(48)

The specification of Qi, i = 1, 2, ..., 6 depends on the associated
boundary conditions for a particular moving load problem.

9. ASSEMBLY OF ELEMENT EQUATIONS

The assembling of the various matrices and vector corresponding
to each element are done bearing in mind that for every beam
element, there are two degrees of freedom at each end nodes.
For an n-element tapered Timoshenko beam, there are (n + 1)

global nodes and a total of 2(n+1) global generalized displacements
and 2(n + 1) generalized internal forces.
For convenience, we harmonize the displacement terms and rota-

tion terms by re-labelling them as follows:

ue
1 = ve1, we

1 = ve2, ue
2 = ve3, we

2 = ve4, ue
3 = ve5, we

3 = ve6 (49)
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The continuity of the primary variables implies:

ve1 = V1, ve5 = ve+1
1 = V3, ve+1

5 = V5

ve2 = V2, ve6 = ve+1
2 = V4, ve+1

6 = V6 (50)

Where vei are the elements degrees of freedom and Vi are the global
degrees of freedom.
The equilibrium of the generalized forces at the connecting nodes

between elements e and e+ 1 requires that:

Qe
5 +Qe+1

1 = 0

Qe
6 +Qe+1

2 = 0 (51)

Consequently, the assembled stiffness matrix for two elements con-
nected in series for the present study is:

[K] =

⎡
⎢⎢⎢⎢⎢⎣

k1
11 k1

12 k1
15 k1

16 0 0
k1
21 k1

22 k1
25 k1

26 0 0
k1
51 k1

52 k1
55 + k2

11 k1
56 + k2

12 k2
15 k2

16

k1
61 k1

62 k1
65 + k2

21 k1
66 + k2

22 k2
25 k2

26

0 0 k2
51 k2

52 k2
55 k2

56

0 0 k2
61 k2

62 k2
65 k2

66

⎤
⎥⎥⎥⎥⎥⎦ (52)

The mass matrix, the centripetal matrix, and the load vector for
the present study are similarly obtained:

[M ] =

⎡
⎢⎢⎢⎢⎢⎣

m1
11 m1

12 0 0 0 0
m1

21 m1
22 0 0 0 0

0 0 m1
55 +m2

11 m1
56 +m2

12 0 0
0 0 m1

65 +m2
21 m1

66 +m2
22 0 0

0 0 0 0 m2
55 m2

56

0 0 0 0 m2
65 m2

66

⎤
⎥⎥⎥⎥⎥⎦ (53)

[C] =

⎡
⎢⎢⎢⎢⎢⎣

c111 c112 0 0 0 0
c121 c122 0 0 0 0
0 0 c155 + c211 c156 + c212 0 0
0 0 c165 + c221 c166 + c222 0 0
0 0 0 0 c255 c256
0 0 0 0 c265 c266

⎤
⎥⎥⎥⎥⎥⎦ (54)

[F ] =

⎡
⎢⎢⎢⎢⎢⎣

f 1
1

0
f 1
3 + f 2

1

0
f 2
3

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

Q1
1

Q1
2

Q1
5 + Q2

1

Q1
6 + Q2

2

Q2
5

Q2
6

⎤
⎥⎥⎥⎥⎥⎦ (55)
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The equation of motion governing the dynamic behaviour of a ta-
pered Timoshenko beam under a uniform partially distributed mov-
ing load becomes:⎡

⎢⎢⎢⎢⎢⎣

k1
11 k1

12 k1
15 k1

16 0 0
k1
21 k1

22 k1
25 k1

26 0 0
k1
51 k1

52 k1
55 + k2

11 k1
56 + k2

12 k2
15 k2

16

k1
61 k1

62 k1
65 + k2

21 k1
66 + k2

22 k2
25 k2

26

0 0 k2
51 k2

52 k2
55 k2

56

0 0 k2
61 k2

62 k2
65 k2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

V1(t)
V2(t)
V3(t)
V4(t)
V5(t)
V6(t)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

m1
11 m1

12 0 0 0 0
m1

21 m1
22 0 0 0 0

0 0 m1
55 +m2

11 m1
56 +m2

12 0 0
0 0 m1

65 +m2
21 m1

66 +m2
22 0 0

0 0 0 0 m2
55 m2

56

0 0 0 0 m2
65 m2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̈1(t)

V̈2(t)

V̈3(t)

V̈4(t)

V̈5(t)

V̈6(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

c111 c112 0 0 0 0
c121 c122 0 0 0 0
0 0 c155 + c211 c156 + c212 0 0
0 0 c165 + c221 c166 + c222 0 0
0 0 0 0 c255 c256
0 0 0 0 c265 c266

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̇1(t)

V̇2(t)

V̇3(t)

V̇4(t)

V̇5(t)

V̇6(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f 1
1

0
f 1
3 + f 2

1

0
f 2
3

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

Q1
1

Q1
2

Q1
5 +Q2

1

Q1
6 +Q2

2

Q2
5

Q2
6

⎤
⎥⎥⎥⎥⎥⎦ (56)

Or simply as:

[K]V (t) + [C] V̇ (t) + [M ] V̈ (t) = F (57)

10. IMPOSITION OF BOUNDARY CONDITIONS

In (57), there are 6 equations and 14 unknowns. Application of
the associated boundary conditions will make the number of equa-
tions equal the number of unknowns and yield a unique solution.
For a clamped Timoshenko beam, the boundary conditions imply

that at global nodes 1 and 3, the unknowns are equal to zero, that
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is:

u1
1 ≡ v11 = V1 = 0, w1

1 ≡ v12 = V2 = 0,

u2
3 ≡ v25 = V5 = 0, w2

3 ≡ v26 = V6 = 0 (58)

By (51), at global node 2, the connecting nodes, there are no ex-
ternally applied shear forces and bending moment. Hence,

Q1
5 +Q2

1 = 0; Q1
6 +Q2

2 = 0 (59)

Using (51, (58) and (59) in (57), the system of equation for a two-
element clamped tapered Timoshenko beam under a uniform par-
tially distributed moving load becomes:

⎡
⎢⎢⎢⎢⎢⎣

k1
11 k1

12 k1
15 k1

16 0 0
k1
21 k1

22 k1
25 k1

26 0 0
k1
51 k1

52 k1
55 + k2

11 k1
56 + k2

12 k2
15 k2

16

k1
61 k1

62 k1
65 + k2

21 k1
66 + k2

22 k2
25 k2

26

0 0 k2
51 k2

52 k2
55 k2

56

0 0 k2
61 k2

62 k2
65 k2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
0
V3

V4

0
0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

m1
11 m1

12 0 0 0 0
m1

21 m1
22 0 0 0 0

0 0 m1
55 +m2

11 m1
56 +m2

12 0 0
0 0 m1

65 +m2
21 m1

66 +m2
22 0 0

0 0 0 0 m2
55 m2

56

0 0 0 0 m2
65 m2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̈1

V̈2

V̈3

V̈4

V̈5

V̈6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

c111 c112 0 0 0 0
c121 c122 0 0 0 0
0 0 c155 + c211 c156 + c212 0 0
0 0 c165 + c221 c166 + c222 0 0
0 0 0 0 c255 c256
0 0 0 0 c265 c266

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̇1

V̇2

V̇3

V̇4

V̇5

V̇6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f 1
1

0
f 1
3 + f 2

1

0
f 2
3

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

Q1
1

Q1
2

0
0
Q2

5

Q2
6

⎤
⎥⎥⎥⎥⎥⎦ (60)
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For a simply supported Timoshenko beam, the boundary conditions
imply that

u1
1 ≡ v11 = V1 = 0, u2

3 ≡ v25 = V5 = 0 ; Q1
2 = Q2

6 = 0 (61)

Using (51) and (61) in (57), the system of equation for a two-
element simply supported tapered Timoshenko beam under a uni-
form partially distributed moving load becomes:⎡

⎢⎢⎢⎢⎢⎣

k1
11 k1

12 k1
15 k1

16 0 0
k1
21 k1

22 k1
25 k1

26 0 0
k1
51 k1

52 k1
55 + k2

11 k1
56 + k2

12 k2
15 k2

16

k1
61 k1

62 k1
65 + k2

21 k1
66 + k2

22 k2
25 k2

26

0 0 k2
51 k2

52 k2
55 k2

56

0 0 k2
61 k2

62 k2
65 k2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
V2

V3

V4

0
V6

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

m1
11 m1

12 0 0 0 0
m1

21 m1
22 0 0 0 0

0 0 m1
55 +m2

11 m1
56 +m2

12 0 0
0 0 m1

65 +m2
21 m1

66 +m2
22 0 0

0 0 0 0 m2
55 m2

56

0 0 0 0 m2
65 m2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̈1

V̈2

V̈3

V̈4

V̈5

V̈6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

c111 c112 0 0 0 0
c121 c122 0 0 0 0
0 0 c155 + c211 c156 + c212 0 0
0 0 c165 + c221 c166 + c222 0 0
0 0 0 0 c255 c256
0 0 0 0 c265 c266

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̇1

V̇2

V̇3

V̇4

V̇5

V̇6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f 1
1

0
f 1
3 + f 2

1

0
f 2
3

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

Q1
1

0
0
0
Q2

5

0

⎤
⎥⎥⎥⎥⎥⎦ (62)

However, for the cantilever Timoshenko beam, the boundary con-
ditions indicates,

V1 = V2 = 0 ; Q2
5 = Q2

6 = 0 (63)

Again, using (51) and (63) in (57), the system of equation for a
two-element cantilever tapered Timoshenko beam under a uniform
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partially distributed moving load becomes:⎡
⎢⎢⎢⎢⎢⎣

k1
11 k1

12 k1
15 k1

16 0 0
k1
21 k1

22 k1
25 k1

26 0 0
k1
51 k1

52 k1
55 + k2

11 k1
56 + k2

12 k2
15 k2

16

k1
61 k1

62 k1
65 + k2

21 k1
66 + k2

22 k2
25 k2

26

0 0 k2
51 k2

52 k2
55 k2

56

0 0 k2
61 k2

62 k2
65 k2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0
0
V3

V4

V5

V6

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

m1
11 m1

12 0 0 0 0
m1

21 m1
22 0 0 0 0

0 0 m1
55 +m2

11 m1
56 +m2

12 0 0
0 0 m1

65 +m2
21 m1

66 +m2
22 0 0

0 0 0 0 m2
55 m2

56

0 0 0 0 m2
65 m2

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̈1

V̈2

V̈3

V̈4

V̈5

V̈6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

c111 c112 0 0 0 0
c121 c122 0 0 0 0
0 0 c155 + c211 c156 + c212 0 0
0 0 c165 + c221 c166 + c222 0 0
0 0 0 0 c255 c256
0 0 0 0 c265 c266

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V̇1

V̇2

V̇3

V̇4

V̇5

V̇6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

f 1
1

0
f 1
3 + f 2

1

0
f 2
3

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

Q1
1

Q1
2

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ (64)

The systems in (60), (62), and (64) comprises of 6 equations and 6
unknowns, which can be solved to yield unique solutions.

11. SOLUTION OF ELEMENT EQUATIONS

Any of the system of second order differential equations (60), (62)
or (64), which can be written as:

[K]V (t) + [C] V̇ (t) + [M ] V̈ (t) = F (65)

is solved using the Newmark method.
The Newmark equations are [22]:

Vs+1 = Vs +ΔtV̇s +

(
1

2
− β

)
(Δt)2V̈s + β(Δt)2V̈s+1 (66)
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V̇s+1 = V̇s + (1− α)ΔtV̈s + αΔtV̈s+1 (67)

The parameters β and α in (66) and (67) define the variation of
acceleration over a time step and determine the stability and ac-
curacy characteristics of the method. Apart from the special cases
such as the Galerkin method and the backward difference methods,
α has a constant value of 1

2
for all other cases, including the cases

considered in the present study. As a result, (67) becomes

V̇s+1 = V̇s +
Δt

2

(
V̈s + V̈s+1

)
(68)

where the notations used are as defined in (69):

Vs = V at time ts ; Vs+1 = V at time ts+1 ; Δt = ts+1 − ts (69)

The substitution of (68) into (66), applying it to (65), and collecting
like terms results in:

K̂s+1Vs+1 = F̂s,s+1 (70)

where

K̂s+1 = (Ks+1 + a3Ms+1 + a6Cs+1)

F̂s,s+1 = Fs+1 +Ms+1

(
a3Vs + a4V̇s + a5V̈s

)

+ Cs+1

(
a6Vs + a7V̇s + a8V̈s

)

a3 =
1

β(Δt)2
, a4 = a3Δt, a5 =

1

2β
− 1 (71)

The V̈0 needed to start the computation is obtained from (65) as:

V̈0 = M−1
(
F0 − CV̇0 −KV0

)
(72)

with the assumption that the applied force F at t = 0, is zero. That
is, F0 = 0.
Using equation (70) and (71), the displacement vector (deflection

and rotation) Vs+1, at time ts+1 can be obtained from the previ-
ously determined earlier values of the displacement, velocity, and
acceleration vectors Vs, V̇s, and V̈s obtained at time ts.
At the end of each time step, the new velocity vector V̇s+1 and

acceleration vector V̈s+1 are computed using (66) and (68) as,

V̈s+1 = a3 (Vs+1 − Vs)− a4V̇s − a5V̈s

V̇s+1 = V̇s + a2V̈s + a1V̈s+1
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a1 = αΔt, /a2 = (1− α)Δt (73)

Newmark’s method is stable if
Δt

Tn
≤ 1

π
√
2

1√
0.5− 2β

(74)

This means that the average acceleration method (β = 1
4
) is stable

for any Δt (unconditionally stable). For the linear acceleration
method (β = 1

6
), (74) indicates that it is stable if

Δt

Tn
< 0.551 (75)

where Tn is the time period. Meaning that a shorter time step than
0.5513Tn must be used.

12. NUMERICAL EXAMPLES

To illustrate the theory so far developed, we consider a non uni-
form simply supported, tapered beam according to the Timoshenko
beam theory. The total length of the beam L is such that L =
17.5m. The beam is dicretized into ten non-uniform elements.
The beam’s density ρ = 2400kgm−3, elastic modulusE = 2.02 ×
1011Nm−2 , shear modulus G = 7.7× 1010Nm−2, and shear coeffi-
cient K = 5

6
. The load’s density ρq = 240kgm−3, moment of inertia

Iq = 0.0012m4, mass p = 1062kg, moving speed v = 30ms−1, and
length ε = 0.2m. The gravitational acceleration is g = 9.8ms−2.
The length of each element is given as:

L1 = 1.25m, L2 = 1.25m, L3 = 1.5m, L4 = 1.5m, L5 = 1.75m,

L6 = 1.75m,L7 = 2m, L8 = 2m, L9 = 2.25m, L10 = 2.25m (76)

The cross-section of the beam is such that its width is uniform
from end-to-end, and is given as

b1 = b2 = b3 = b4 = b5 = b6 = b7 = b8 = b9 = b10 = 0.41m (77)

The non-uniform (or tapered) nature of the beam is determined
by its varying depth (height), which is given from left to right as:

h0 = 0.52m, h1 = 0.5m, h2 = 0.48m, h3 = 0.46m,

h4 = 0.44m, h5 = 0.42m, h6 = 0.4m, h7 = 0.38m,

h8 = 0.36m, h9 = 0.34m, h10 = 0.32m (78)

The beam’s cross-sectional area A(x) and moment of inertia I(x)
are calculated using (7). For the secondary variables, bending mo-
ments at the support ends are equal to zero (simply supported
boundary). They are both unknown at the ends for cantilever and
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clamped beams. The solutions were obtained using Matlab pro-
grams and graphs plotted using Microsoft Excel.
The effects of the following, to the dynamic response of the present

beam were investigated: i. Load’s speed. ii. Load’s length. iii.
Beam’s length. iv. Changes in boundary conditions. v. Time his-
tory of the mid-span and the end of the beam. vi. Load-Beam mass
ratio.
Effect of the load’s speed on the dynamic response of the beam
The effect of load’s speed on the dynamic response of the non-

uniform simply supported Timoshenko beam under distributed mov-
ing load was investigated with three load’s speed a control speed
of 30m/s, which was then reduced to 20m/s and later increased to
40m/s. It is observed that as the load’s speed was increased, the
maximum amplitude of deflection(u) decreased, and vice versa. The
same was observed with the maximum amplitude of rotation(w),
which also decreased as the speed of the load increased. The re-
sults are shown in Figures (1a) and (1b).

Fig. 1a. Deflection at various load speed.

Effect of the load’s length on the dynamic response of the beam
To investigate the effect of load’s length on the dynamic re-

sponse of the non-uniform simply supported Timoshenko beam un-
der distributed moving load, a control length of 0.2m and two other
lengths, 0.3m and 0.15m. It was observed that the maximum am-
plitude of response of both the deflection and rotation increased
as the load’s length decreased, (Figures (2a) and (2b)). But when
the length was further reduced to 0.1m, the trend reversed even
though their amplitudes were still increasing. Figures (3a) and (3b)
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Fig. 1b. Rotation at various load speed.

show this reversed trend, which was observed for load’s lengths of
ε < 0.15.

Fig. 2a. Deflection at various load length.

Effect of the beam’s length on the dynamic response of the beam
With the beam’s span lengths of L = 15m, L = 17.5m, and L =

20m, it was observed that the maximum amplitude of response of
the deflection (u) and rotation (w) increased as the length of the
simply supported non-uniform Timoshenko beam decreased. See
Figures (4a), (4b) and (4c).
Effect of changes in boundary conditions on the dynamic response
The maximum amplitude of deflection and rotation were far higher

with the simply supported boundary than the clamped and can-
tilever boundaries. The values for clamped boundary were slightly
higher than for the cantilever boundary. See Figures (5a,b.c).
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Fig. 2b. Rotation at various load length.

Fig. 3a. Deflection at load length ε = 0.15m.

Fig. 3b. Rotation at load length ε = 0.15m.
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Fig. 4a. Deflection and Rotation with a beam length of 15m.

Fig. 4b. Deflection and Rotation with a beam length of 17.5m.

Fig. 4c. Deflection and Rotation with a beam length of 20m.
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Fig. 5a. Deflection and Rotation of a simply-supported beam.

Fig. 5b. Deflection and Rotation of a cantilevered beam.

Fig. 5c. Deflection and Rotation of a clamped beam.
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Time history of the mid-span and the end of the beam (dt=0.1s)
As figure (6) show, the deflection (u) and rotation (w) were not

significantly different from zero until after 5 second for a simply
supported boundary at the mid span, Figure (6a). The deflection
was zero all through at the end of the beam, Figure (6b). As for
the cantilever beam, the amplitude of both the deflection (u) and
rotation (w) were not significantly different from zero until after 5
second at the end of the beam while the deflection (u) was zero and
very close to zero at the mid-span of the beam, Figure (6c). The
deflection (u), was zero and very close to zero at the mid-span of the
beam for the clamped boundary, Figure (6d). While the rotation
(w) was not significantly different from zero until after 5 second,
Figure (6e).

Fig. 6a. Time history at the mid-span of the simply-supported beam.

Fig. 6b. Time history at the end of the simply-supported beam.
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Fig. 6c. Time history at the mid-span of the clamped beam.

Fig. 6d. Time history at the mid-span of the cantilevered beam.

Fig. 6e. Time history at the end of the cantilevered beam.
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Effect of changes in the load-beam mass ratio on the beam response
When the load-beam mass ratio was varied from an average of

0.1, 0.2, 0.3, and 0.4, the trend of deflection of the beam reversed
from 0.1 to 0.2. The trend became the same from 0.2 to 0.4, but
with increasing maximum amplitudes - Figure (7a). The same was
observed for the trend of rotation - Figure (7b).

Fig. 7a. Deflection of the beam at various Load-Beam mass ratios.

Fig. 7b. Rotation of the beam at various Load-Beam mass ratios.
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13. CONCLUDING REMARKS

The dynamic response of tapered Timoshenko beams under uni-
form partially distributed moving loads has been presented in this
paper. The finite element method as a numerical procedure us-
ing Lagrange interpolation with reduced integration element was
used to obtain the finite element equations. These equations, being
semi-discrete were solved using the Newmark method. The results
obtained show that the load’s velocity and length; as well as the
boundary conditions, beam’s length, and load-beam mass ratio all
have significant effects on the dynamic response of the beam.
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[9] L. Frýba, Vibration of solid and structures under moving loads, Noordhoff Inter-
national, Groningen, 1972.

[10] J. A. Gbadeyan, I. O Abiala and A. W. Gbalagade, On the dynamic response of
beams subjected to uniform partially distributed moving masses, Nigerian Journal
of mathematics and application 15 123-135, 2002.

[11] J. A. Gbadeyan and M. S. Dada, The effects of linearly varying distributed moving
loads on beams, Journal of the Engineering and Applied Sciences 2 (6) 1006-1011,
2007.

[12] J. A. Gbadeyan and S. T. Oni, Dynamic behaviour of beams and rectangular plates
under moving loads, Journal of sound and vibration 182 (5) 677-695, 1995.



ON THE DYNAMIC ANALYSIS OF A TAPERED . . . 141

[13] A. Hillerborg, Dynamic influences of smoothly running on simply supported gird-
ers, Kungl. Tekn. Hogskolan. Stockholm, 1951.

[14] J. C. Hsu, H. Y. Lai and C. K. Chen, Free vibration of a non-uniform Euler-
Bernoulli beam with general elastically end constraints using Adomian modified
decomposition method, Journal of sound and vibration 318 965-981, 2008.

[15] C.E. Inglis, A Mathematical treatise on vibration in Railway bridges, Cambridge
University Press, Cambridge, UK, 1934.

[16] V. Kolousek, Dynamics of civil engineering structures, Part 1: General problems,
SNTL, Prague, 1956.

[17] A.N. Krylov, Dynamics of civil engineering structures, Part 1: General problems,
SNTL, Prague, 1971.

[18] P. Lou, G-L. Dai, and Q-Y Zeng, Finite element analysis for a Timoshenko beam
subject to a moving mass, Journal of Mechanical Engineering Science 220 (5)
669-678, 2006.

[19] A. N. Lowan, On transverse oscillation of beams under the action of moving vari-
able loads, Philosophical Magazine 19 (27) 708-715, 1935.

[20] G. T. Michaltsos and A. N. Kounadis, The effect of centripetal and coriolis forces
on the dynamic response of light bridges under moving loads, Journal of vibration
and control 7 315-326, 2001.

[21] G. T. Michaltsos, D. Sophianopoulos and A. N. Kounadis, The effect of a mov-
ing mass and other parameters on the dynamic response a simply support beam,
Journal of sound and vibration 191 357-362, 1996.

[22] J. N. Reddy, An Introduction to the Finite Element Method, McGrawHill (Inter-
national Edition). New York. 2006.

[23] S. Sadiku and H. H. E. Leipholz, On the dynamics of elastic systems with moving
concentrated masses, Ingenieur Achiv 57 223-242, 1989.

[24] M. M. Stanisic and J. C. Hardin, On the response of beams to an arbitrary number
of moving masses, J. of Franklin Institute 28 115-123, 1969.

[25] G. Stokes, Discussion of a differential equation relating to the breaking of railway
bridges, Transaction of the Cambridge Philosophical Society 8 (5) 705-707, 1849.

[26] J. Thomas and B. A. H. Abbas, Dynamic Stability of Timoshenko Beams by
Finite Element Method, Paper No. 75-DET-78, American Society of Mechanical
Engineers, New York, 1975.

[27] S. P. Timoshenko, D. H. Young, and J. W. Weaver, Vibration problems in engi-
neering, Wiley, New York, 1974.

[28] R. Wills, Experiment for determining the effect produced by causing weights to
travel over bars with different velocities, In report of the commissioners appointed
to inquire into the application of iron to railway structures, 1849.

[29] J. S. Wu and C. W. Dai, Dynamic responses of multi-span non-uniform beams
due to moving loads, Journal of structural engineering 113 (5) 458-474, 1987.

[30] H. Zimmermann, Die Schwingungen eines Tragers mit bewegter Lasts, Centrall-
blatt der Bauverwaltung 16 (23) 249-251, 1896.

DEPARTMENT OF MATHEMATICAL SCIENCES, REDEEMER’S UNIVERSITY, RE-
DEMPTION CITY, NIGERIA.

E-mail address: afeisede@yahoo.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILORIN, ILORIN, NIGE-
RIA.
E-mail address: j.agbadeyan@yahoo.com


