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EFFECT OF SURFACE ROUGHNESS ON ELECTRO-

MAGNETO-HYDRODYNAMIC FLOW IN A

ROUGH CURVED CHANNEL

NNAMDI FIDELIS OKECHI

ABSTRACT. For a flow through an applied electric and mag-
netic field, the effect of surface roughness on the curved walls
confining the flow is presented. The roughness is considered as
a small perturbation to the smooth walls of the curved channel.
The analytical expression of the pertinent volumetric flow rate
is obtained through boundary perturbation method, where the
amplitude of the prescribed roughness is taken as the pertur-
bation parameter. The study indicates that the overall effect
of rough curved walls decreases as the electro-magnetic force
increases over the viscous force.
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1. INTRODUCTION

Roughness on the boundaries of a channel may be considered as
deviations from the ideal surface of the channel. The presence of
roughness has been found to significantly influence the flow through
conduits characterized by either artificially imposed or naturally
induced roughness. Through the studies carried out by several re-
searchers, the effects of channel roughness have been investigated,
where different types of roughness have been described by different
functions. Flow in a rough straight channel was studied by Wang
[1]. Phan-Thien [2] examined Stokes flows in channels and pipes
with stationary random surface roughness. The flow pattern and
pressure drop in rough microchannels were analyzed by Wang and
Wang [3]. The instability of flow in a rough channel was discussed
by Floryan [4]. The modelling of surface roughness effects on Stokes
flow in circular pipes was considered by Song et al. [5]; periodic
roughness of sinusoidal, triangular, and rectangular morphologies
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were considered and their effects on the low Reynold number flow
field and pressure drop were analyzed. Duan and Muzychka [6]
studied the effect of roughness on flow in microtubes. The au-
thors presented the effects of no-slip and slip rough wall condi-
tions on the incompressible flow. The analysis of electro-magneto-
hydrodynamic flow through a rough microchannel was given by
Buren et al. [7]. Related studies can also be found in the following
articles, namely, [8]-[15]. On the other hand, flows through rough
curved channels have been modelled and studied by Okechi and
Asghar ([16]-[19]) for various flow orientations. The authors stud-
ied the behaviour of rough curved channel flows, relative to smooth
curved channel flows. The inherent analyses indicate that the ef-
fects of the enclosing rough walls depend substantially on the flow
orientations, with respect to the structure of the roughness.
In the present work, an incompressible flow through a rough curved
channel is studied, such that the flow traverses an applied electric
field and a radially imposed magnetic field. The electric field vector
is constant, whereas, the magnetic field vector is a function of the
channel radius of curvature and the space variable in the direction
of the field. The objective of this work is to examine the effects
of roughness and the electro-magnetic force on the volumetric flow
rate and to ascertain the variation in the flow characteristics in
comparison to that of a smooth curved channel, of the same radius
of curvature and subjected to the same electro-magnetic force. A
quantitative relation between the flow rate in a rough curved chan-
nel and that of a smooth curved channel will be determined, and
the percentage change in the flow rate due to the presence of rough-
ness will be calculated.
In section 2, the physical model and the perturbation analysis are
given. The mathematical model of the problem is provided and
the description of the wall roughness is specified. The analysis is
carried out for an arbitrary phase difference between the two rough
curved walls. Through perturbation analysis, the expression of the
volumetric flow rate is obtained. Section 3 entails the results and
discussion via graphical and tabular representations. Finally, the
concluding remarks are provided in section 4.

2. PHYSICAL MODEL AND ANALYSIS

Consider a flow driven along the x-direction, perpendicular to
an electric field E = (0, 0, E) and a magnetic field B = (0, Bk

y+k
, 0)

imposed in the z-direction and y- direction, respectively, as shown
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Fig. 1. The normalized flow geometry.

Fig. 1, where k > 0 is the channel radius of curvature. The govern-
ing equations for the incompressible flow; including the equations
of mass and momentum conservations can be written, respectively,
in vector form as

∇ · u = 0,

ρ
du

dt
= −∇p+ µ∆u + J×B,

(1)

where ρ, µ and p, are the fluid density, dynamic viscosity, and
pressure, respectively, while t is the time. The material derivative,
the gradient vector and the Laplacian are given by d

dt
, ∇, and ∆,

respectively. The electro-magnetic force known as the Lorentz force
is defined by the vector J×B, where J = σ(E+u×B) is the current
density and σ is the fluid conductivity. For a unidirectional steady
flow generated by pressure gradient −∂xp = G, with velocity vector
u = (u, 0, 0), the governing equations for the flow problem can be
expressed, in the curvilinear coordinates ([16]-[20]) as;

(y + k)2 ∂y
(
(y + k)−1 ∂y (y + k)u

)
+ (y + k)2 ∂zzu

−k
(
kσB2u− σ (y + k)EB

)
= −k (y + k)G,

(2)

where ∂jg is the derivative of the function g with respect to the
variable j. Suppose the curved walls, separated by a distance 2a
are rather rough, we may define the roughness of the walls by the
wave functions yO = a + b sin

(
2πz
λ

)
and yI = −a + b sin

(
2πz
λ

+ ς
)
,

for the outer and the inner rough walls, respectively, where b is
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the amplitude, λ is the wavelength and ς is the phase difference
between the rough curved walls. Thus, the no-slip wall conditions
for the flow read;

u =

{
0, y = yO = a+ b sin(2πz

λ
)

0, y = yI = −a+ b sin(2πz
λ

+ ς).
(3)

Normalizing the lengths by a, and the velocity is by a2G
µ

, Eqs. (2)

and (3) can be rewritten in the dimensionless form

(y + k)∂y ((y + k)∂yu) + (y + k)2∂zzu− β2u = −(N + 1)k(y + k),

u =

{
0, y = yO = 1 + ε sin(αz)

0, y = yI = −1 + ε sin(αz + ς),

(4)

where β2 = k2Ha2 + 1, Ha = Ba
√

σ
µ

is the flow Hartmann number;

N = σEB
G

is a parameter due to the electric field; ε is the dimen-

sionless amplitude and α = 2λa
λ

is the wavenumber which specifies
the spatial frequency of the roughness. Now, for a small amplitude
of the rough walls relative to the channel width (ε << 1), we can
express the solution of the boundary valued problem (BVP), Eq.
(4), as;

u = u0 + εu1 + ε2u2 +O(ε3). (5)

u(1 + ε sin(αz), z) = u(1) + ε sin(αz)uy(1, z)

+
1

2
ε2 sin2(αz)uyy(1, z) +O(ε3) = 0,

(6)

u(−1 + ε sin(αz + ς), z) = u(−1) + ε sin(αz + ς)uy(−1, z)

+
1

2
ε2 sin2(αz + ς)uyy(−1, z) +O(ε3) = 0,

(7)

On substituting Eqs. (5)-(7) in Eq. (4), we get the following bound-
ary value problems. Now, for the zeroth-order (O(ε0)), the BVP
is

(y + k)∂y ((y + k)∂yu0)− β2u0 = −(N + 1)k(y + k),

u0(1) = 0, u0(−1) = 0.
(8)

The solution of Eq. (8) is given as

u0(y) = c0(y + k)β + b0(y + k)−β + k(N + 1)(y + k)/k2Ha2, (9)

where

c0 =
k(N + 1)

(
(k − 1)(k + 1)−β − (k + 1)(k − 1)−β

)
k2Ha2 ((k + 1)β(k − 1)−β − (k − 1)β(k + 1)−β)

, (10)
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and

b0 =
k(N + 1)

(
(k + 1)(k − 1)β − (k − 1)(k + 1)β

)
k2Ha2 ((k + 1)β(k − 1)−β − (k − 1)β(k + 1)−β)

. (11)

For the first-order (O(ε1)), the BVP is

(y + k)∂y ((y + k)∂yu1)− ((y + k)2∂zz + β2)u1 = 0,

u1(1, z) = − sin(αz)∂yu0(1),

u1(−1, z) = − sin(αz + ς)∂yu0(−1).

(12)

Solving Eq. (12), the exact periodic solution is

u1(y, z) =
2∑

γ=1

Uγ(y) sin(αz + (γ − 1)π/2), (13)

where
Uγ(y) = cγIβ

(
α(y + k)

)
+ bγKβ

(
α(y + k)

)
, (14)

cγ =
(2− γ)Kβ

(
α(k − 1)

)
Uγ(1)−Kβ

(
α(k + 1)

)
Uγ(−1)

Iβ
(
α(k + 1)

)
Kβ

(
α(k − 1)

)
−Kβ

(
α(k + 1)

)
Iβ
(
α(k − 1)

) ,
(15)

and

bγ =
Iβ
(
α(k + 1)

)
Uγ(−1)− (2− γ)Iβ

(
α(k − 1)

)
Uγ(1)

Iβ
(
α(k + 1)

)
Kβ

(
α(k − 1)

)
−Kβ

(
α(k + 1)

)
Iβ
(
α(k − 1)

) .
(16)

For the second-order (O(ε2)), the BVP is given as

(y + k)∂y
(
(y + k)∂yu2

)
− ((y + k)2∂zz + β2)u2 = 0,

u2(1, z) = −1

2
sin2(αz)∂yyu0(1)− sin(αz)∂yu1(1, z),

u2(−1, z) = −1

2
sin2(αz + ς)∂yyu0(−1)− sin(αz + ς)∂yu1(−1, z).

(17)

From Eq. (17), the exact solution is found to be

u2(y, z) = U3(y) +
5∑

γ=4

Uγ(y) sin(2αz + (γ − 4)π/2). (18)

Eq. (18) consist of a combination of periodic and non-periodic
parts in z. Since the periodic part of Eq. (18) will no contribute to
the volumetric flow rate, we are only interested in the non-periodic
part, thus, we have the solution

u2(y, z) = U3(y) = c3(y + k)β + b3(y + k)−β, (19)
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where

c3 =
U3(1)(k − 1)−β − Uβ(−1)(k + 1)−β

(k + 1)β(k − 1)−β − (k − 1)β(k + 1)−β
, (20)

b3 =
U3(−1)(k + 1)β − U3(1)(k − 1)β

(k + 1)β(k − 1)−β − (k − 1)β(k + 1)−β
. (21)

Note that, the functions Iβ and Kβ are modified Bessel functions
of order β, and of the first and second kind, respectively. The
normalized volumetric flow rate Q for the flow problem can be
obtained from the integral defined as ([15]-[18])

Q =
α

2π

∫ 2π
α

0

∫ yO

yI

udydz (22)

The expression of Eq. (22) can be expanded up to second-order in
ε to get

Q =

∫ 1

−1

u0dy + ε
α

2π

∫ 2π
α

0

∫ 1

−1

u1dydz

+ ε2
α

2π

(∫ 2π
α

0

∫ 1

−1

u2dydz

+

∫ 2π
α

0

(sin(αz)u1(1)− sin(αz + ς)u1(−1))dz

+
1

2

∫ 2π
α

0

(sin2(αz)∂yu0(1)− sin2(αz + ς)∂yu0(−1))dz

)
+O(ε4). (23)

Substituting the velocity expression in Eq. (23) it becomes:

Q = q(1 + ε2χ) +O(ε4). (24)

Eq. (24) is the quantitative relation between Q and q, where

q =
1

k2Ha2

(
b0(β + 1)((k − 1)1−β − (k + 1)1−β)

+ c0(β − 1)((k + 1)1+β − (k − 1)1+β) + 2k2(N + 1)

)
, (25)
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and

χ =
1

q

(
β

4
c0
(
(k + 1)1−β − (k − 1)1−β) + b0((k − 1)−1−β − (k + 1)−1−β)

)
+

1

2

(
c1Iβ(α(k + 1)) + b1Kβ(α(k + 1))

− (c1Iβ(α(k − 1)) + b1Kβ(α(k − 1))) cos(ς)− (c2Iβ(α(k − 1))

+ b2Kβ(α(k − 1))) sin(ς)
)

+
1

k2Ha2

(
(β + 1)b3((k − 1)1−β − (k + 1)1−β)

− (β − 1)c3((k − 1)1+β − (k + 1)1+β)
))
. (26)

Now, q = q(k,N,Ha) is the flow rate through the smooth curved
channel in the absence of roughness, while χ = χ(α, ς, k,N,Ha)
is the roughness function which specifies the effect of the surface
roughness on the flow.

3. RESULTS AND DISCUSSION

In this section, the variations of both the volumetric flow rate q
through a smooth curved channel and the volumetric flow rate Q
through the rough curved channel are discussed as functions of the
pertinent flow parameters. Further to that, the percentage change
in the volumetric flow rate due to the wall roughness is discussed.
Fig. 2 illustrates the variation of the function q with the Hartmann
number Ha of the flow. It can be noticed that, for a smooth curved
channel, q decreases continuously with Ha, for a given k. Physically,
this trend is attributed to the presence of the electro-magnetic force,
which opposes the flow in the stream wise direction. In Fig. 3, the
analytical result in the previous section is validated: For a given
k, large enough, the present result corresponds to the flow rate of
Poiseuille flow in a smooth straight channel (which is indicated by
the dashed line [20]) in the absence of both electric and magnetic
fields.

In Fig. 4, we have given the variation of the roughness function χ
with the alignment of the curved walls defined by the phase differ-
ence ς, for each Ha. This shows that χ increases with ς. However,
with increasing Ha, χ decreases in magnitude and ceases to vary
with ς for sufficiently large Ha. This means that for sufficiently



346 NNAMDI FIDELIS OKECHI

Fig. 2. Variation of flow rate q through a smooth curved channel with
Ha, when k = 1.3 and N = 1.

Fig. 3. Variation of flow rate q through a smooth curved channel with
Ha, when k = 15 and N = 0.

large Ha, the effect of the alignment of the two rough curved walls
on the volumetric flow rate Q is negligible.

More also, from Fig. 4, it can be clearly understood that the
maximum and minimum values of χ occur at ς = π and ς = 0,
respectively. Therefore, in the next figures, the variations of χ with
Ha for different α and k are discussed for these extrema (i.e. ς = π
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Fig. 4. Variation of the roughness function χ with ς, when k = 2, N
= 1, Ha = 0.5 (solid lines) Ha = 1 (dashed lines) and Ha = 5 (dotted

lines)

and ς = 0), keeping in mind that χ > 0 and χ < 0 increases and de-
creases the volumetric flow rate Q, respectively, through Eq. (24).
In Fig. 5, for small Ha, the effect of the roughness is significant
for any α. While the effect of ς on χ is distinctively obvious for
small α, ς ceases to show any distinct effect for large α. This is
because, as α increases, the frequency of the roughness increases,
thus, the flow resistance due to the confining rough walls becomes
increased, consequently. This situation renders the phase difference
between the rough curved walls immaterial. Hence, the roughness
effect will be the same irrespective of the alignment of rough curved
wall. Furthermore, ς loses its effect on the flow as Ha increases, such
that, for Ha large enough, χ does not vary with ς, even for small
α. At this point, it is important to emphasize that the roughness
function changes from χ > 0 to entirely χ < 0, as the parame-
ter α increases. Fig. 6 demonstrates the variation of χ with Ha
for different k. This indicates that the roughness effect changes in
magnitude with channel radius of curvature. We can observe that
the rough curved walls confining the flow will have more decreasing
effect on the flow for large Hartmann number, compared to rough
straight channel walls.

To determine the percentage change in the volumetric flow rate
due to the presence of the roughness, we have provided Tables 1
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Fig. 5. Variation of the roughness function χ with Ha, for different α,
when k = 1.3, N = 1, ς = π (dashed lines) and ς = 0 (solid lines).

Fig. 6. Variation of the roughness function χ with Ha, for different k,
when α = 1, N = 1, ς = π (dashed lines) and ς = 0 (solid lines).

and 2. In Table 1, for α = 0.1, it is evident that when the phase
difference between the rough curved walls is zero, i.e., ς = 0, a per-
centage decrease is obtained, irrespective of the channel radius of
curvature k. On the contrary, for ς > 0, a percentage increase in
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the volumetric flow rate is obtained for each k. More also, the over-
all percentage change increases in magnitude as we go from ε = 0.1
to 0.15. This demonstrates that the effects of the roughness may
become more profound as the roughness amplitude increases rela-
tive to the channel width. In Table 2, when α = 1, the percentage
decrease in the volumetric flow rate extends from ς = 0 to both
ς = 0.5π and ς = π (for k = 2), whereas, the percentage increase
is obtained only at ς = π for both k = 5 and 10. Like Table 1,
the percentage change is also magnified from ε = 0.1 to 0.15 in
Table 2. The tables are an indication of the fact that while the
flow enhancement maybe possible for ς > 0 and sufficiently small
α. The tendency of obtaining such enhancement diminishes with
increasing α, such that for large value of α, there will only be a
percentage decrease in the flow.

Table 1. Percentage change in the volumetric flow rate. α = 0.1,
N = 1 and Ha = 1.

ε = 0.1 ε = 0.15
ς = 0 ς = 0.5π ς = π ς = 0 ς = 0.5π ς = π

k = 2 -0.04980 0.20536 0.46050 -0.11205 0.46206 1.03613
k = 5 -0.00600 0.31523 0.63648 -0.01350 0.70927 1.43208
k = 10 -0.00396 0.32649 0.65701 -0.00891 0.73460 1.47827

Table 2. Percentage change in the volumetric flow rate. α = 1, N = 1
and Ha = 1.

ε = 0.1 ε = 0.15
ς = 0 ς = 0.5π ς = π ς = 0 ς = 0.5π ς = π

k = 2 -0.34756 -0.18812 -0.02858 -0.78201 -0.42327 -0.06431
k = 5 -0.33620 -0.13912 0.05819 -0.75645 -0.31302 0.13093
k = 10 -0.33827 -0.13610 0.06624 -0.76111 -0.30623 0.14904

4. CONCLUDING REMARKS

In this study, we have examined the effects of roughness on the vol-
umetric flow rate associated with the flow through a rough curved
channel subjected to an imposed electric and magnetic fields. The
volumetric flow rate has been analyzed. The existence of channel
surface roughness may be favourable or not to the flow through such
channels, under the circumstances that have been considered here.
That is to say, for roughness defined by small wavenumbers, a per-
centage increase in the flow is possible, since the flow is increased by
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the roughness beyond that of smooth curved channel (keeping the
same parameters). However, for large wavenumbers, a percentage
decrease in the flow is inevitable, irrespective of the alignment of
the two rough curved walls. In terms of the applied magnetic field;
the effect of the roughness is decreased by the magnetic field com-
pared to when the magnetic field is absent. Therefore, an applied
magnetic field can be used to control the influence of the roughness
on the volumetric flow rate.

NOMENCLATURE

(x, y, z) curvilinear coordinate
u velocity in x -direction
v velocity in y-direction
v velocity in z -direction
u = (u, v, w) velocity vector
a channel width
k channel radius of curvature
p pressure
B magnetic field
E electric field
J current density
Q volumetric flow rate
Ha Hartmann number
yO outer rough boundary
yI inner rough boundary
µ dynamic viscosity
ρ density
ς phase difference
ε dimensionless amplitude
σ electrical conductivity
α wavenumber
λ wavelength
χ roughness function
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