
Journal of the Vol. 32, pp. 143-169, 2013

Nigerian Mathematical Society c©Nigerian Mathematical Society

VIBRATIONS OF A SIMPLY SUPPORTED PLATE

UNDER MOVING MASSES AND RESTING ON

PASTERNAK ELASTIC FOUNDATION WITH

STIFFNESS VARIATION

S. T. ONI1 AND T. O. AWODOLA

ABSTRACT. In this investigation, the dynamic behaviour of
simply supported rectangular plate carrying moving masses and
resting on Pasternak elastic foundation with stiffness variation is
considered. In order to solve the governing fourth order partial
differential equation, a technique based on separation of vari-
ables is used to reduce the equation with variable and singular
coefficients to a sequence of second order ordinary differential
equations. The modified method of Struble and the integral
transformations are then employed for the solutions of the re-
duced equations. Numerical results in plotted curves are then
presented. The results show that as the value of the rotatory
inertia correction factor Ro increases, the response amplitudes
of the plate decrease and for fixed value of Ro, the displacements
of the simply supported rectangular plates resting on Pasternak
elastic foundations with stiffness variation decrease as the foun-
dation modulus Fo increases. It is also shown that as the value
of the shear modulus Go increases the displacement amplitudes
of the plate decrease. For fixed Ro, Fo and Go, the transverse
deflections of the rectangular plates under the actions of mov-
ing masses are higher than those when only the force effects of
the moving load are considered. This implies that resonance is
reached earlier in moving mass problem than in moving force
problem. Furthermore, the result shows that the critical speed
increases as Go, Fo and Ro increase, this implies that risk is
reduced.

Keywords and phrases: Pasternak Foundation, Shear deforma-
tion, Rotatory Inertia, Resonance, moving Force, Moving Mass.
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1. INTRODUCTION

Plates resting on subgrades form key components in a wide range of
industrial applications, such as bridges, highway pavements, deck-
ing slabs and road ways. Such structures are constantly acted upon
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by moving masses, hence, the problem of analyzing the dynamic
response of elastic structures under the action of moving masses
continues to motivate a variety of investigations [1-6].
The behaviour of plate structures under moving load, in general,
is rather complex more so when the inertia effect of the moving
load is taken into consideration [1]. Thus, most of the research
works available in literature are those in which this effect has been
neglected. This is due, at least in part, to the great amount of com-
putational labour, which is required both to set up and to solve the
necessary equations. One important problem that arises when the
inertia effects of the masses are considered is the singularity which
occurs in the inertia terms of the governing differential equation of
motion.
Generally, the dynamical problems of structures under moving loads
and resting on a foundation are complex. The complexity increases
if the foundation stiffness varies along the span of the structure.
Aside the problem of singularity brought in by the inclusion of the
inertia effects of the moving load, the coefficients of the governing
fourth order partial differential equation are no longer constant but
variable. Earlier researchers into beam member on variable elastic
foundation include Franklin and Scott [7] who presented a closed-
form solution to a linear variation of the foundation modulus using
contour-integrals. Closely following this, Lentini [8] presented a
finite difference method to solve the problem where the founda-
tion stiffness varies along x (the special coordinate) as a power of
x. These works, though useful, considered the loads acting on the
beams to be static (not moving). Recently, Oni and Awodola [9]
extended the works of these previous authors to investigate the dy-
namic response to moving concentrated masses of uniform Rayleigh
beams resting on variable Winkler elastic foundation. Oni and
Awodola [10] again considered the dynamic response under a mov-
ing load of an elastically supported non-prismatic Bernoulli-Euler
beam on variable elastic foundation. The technique was based on
the generalized Galerkin’s method and integral transformations.
The foundation model based on Winkler’s approximation model is
very common in literature, whereas, in such an important Engi-
neering problem as the vibration of plates resting on elastic foun-
dation, a more accurate Two-Parameter (Pasternak) foundation
model which in addition to subgrade modulus incorporates the



VIBRATIONS OF A SIMPLY SUPPORTED PLATE . . . 145

shear effect of the foundation should be used rather than the Win-
kler’s approximation model. Eisenberger and Clastornik [11] pre-
sented two methods for the solution of beams on variable two-
parameter elastic foundation. Also, Gbadeyan and Oni [12] studied
the dynamic analysis of an elastic plate continuously supported by
an elastic Pasternak foundation traversed by an arbitrary number
of concentrated masses. In their work, they assumed that both the
foundation modulus and the shear modulus are constants.
In all these investigations, extension of the theory to cover two-
dimensional (plate) problem in which the plate is resting on Paster-
nak elastic foundation with stiffness variation has not been effected.
This study is therefore concerned with the behaviour of simply sup-
ported rectangular plate under the action of concentrated moving
masses and resting on Pasternak elastic foundation with stiffness
variation.

2. GOVERNING EQUATION

The dynamic transverse displacement W(x,y,t) of a rectangular
plate when it is resting on a Pasternak elastic foundation with stiff-
ness variation and traversed by several moving concentrated masses
is governed by the fourth order partial differential equation given
by

D∇4W (x, y, t) + μ
∂2W (x, y, t)

∂t2
+ PG(x, y, t) = μR0

∂2

∂t2
∇2W (x, y, t) + P (x, y, t) (1)

where

D =
Eh2

12(1− v)
(2)

is the bending rigidity of the plate, ∇2 is the two-dimensional Lapla-
cian operator, W(x,y,t) is the transverse displacement, h is the
plate’s thickness, E is the Young’s Modulus, v is the Poisson’s ratio
(v < 1), μ is the mass per unit area of the plate, R0 is the Rota-
tory inertia correction factor, PG(x,y,t) is the foundation reaction,
P(x,y,t) is the Moving load, x and y are respectively the spatial
coordinates in x and y directions and t is the time coordinate.
The relation between the foundation reaction and the lateral de-

flection W(x,y,t) is given by [11]

PG(x, y, t) = F (x)W (x, y, t)− ∂

∂x

[
G(x)

∂

∂x
W (x, y, t)

]
− ∂

∂y

[
G(x)

∂

∂y
W (x, y, t)

]
(3)

where F(x) and G(x) are the two variable parameters of the elastic
foundation. Specifically, F(x) is the variable foundation stiffness
and G(x) is the variable shear modulus.



146 S. T. ONI AND T. O. AWODOLA

When the effect of the mass of the moving load on the response
of the plate is taken into consideration, the external moving surface
load takes on the form

P (x, y, t) = Pf (x, y, t)

[
1− Δ∗

g
W (x, y, t)

]
(4)

where Pf (x,y,t) is the continuous moving force, Δ∗ is the substan-
tive acceleration operator and g is the acceleration due to gravity.
The moving force acting on the plate is defined as [6]

Pf (x, y, t) =
N∑
i=1

Migδ(x− cit) δ(y − s) (5)

where δ(.) is the Dirac – Delta function.
The operator Δ∗ used in equation (4) for masses traveling with
constant velocity and in an arbitrary path in the x – y plane is
defined as

Δ∗ =
∂2

∂t2
+ 2ci

∂2

∂x∂t
+ c2i

∂2

∂x2
(6)

As an example in this problem, a variable elastic foundation stiff-
ness of the form [11, 13]

F (x) = F0(4x− 3x2 + x3) (7)

where F0 is the foundation constant, and a variable shear modulus
of the form

G(x) = G0(12 − 13x+ 6x2 − x3) (8)

where G0 is a constant are considered.
Thus, substituting (3), (4), (5), (6), (7) and (8) into (1), one

obtains

D∇4W (x, y, t) + μ
∂2W (x, y, t)

∂t2
= μR0

[
∂4

∂t2∂x2 + ∂4

∂t2∂y2

]
W (x, y, t)

−F0

[
4x− 3x2 + x3

]
W (x, y, t)

+G0[−13 + 12x− 3x2] ∂
∂x

W (x, y, t)

+G0[12− 13x+ 6x2 − x3]
[

∂2

∂x2 + ∂2

∂y2

]
W (.) (9)

+
∑N

i=1[Migδ(x− cit)δ(y − s)

−Mi

(
∂2

∂t2
+ 2ci

∂2

∂t∂x
+ c2i

∂2

∂x2

)
×W (x, y, t)δ(x− cit)δ(y − s)]

The initial conditions, without any loss of generality, is taken as

W (x, y, t)|t=0 = 0 =
∂W (x, y, t)

∂t

∣∣∣∣
t=0

(10)

3. ANALYTICAL APPROXIMATE SOLUTION

This section seeks to obtain the analytical solution to the problem
of the dynamic response of a rectangular plate resting on Pasternak
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elastic foundation with stiffness variation and subjected to arbitrary
support conditions. The method of analysis involves expressing the
Dirac – Delta function as a Fourier cosine series. A technique [14]
based on separation of variables is used to tackle the fourth or-
der partial differential equation governing the motion of the plate
and reduce it to a set of coupled second order ordinary differen-
tial equations. Then, the modified asymptotic method of Struble
in conjunction with the techniques of integral transformation and
convolution theory are then employed to obtain the closed form so-
lution of the resulting second order ordinary differential equations.
In order to solve equation (9), in the first instance, the deflection

is written in the form [14]

W (x, y, t) =

∞∑
n=1

φn(x, y)Tn(t) (11)

where φn are the known eigenfunctions of the plate with the same
boundary conditions. The φn have the form of

∇4φn − ω4
nφn = 0 (12)

where

ω4
n =

Ω2
nμ

D
(13)

Ωn, n = 1, 2, 3, . . . , are the natural frequencies of the dynam-
ical system and Tn(t) are amplitude functions which have to be
calculated.
In order to solve the equation (9), it is rewritten as

D

μ
∇4W (x, y, t) +

∂2W (x, y, t)

∂t2
= R0

[
∂4

∂t2∂x2
+

∂4

∂t2∂y2

]
W (x, y, t)

−F0

μ

[
4x− 3x2 + x3]W (x, y, t)

+
G0

μ
[−13 + 12x − 3x2]

∂

∂x
W (x, y, t)

+
G0

μ
[12− 13x+ 6x2 − x3] (14)

×
[
∂2

∂x2
+

∂2

∂y2

]
W

+

N∑
i=1

[
Mig

μ
δ(x− cit)δ(y − s)

−Mi

μ

(
∂2

∂t2
+ 2ci

∂2

∂t∂x
+ c2i

∂2

∂x2

)
×W (x, y, t)δ(x− cit)δ(y − s)]
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The right hand side of equation (14) is written in the form of a
series to have
∞∑

n=1

φn(x, y)Bn(t) = R0

[
∂4

∂t2∂x2 + ∂4

∂t2∂y2

]
W (x, y, t)− F0

μ

[
4x− 3x2 + x3

]
W (x, y, t)

+G0
μ

[(−13 + 12x − 3x2
)

∂
∂x

W (x, y, t)
(
12− 13x + 6x2 − x3

)
(15)

×
(

∂2

∂x2 + ∂2

∂y2

)
W (x, y, t) ] +

∑N
i=1

[
Mig
μ

δ(x− cit)δ(y − s)

−Mi
μ

(
∂2

∂t2
+ 2ci

∂2

∂t∂x
+ c2i

∂2

∂x2

)
W (x, y, t)δ(x− cit)δ(y − s)

]
Substituting equation (11) into equation (15) we have

∞∑
n=1

φn(x, y)Bn(t) =
∞∑

n=1

{R0 [φn,xx(x, y)Tn,tt(t) + φn,yy(x, y)Tn,tt(t)]

−F0

μ

[
4x− 3x2 + x3

]
φn(x, y)Tn(t)

+
G0

μ
[
(−13 + 12x − 3x2

)
φn,x(x, y)Tn(t)

+
(
12− 13x+ 6x2 − x3) (φn,xx(x, y)Tn(t)+ (16)

φn,yy(x, y)Tn(t)) ] +
N∑
i=1

[
Mig

μ
δ(x− cit)δ(y − s)

−Mi

μ
(φn(x, y)Tn,tt(t) + 2ciφn,x(x, y)Tn,t(t)

+c2iφn,xx(x, y)Tn(t) ) δ(x− cit)δ(y − s) ] }
where

φn,x(x, y) implies
∂φn(x, y)

∂x
, φn,xx(x, y) implies

∂2φn(x, y)

∂x2
,

φn,y(x, y) implies
∂φn(x, y)

∂y
, φn,yy(x, y) implies

∂2φn(x, y)

∂y2
, (17)

Tn,t(t) implies
dTn(t)

dt
and Tn,tt(t) implies

d2Tn(t)

dt2

Multiplying both sides of equation (16) by φp(x,y) and integrating
on area A of the plate, we have
∞∑

n=1

∫
A

φn(x, y)φp(x, y)Bn(t)dA =
∞∑

n=1

∫
A

{R0 [φn,xx(x, y)φp(x, y)Tn,tt(t)

+φn,yy(x, y)φp(x, y)Tn,tt(t)]

−F0

μ

[
4x− 3x2 + x3]φn(x, y)φp(x, y)Tn(t)

+
G0

μ

[(−13 + 12x − 3x2) φn,x(x, y)φp(x, y)Tn

+
(
12− 13x+ 6x2 − x3

)
(φn,xx(x, y) (18)

×φp(x, y)Tn(t) + φn,yy(x, y)φp(x, y)Tn(t))]
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+

N∑
i=1

[
Mig

μ
φp(x, y)δ(x− cit)δ(y − s)

−Mi

μ
(φn(x, y)φp(x, y)Tn,tt(t)

+2ciφn,x(x, y)φp(x, y)Tn,t(t)

+c2iφn,xx(x, y)φp(x, y)Tn(t) ) δ(x− cit)

δ(y − s) ] } dA

Considering the orthogonality of φn(x,y), we have

Bn(t) =
1

P∗
∑∞

n=1

∫
A
{R0 [φn,xx(x, y)φp(x, y)Tn,tt(t)

+φn,yy(x, y)φp(x, y)Tn,tt(t)]

−F0
μ

[
4x− 3x2 + x3

]
φn(x, y)φp(x, y)Tn(t)

+G0
μ

[(−13 + 12x− 3x2
)
φn,x(x, y)φp(x, y)Tn(t)

+
(
12− 13x + 6x2 − x3

)
(φn,xx(x, y)φp(x, y)Tn(t)

+φn,yy(x, y)φp(x, y)Tn(t))]

+
∑N

i=1 [
Mig
μ

φp(x, y)δ(x− cit)δ(y − s)

−Mi
μ

(φn(x, y)φp(x, y)Tn,tt(t)

+2ciφn,x(x, y)φp(x, y)Tn,t(t)
+c2iφn,xx(x, y)φp(x, y)Tn(t) ) δ(x− cit)δ(y − s) ] } dA

(19)

where P ∗ =
∫
A
φ2
pdA Using (19), equation (14), taking into account

(11) and (12), can be written as

φn(x, y)

[
Dω4

n

μ
Tn(t) + Tn,tt(t)

]
=

φn(x, y)

P ∗

∞∑
q=1

∫
A

{R0 [φq,xx(x, y)φp(x, y)Tq,tt(t)

+ φq,yy(x, y)φp(x, y)Tq,tt(t)]

−F0

μ

[
4x− 3x2 + x3]φq(x, y)φp(x, y)Tq(t)

+
G0

μ

[(−13 + 12x− 3x2) φq,x(x, y)φp(x, y)

×Tq(t) +
(
12− 13x+ 6x2 − x3

)
(φq,xx(x, y)(20)

×φp(x, y)Tq(t) + φq,yy(x, y)φp(x, y)Tq(t))]

+

N∑
i=1

[
Mig

μ
φp(x, y)δ(x− cit)δ(y − s)

−Mi

μ
(φq(x, y)φp(x, y)Tq,tt(t) + 2ciφq,x(x, y)φp

×(x, y)Tq,t(t) + c2iφq,xx(x, y)φp(x, y)Tq(t) )

×δ(x− cit)δ(y − s)]} dA

Equation (20) must be satisfied for arbitrary x, y and this is possible
only when

Tn,tt(t) +
Dω4

n

μ
Tn(t) =

1

P ∗

∞∑
q=1

∫
A

{R0 [φq,xx(x, y)φp(x, y)Tq,tt(t)

+φq,yy(x, y)φp(x, y)Tq,tt(t)]
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−F0

μ

[
4x− 3x2 + x3

]
φq(x, y)φp(x, y)Tq(t)

+
G0

μ

[(−13 + 12x− 3x2
)
φq,x(x, y)φp(x, y)Tq(t)

+
(
12− 13x+ 6x2 − x3) (φq,xx(x, y)φp(x, y)Tq(t) (21)

+φq,yy(x, y)φp(x, y)Tq(t))]

+
N∑
i=1

[
Mig

μ
φp(x, y)δ(x− cit)δ(y − s)

−Mi

μ
(φq(x, y)φp(x, y)Tq,tt(t)

+2ciφq,x(x, y)φp(x, y)Tq,t(t)

+c2iφq,xx(x, y)φp(x, y)Tq(t) ) δ(x− cit)δ(y − s) ] } dA

The system in equation (21) is a set of coupled ordinary differential
equations.
Considering the property of the Dirac-Delta function and expressing
it in the Fourier cosine series as

δ(x− cit) =
1

LX

⎡
⎣1 + 2

∞∑
j=1

cos
jπcit

LX
cos

jπx

LX

⎤
⎦ (22)

and

δ(y − s) =
1

LY

[
1 + 2

∞∑
k=1

cos
kπs

LY
cos

kπy

LY

]
(23)

equation (21) becomes

N∑
i=1

Mig

P ∗μ
φp(cit, s) =

d2Tn(t)

dt2
+ α2

nTn(t)− 1

P ∗

∞∑
q=1

{
R0P

∗
1
d2Tq(t)

dt2

−
[
F0

μ
P ∗
2A − G0

μ
P ∗
2B

]
Tq(t)

−
N∑
i=1

Mi

LXLY μ

[
2

(
P ∗
3

2
+

∞∑
k=1

cos
kπs

LY
P ∗∗
3 (k)

+

∞∑
j=1

cos
jπcit

LX
P ∗∗∗
3 (j) (24)

+2
∞∑
j=1

∞∑
k=1

cos
jπcit

LX
cos

kπs

LY
P ∗∗∗∗
3 (j, k)

)
d2Tq(t)

dt2

+4ci

(
P ∗
4

2
+

∞∑
k=1

cos
kπs

LY
P ∗∗
4 (k) +

∞∑
j=1

cos
jπcit

LX
P ∗∗∗
4 (j)

+ 2

∞∑
j=1

∞∑
k=1

cos
jπcit

LX
cos

kπs

LY
P ∗∗∗∗
4 (j, k)

)
dTq(t)

dt
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+2c2i

(
P ∗
5

2
+

∞∑
k=1

cos
kπs

LY
P ∗∗
5 (k) +

∞∑
j=1

cos
jπcit

LX
P ∗∗∗
5 (j)

+ 2

∞∑
j=1

∞∑
k=1

cos
jπcit

LX
cos

kπs

LY
P ∗∗∗∗
5 (j, k)

)
Tq(t)

] }

where

• α2
n = Dω4

n

μ
,

• P ∗
1 =

∫ LX

0

∫ LY

0
[φn,xx(x, y) + φn,yy(x, y)]φp(x, y)dydx,

• P ∗
2 =

∫ LX

0

∫ LY

0
[4x− 3x2 + x3]φn(x, y)φp(x, y)dydx,

• P ∗
3 =

∫ LX

0

∫ LY

0
φn(x, y)φp(x, y)dydx,

• P ∗∗
3 (k) =

∫ LX

0

∫ LY

0
cos kπy

LY
φn(x, y)φp(x, y)dydx,

• P ∗∗∗
3 (j) =

∫ LX

0

∫ LY

0
cos jπx

LX
φn(x, y)φp(x, y)dydx,

• P ∗∗∗∗
3 (j, k) =

∫ LX

0

∫ LY

0
cos jπx

LX
cos kπy

LY
φn(x, y)φp(x, y)dydx,

• P ∗
4 =

∫ LX

0

∫ LY

0
φn,x(x, y)φp(x, y)dydx,

• P ∗∗
4 (k) =

∫ LX

0

∫ LY

0
cos kπy

LY
φn,x(x, y)φp(x, y)dydx,

• P ∗∗∗
4 (j) =

∫ LX

0

∫ LY

0
cos jπx

LX
φn,x(x, y)φp(x, y)dydx,

• P ∗∗∗∗
4 (j, k) =

∫ LX

0

∫ LY

0
cos jπx

LX
cos kπy

LY
φn,x(x, y)φp(x, y)dydx,

• P ∗
5 =

∫ LX

0

∫ LY

0
φn,xx(x, y)φp(x, y) dy dx,

• P ∗∗
5 (k) =

∫ LX

0

∫ LY

0
cos kπy

LY
φn,xx(x, y)φp(x, y) dy dx,

• P ∗∗∗
5 (j) =

∫ LX

0

∫ LY

0
cos jπx

LX
φn,xx(x, y)φp(x, y) dy dx

• P ∗∗∗∗
5 (j, k) =

∫ LX

0

∫ LY

0
cos jπx

LX
cos kπy

LY
φn,xx(x, y)φp(x, y) dy dx,

• P ∗
2A = 4h1 − 3h2 + h3

• P ∗
2B = −13h4 + 12h5 − 3h6 + 12(h7 + h8)− 13(h9 + h10) +

6(h11 + h12)− (h13 + h14),

• h1 =
∫ LY

0

∫ LX

0
xφn(x, y)φp(x, y)dxdy,

• h2 =
∫ LY

0

∫ LX

0
x2φn(x, y)φp(x, y)dxdy,

• h3 =
∫ LY

0

∫ LX

0
x3φn(x, y)φp(x, y)dxdy,

• h4 =
∫ LY

0

∫ LX

0
φn,x(x, y)φp(x, y)dxdy,

• h5 =
∫ LY

0

∫ LX

0
xφn,x(x, y)φp(x, y)dxdy,

• h6 =
∫ LY

0

∫ LX

0
x2φn,x(x, y)φp(x, y)dxdy,

• h7 =
∫ LY

0

∫ LX

0
φn,xx(x, y)φp(x, y)dxdy,

• h8 =
∫ LY

0

∫ LX

0
φn,yy(x, y)φp(x, y)dxdy,

• h9 =
∫ LY

0

∫ LX

0
xφn,xx(x, y)φp(x, y)dxdy,

• h10 =
∫ LY

0

∫ LX

0
xφn,yy(x, y)φp(x, y)dxdy,

• h11 =
∫ LY

0

∫ LX

0
x2φn,xx(x, y)φp(x, y)dxdy,
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• h12 =
∫ LY

0

∫ LX

0
x2φn,yy(x, y)φp(x, y)dxdy,

• h13 =
∫ LY

0

∫ LX

0
x3φn,xx(x, y)φp(x, y)dxdy and

• h14 =
∫ LY

0

∫ LX

0
x3φn,yy(x, y)φp(x, y)dxdy.

The second order coupled differential equation (24) is the trans-
formed equation governing the problem of a rectangular plate on a
Pasternak elastic foundation with stiffness variation.
φn(x,y) are assumed to be the products of the functions ψni(x) and
ψnj(y) which are the beam functions in the directions of x and y
axes respectively [15, 16]. That is

φn(x, y) = ψni(x)ψnj(y) (25)

these beam functions can be defined respectively, as

ψni(x) = sin
Ωnix

LX
+Ani cos

Ωnix

LX
+Bni sinh

Ωnix

LX
+Cni cosh

Ωnix

LX
(26)

and

ψnj(x) = sin
Ωnjy

LY
+Anj cos

Ωnjy

LY
+Bnj sinh

Ωnjy

LY
+Cnj cosh

Ωnjy

LY
(27)

where Ani, Anj , Bni, Bnj , Cni and Cnj are constants determined by
the boundary conditions. Ωni and Ωnj are called the mode frequen-
cies.
In order to solve equation (24) we shall consider only one mass M
traveling with uniform velocity c along the line y = s. Thus for the
single mass M equation (24) reduces to

Mg

P ∗μ
Ψpi(ct)Ψpj(s) =

d2Tn(t)

dt2
+ α2

nTn(t)− 1

P ∗

∞∑
q=1

{
R0P

∗
1
d2Tq(t)

dt2
− G0

μ

[
F0

G0
P ∗
2A

−P ∗
2B ]Tq(t)Γ

0

[
2

(
P ∗
3

2
+

∞∑
k=1

cos
kπs

LY
P ∗∗
3 (k)

+

∞∑
j=1

cos
jπct

LX
P ∗∗∗
3 (j)

+2
∞∑
j=1

∞∑
k=1

cos
jπct

LX
cos

kπs

LY
P ∗∗∗∗
3 (j, k)

)
d2Tq(t)

dt2

+4c

(
P ∗
4

2
+

∞∑
k=1

cos
kπs

LY
P ∗∗
4 (k) +

∞∑
j=1

cos
jπct

LX
P ∗∗∗
4 (j) (28)

+ 2

∞∑
j=1

∞∑
k=1

cos
jπct

LX
cos

kπs

LY
P ∗∗∗∗
4 (j, k)

)
dTq(t)

dt

+2c2
(
P ∗
5

2
+

∞∑
k=1

cos
kπs

LY
P ∗∗
5 (k) +

∞∑
j=1

cos
jπct

LX
P ∗∗∗
5 (j)

+ 2
∞∑
j=1

∞∑
k=1

cos
jπct

LX
cos

kπs

LY
P ∗∗∗∗
5 (j, k)

)
Tq(t)

] }
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where

Γ0 =
M

LXLY μ
(29)

Equation (28) is now the fundamental equation of our problem
when the rectangular plate has arbitrary end support conditions.
We shall then solve the equation (28) when the plate has simple
supports at all its edges.
For the elastic rectangular plate resting on a variable Pasternak

elastic foundation and having simple supports at all its edges, the
deflection and bending moment vanish at all the edges. Thus

W (0, y, t) = 0, W (LX , y, t) = 0 (30)

W (x, 0, t) = 0, W (x,LY , t) = 0 (31)

∂2W (0, y, t)

∂x2
= 0,

∂2W (LX , y, t)

∂x2
= 0 (32)

∂2W (x, 0, t)

∂y2
= 0,

∂2W (x,LY , t)

∂y2
= 0 (33)

For the normal modes

Ψni(0) = 0, Ψni(LX) = 0 (34)

Ψnj(0) = 0, Ψnj(LY ) = 0 (35)

∂2Ψni(0)

∂x2
= 0,

∂2Ψni(LX)

∂x2
= 0 (36)

∂2Ψnj(0)

∂y2
= 0,

∂2Ψnj(LY )

∂y2
= 0 (37)

Therefore

Ani = 0, Bni = 0, Cni = 0 and Ωni = niπ (38)

Anj = 0, Bnj = 0, Cnj = 0 and Ωnj = njπ (39)

Similarly,

Api = 0, Bpi = 0, Cpi = 0, and Ωpi = piπ (40)

Apj = 0, Bpj = 0, Cpj = 0 and Ωpj = pjπ (41)

Substituting equations (38),(39) , (40) and (41) into the trans-
formed equation (28) to obtain the transformed equation for a rect-
angular plate, resting on a variable Pasternak elastic foundation and
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having simple supports at all its edges, we have

Mg

μP ∗ sin
pjπs

LY
sin

piπct

LX
=

d2Tn(t)

dt2
+ α2

nTn(t)

− 1

P ∗

∞∑
q=1

{
−R0

[(
niπ

LX

)2

+

(
njπ

LY

)2
]

×I1a(x)I1a(y)
d2Tq(t)

dt2
− G0

μ

[
F0

G0
τ∗
2A − τ∗

2B

]

I1a(y)Tq(t)− M

LXLY μ
[(I1a(x)I1a(y)

+2
∞∑

k=1

cos
kπs

LY
I1a(x)I

k
1a(y) + 2

∞∑
j=1

cos
jπct

LX
Ij1a(x)

×I1a(y) + 4
∞∑
j=1

∞∑
k=1

cos
jπct

LX
cos

kπs

LY
Ij1a(x)I

k
1a(y)

)
(42)

×d2Tq(t)

dt2
2c

(
niπ

LX
I2b(x)I1a(y)

+2

∞∑
k=1

niπ

LX
cos

kπs

LY
I2b(x)I

k
1a(y)

+2

∞∑
j=1

niπ

LX
cos

jπct

LX
Ij2b(x)I1a(y)

+4

∞∑
j=1

∞∑
k=1

niπ

LX
cos

jπct

LX
cos

kπs

LY
Ij2b(x)I

k
1a(y)

)
dTq(t)

dt

−c2
((

niπ

LX

)2

I1a(x)I1a(y)

+2
∞∑

k=1

(
niπ

LX

)2

cos
kπs

LY
I1a(x)I

k
1a(y)

+2
∞∑
j=1

(
niπ

LX

)2

cos
jπct

LX
Ij1a(x)I1a(y)

+4
∞∑
j=1

∞∑
k=1

(
niπ

LX

)2

cos
jπct

LX
cos

kπs

LY
Ij1a(x)I

k
1a(y)

)

×Tq(t)] }

where

• I1a(x) =
∫ LX

0 sin θnix sin θpix dx,

• I1a(y) =
∫ LY

0 sin θnjy sin θpjy dy

• Ij1a(x) =
∫ LX

0 cos jπx
LX

sin θnix sin θpix dx,

• Ik1a(y) =
∫ LY

0 cos kπy
LY

sin θnjy sin θpjy dy

• I∗1a(x) =
∫ LX

0 x sin θnix sin θpix dx,

• I∗∗1a(x) =
∫ LX

0 x2 sin θnix sin θpix dx,
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• I∗∗∗1a (x) =
∫ LX

0 x3 sin θnix sin θpix dx,

• I2b(x) =
∫ LX

0 cos θnix sin θpix dx,

• I∗2b(x) =
∫ LX

0 x cos θnix sin θpix dx,

• I∗∗2b (x) =
∫ LX

0 x2 cos θnix sin θpix dx,
• τ∗2A = 4I∗1a(x)− 3I∗∗1a(x) + I∗∗∗1a (x)

•
τ∗2B = [−13I2b(x) + 12I∗2b(x)− 3I∗∗2b (x)] θni

+ [−12I1a(x) + 13I∗1a(x)− 6I∗∗1a(x) + I∗∗∗1a (x)]
(θ2ni + θ2nj)

• θni =
Ωni
Lx

and θnj =
Ωnj

LY

Further simplification and rearrangement of (42), taking into ac-
count (38), (39), (40) and (41), yields

Mg

P ∗μ
sin

pjπs

LY
sin

piπct

LX
=

d2Tn(t)

dt2
+ α2

nTn(t)

− 1

P ∗

∞∑
q=1

{−R0LXLY π2

4

(
q2

L2
X

+
q2

L2
Y

)
d2Tq(t)

dt2

−G0LY

2μ

[
F0

G0
τ∗
2A − τ∗

2B

]
Tq(t)− Γ

[
LXLY

4

d2Tq

dt2
(43)

+2cLY

(
qpi

p2i − q2
+

∞∑
j=1

qπ

LX
τ (j) cos

jπct

LX

)
dTq(t)

dt

− (cqπ)2 LY

4LX
Tq(t)

]}

where

Γ =
M

LXLY μ
(44)

and

τ(j) =
8pi[p

2
i − j2 − q2]

j4 + q4 + p4i − 2[j2p2i + j2q2 + p2i q
2]

(45)

Equation (43) is the fundamental equation of our problem when
the rectangular plate resting on variable Pasternak foundation has
simple support at all its edges. We shall now discuss two cases of
the equation.
CASE I: SIMPLY SUPPORTED PLATE TRAVERSED
BY MOVING FORCE
When Γ = 0 in equation (43), an approximate model of the system
when the inertia effect of the moving mass M is neglected, we have
the moving force problem associated with the system. Thus the
differential equation (43) reduces to

d2Tn(t)

dt2
+ α2

nTn(t)− 1

P ∗

∞∑
q=1

{−R0LXLY π2

4

(
q2

L2
X

+
q2

L2
Y

)

×d2Tq(t)

dt2
−G0LY

2μ

[
F0

G0
τ∗
2A − τ∗

2B

]
Tq(t)

}
=

Mg

P ∗μ
sin

pjπs

LY
sin

piπct

LX
(46)
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Evidently, exact analytical solution to the coupled differential equa-
tion above is impossible. Though it yields readily to numerical tech-
niques, an analytical solution is desirable as such solutions often
shed more light on vital information about the vibrating system.
In order to solve the coupled differential equation (46) we resort to
an approximate analytical method which is a modification of the
asymptotic method due to Struble [ 4, 6 ] and seek the modified
frequency of the free system, first, due to the presence of the effect
of shear modulus neglecting the rotatory inertial term. An equiv-
alent free system operator defined by the modified frequency then
replaces equation (46). Thus, equation (46) is rearranged to take
the form

d2Tn(t)

dt2
+

[
α2
n + Γ∗LY

2

(
F0

G0
τ∗2A − τ∗2B

)]
Tn(t)

+Γ∗LY

2

∞∑
q=1
q �=n

(
F0

G0
τ∗2A − τ∗2B

)
Tq(t) = Km sin

pjπs

LY
sin

piπct

LX
(47)

where

Γ∗ =
G0

P ∗μ
and Km =

Mg

P ∗μ
(48)

Consider a parameter λ < 1 for any arbitrary mass ratio Γ∗, defined
as

λ =
Γ∗

1 + Γ∗
It can be shown that

Γ∗ = λ+ o(λ2) (49)

Since λ < 1, an asymptotic solution of the homogenous part of
equation (47) can be written in the form

Tn(t) = An(t) cos[αnt− φn(t)] + λT1(t) + o(λ2) (50)

where An(t) and φn(t) are slowly varying functions of time.
Substituting (50) and its derivatives into (47), neglecting terms
higher than o(λ) and terms which do not contribute to the varia-
tional equations describing the behaviour of An(t) and φn(t), one
obtains

γmp = αn +
λ
(

F0

G0
τ ∗2A − τ ∗2B

)
LY

4αn
(51)

as the modified frequency due to the effect of the shear modulus.
Thus, the homogeneous part of equation (47) can be replaced with

d2Tn(t)

dt2
+ γ2mpTn(t) = 0 (52)
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Using (52), equation (46) can be written as

d2Tn(t)

dt2
+γ2

mpTn(t)+
λ0LXLY π2

4

∞∑
q=1

(
q2

L2
X

+
q2

L2
Y

)
d2Tq(t)

dt2
= Km sin

pjπs

LY
sin

piπct

LX

(53)

where

λ0 =
R0

P ∗ (54)

The homogeneous part of equation (53) can be written as

d2Tn(t)

dt2
+

γ2
mp

1
+

λ0LXLY π2

4

(
n2
i

L2
X

+
n2
j

L2
Y

)
Tn(t)

+
λ0LXLY π2

4

1 + λ0LXLY π2

4

(
n2
i

L2
X

+
n2
j

L2
Y

) ∞∑
q=1
q �=n

(
q2

L2
X

+
q2

L2
Y

)
d2Tq(t)

dt2
= 0 (55)

Consider the parameter ε0 < 1 for any arbitrary mass ratio λ0
defined as

ε0 =
λ0

1 + λ0
(56)

which implies

λ0 = ε0 + o(ε20) (57)

Following the same argument, (55) can be replaced with

d2Tn(t)

dt2
+ γ2mpfTn(t) = 0 (58)

where

γmpf = γmp

[
1− ε0LXLY π

2

8

(
n2
i

L2
X

+
n2
j

L2
Y

)]
(59)

is the modified frequency due to the presence of rotatory inertia.
Therefore, the moving force problem (46) for the simply supported
rectangular plate is reduced to the non-homogeneous ordinary dif-
ferential equation given as

d2Tn(t)

dt2
+ γ2mpfTn(t) = Km sin

pjπs

LY
sin

piπct

LX
(60)

When equation (60) is solved in conjunction with the initial con-
ditions (10), one obtains expression for Tn(t). Thus in view of
equation (11), one obtains

W (x, y, t) =

∞∑
ni=1

∞∑
nj=1

Km sin
pjπs

LY

γmpf [γ2
mpf − (piπc/LX)2]

[
γmpf sin

piπct

LX

−piπc

LX
sin γmpf t

]
sin

niπx

LX
sin

niπy

LY
(61)
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as the transverse-displacement response to a moving force of a sim-
ply supported rectangular plate on a variable Pasternak elastic
foundation.

CASE II: SIMPLY SUPPORTEDRECTANGULARPLATE
RESTINGONVARIABLE PASTERNAKFOUNDATION
AND TRAVERSED BY A MOVING MASS
In this section we seek the solution to the entire equation (43) when
no term of the equation is neglected. In order to solve this problem,
as in the previous case, an exact analytical solution to this equation
is impossible. Thus, we resort to the modified asymptotic method
of Struble discussed in the previous case. To this end, we rearrange
equation (43) to take the form

d2Tn(t)

dt2
−

2cLY η0
(

nipi
p2i−n2

i
+
∑∞

j=1
niπ
LX

τ (j) cos jπct
LX

)
1− η0

(
LXLY

4

) dTn(t)

dt
(62)

+
γ2
mpf + η0(cniπ)2LY

4LX

1− η0
(

LXLY
4

) Tn(t)− η0

1− η0
(

LXLY
4

) ∞∑
q=1
q �=n

[
LXLY

4

d2Tq(t)

dt2

+2cLY

(
qpi

p2i − q2
+

∞∑
j=1

qπ

LX
τ (j) cos

jπct

LX

)
dTq(t)

dt

− (cqπ)2 LY

4LX
Tq(t) ] =

η0gLXLY

P ∗
[
1− η0

(
LXLY

4

)] sin pjπs

LY
sin

piπct

LX

where Γ has been written as a function of the mass ratio η0.
Thus, considering the homogeneous part of the equation (62) and
going through the same arguments and analysis as in the previous
case, the modified frequency corresponding to the frequency of the
free system due to the presence of the moving mass is

βmf = γmpf

[
1− η0

2

(
1 +

(cniπ)
2

γ2mpfL
2
X

)]
(63)

retaining terms to o(η0) only.
Therefore, to solve the non-homogeneous equation (62), the differ-
ential operator which acts on Tn(t) and Tq(t) is replaced by the
equivalent free system operator defined by the modified frequency
βmf . That is

d2Tn(t)

dt2
+ β2

mfTn(t) = Gg sin
njπs

LY
sin

niπct

LX
(64)

where

Gg =
η0gLXLY

P ∗ (65)
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Clearly, equation (64) is directly analogous to equation (60). Hence
when equation (64) is solved in conjunction with the initial condi-
tions, one obtains expression for Tn(t). Thus in view of equation
(11), we have

W (x, y, t) =

∞∑
ni=1

∞∑
nj=1

Gg sin
pjπs

LY

βmf [β2
mf − (piπc/LX )2]

[
βmf sin

piπct

LX
(66)

−piπc

LX
sin βmf t

]
sin

niπx

LX
sin

njπy

LY

Equation (66) represents the transverse-displacement response to a
moving mass of a simply supported rectangular plate on a variable
Pasternak elastic foundation.

5. DISCUSSION OF THE ANALYTICAL SOLUTIONS

It is desirable to examine the phenomenon of resonance in studying
such undamped system as this.
Equation (61) clearly shows that the simply supported rectangular
plate on a variable Pasternak elastic foundation and traversed by a
moving force reaches a state of resonance whenever

γmpf =
piπc

LX

(67)

while equation (66) shows that the same plate under the action of
a moving mass experiences resonance when

βmf =
piπc

LX

(68)

where

βmf = γmpf

[
1− η0

2

(
1 +

(cniπ)
2

γ2mpfL
2
X

)]
(69)

Equations (68) and (69) imply that

γmpf

[
1− η0

2

(
1 +

(cniπ)
2

γ2mpfL
2
X

)]
=
piπc

LX
(70)

clearly
[
1− η0

2

(
1 + (cniπ)

2

γ2
mpfL

2
X

)]
< 1 for all ni,

Consequently, for the same natural frequency, the critical speed
(and the natural frequency) for the moving mass problem is smaller
than that of the moving force problem. Thus, resonance is reached
earlier in the moving mass system than in the moving force system.

6. NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS
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In this section, calculations of practical interests in dynamics of
structures are presented for all the illustrative examples. A rect-
angular plate of length LY = 0.914m and breadth LX = 0.457m
has been considered. The mass is assumed to travel at the con-
stant velocity 0.8123m/s. Furthermore, E, S and Γ are chosen to
be 2.109x109kg/m2, 0.4m and 0.2 respectively. The results are as
presented on the various graphs below for the various classes of
boundary conditions considered.
Figures 5.1 and 5.2 display the effect of Rotatory inertia (R0) on
the transverse deflection of the simply supported rectangular plate
for both cases of moving force and moving mass respectively. The
graphs show that the response amplitudes decrease as the value of
the Rotatory inertia correction factor increases.

Fig. 5.1. Deflection profile of simply supported rectangular plate on
variable Pasternak foundation and traversed by moving force for

F0 = 2000000, G0 = 900000 and various values of R0



VIBRATIONS OF A SIMPLY SUPPORTED PLATE . . . 161

Fig. 5.2. Deflection profile of simply supported rectangular plate
resting on variable Pasternak foundation and traversed by moving
force for F0 = 2000000, G0 = 900000 and various values of R0

Fig. 5.3. Displacement profile of simply supported rectangular plate
on variable Pasternak foundation and traversed by moving force for

F0 = 0, R0 = 0.4 and various values of G0.
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Fig. 5.4. Displacement profile of simply supported rectangular plate
on variable Pasternak foundation and traversed by moving force for

F0 = 100000, R0 = 0.4 and various values of G0.

Fig. 5.5. Displacement profile of simply supported rectangular plate
on variable Pasternak foundation and traversed by moving force for

F0 = 1000000, R0 = 0.4 and various values of G0.

Figures 5.3 – 5.5 show the deflection profile of the simply supported
rectangular plate traversed by moving force. The load speed consid-
ered is lower than the critical speed. Figure 5.3 depicts the response
curves of the plate for F0 = 0, R0 = 0.4 and with the subgrade’s
shear modulus G0 as a parameter. The corresponding curves for
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F0 = 100000 N/m3 and 1000000N/m3 are shown in figures 5.4 and
5.5 respectively. It is evident from the graphs that, the response
amplitudes decrease with an increase in the values of G0 for fixed
values of F0 and R0. It is also remarked at this juncture that as
F0 increases, the response amplitudes decrease in similar manner.
However, the effect of G0 is more pronounced than that of F0.
Figures 5.6 – 5.8 display the corresponding deflection profiles for
the same system under the action of moving mass. The dynamic
behaviour similar to that of the moving force is obtained.

Fig. 5.6. Displacement profile of simply supported rectangular plate
on variable Pasternak foundation and traversed by moving mass for

F0 = 0, R0 = 0.4 and various values of G0.
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Fig. 5.7. Deflection of simply supported rectangular plate resting on
variable Pasternak foundation and traversed by moving mass for

F0 = 100000, R0 = 0.4 and various values of G0.

Fig. 5.8. Deflection of simply supported rectangular plate on variable
Pasternak foundation and traversed by moving mass for F0 = 1000000,

R0 = 0.4 and various values of G0.
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Fig. 5.9. Comparison of deflection of moving force and moving mass
cases for simply supported rectangular plate on variable Pasternak

foundation and traversed by moving force for F0 = 1000000,
G0 = 100000 and R0 = 0.4.

Figure 5.9 compares the displacement curves of the moving force
and moving mass for a simply supported rectangular plate with
F0 = 1000000 N/m3, R0 = 0.4 and G0= 100000 N/m. Clearly,
the response amplitude of a moving mass is greater than that of a
moving force problem. However, this result holds for other choices
of the values of F0, R0 and G0.

Figures 5.10, 5.11 and 5.12 present the effects of Go, Fo and Ro

respectively on the critical speed of the moving load. The graphs
show that as Go, Fo and Ro increase, the critical speed increases in
each case.
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Fig. 5.10. Graph of Critical Speed against Shear Modulus.

Fig. 5.11. Graph of Critical Speed against Foundation Modulus.



VIBRATIONS OF A SIMPLY SUPPORTED PLATE . . . 167

Fig. 5.12. Graph of Critical Speed against Rotatory Inertia.

7. CONCLUDING REMARKS

The objective of this work has been to study the problem of the
dynamic response to moving concentrated masses of rectangular
plates on variable Pasternak elastic foundations. In particular, the
closed form solutions of the fourth order partial differential equa-
tions with variable and singular coefficients of the rectangular plate
is obtained for both cases of moving force and moving mass. The
solution technique is based on the technique of Shadnam et al [14]
which was used to remove the singularity in the governing fourth
order partial differential equation and to reduce it to a sequence of
coupled second order differential equations. These coupled second
order differential equations were then simplified using the modified
Struble’s asymptotic technique. The methods of integral transfor-
mation and the convolution theory are then employed to obtain the
analytical solution of the two-dimensional dynamical problem.
These solutions are analyzed and resonance conditions are obtained
for the problem. The analyses carried out show that the moving
force solution is not an upper bound for the accurate solution of the
moving mass problem and that as the rotatory inertia correction
factor increases, the response amplitudes of the plates decrease for
both cases of moving force and moving mass problem. When the
rotatory inertia correction factor is fixed, the displacements of the
simply supported rectangular plates resting on variable Pasternak
elastic foundations decrease as the shear modulus increases. Also,
as the foundation modulus increases, the response amplitudes of
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the plates decrease, the effect of shear modulus is more noticeable
than that of the foundation modulus.
It is shown further from the results that, for fixed values of rotatory
inertia correction factor, foundation modulus and shear modulus,
the response amplitude for the moving mass problem is greater than
that of the moving force problem implying that resonance is reached
earlier in moving mass problem than in moving force problem of the
simply supported rectangular plate resting on variable Pasternak
elastic foundation. Also, an increase in the shear modulus results in
an increase in the critical speed of the moving load; this shows that
risk is reduced when the shear modulus increases. The same result
obtains for an increase in both foundation modulus and rotatory
inertial correction factor.
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