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SOME CONSERVATIVE FORCE FIELD POTENTIALS IN

SCATTERING THEORY

E. O. IFIDON AND E. O. OGHRE1

ABSTRACT. In this paper we use the Lie symmetry method to
calculate the universal group of symmetry transformations for
the 3-dimensional time dependent Schrödinger wave equation.
It is shown that this system admits a subgroup of SL(6,R) as
symmetry group. Invariance properties of this group are used
to construct solutions to the wave equation with a coloumbic
force field potential. New solutions are thus obtained which
are useful in scattering theory. Furthermore, it is shown that
an application of the symmetry group to the set of states S =

Ĥ (H complex Hilbert space) of the system preserves transition
probabilities as well as the dynamics of the system.
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1. INTRODUCTION

The application of continuous group of transformations otherwise
known as Lie groups to the study of systems of partial differential
equations has its origin in the researches and work of Sophus Lie,
over a century ago. Lie showed that one could reduce the order
of an ordinary differential equation if it is invariant under a one-
parameter group of point transformations. The Lie group admitted
by such a differential equation can be found by a straightforward
computational algorithm and involves the solution of a large num-
ber of partial differential equations of an elementary type. Early
researchers found this method of limited application in the con-
struction of the general solution to quite a number of partial differ-
ential equations encountered then. Lie”s method however came into
prominence in the late 1950”s following the work of L. V. Ovsian-
nikov (1982), providing a theoretical foundation for a comprehen-
sive study of the symmetry groups of differential equations. An
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improved modern version of Lie”s theory has been developed by P.
J. Olver (1986) and gives a ready verifiable means of obtaining the
maximal group of symmetries admitted by many systems of par-
tial differential equations, linear or nonlinear. Olver”s method has
more recently been implemented in symbolic computational soft-
ware such as MAXIMA, and MAPLE. This great success motivated
Stephani et al (2003) and more recently Natorf and Tafel (2007) to
apply Lie point symmetries to the Robinson-Trautman equation of
Petrov type III a problem which has eluded any definite solution
for the past fifty years, Ifidon (2011).
There is no doubt that the application of Lie group symmetries to

the Schrödinger equation can lead to greater insights as far as non-
relativistic quantum systems are concerned. Encouraged by this, we
construct the symmetry group of the 3-dimensional time-dependent
Schrödinger equation that models a simple nonrelativistic quantum
system consisting of a single particle moving under the influence of
a conservative force. The groups under consideration would be lo-
cal Lie groups of transformations. The advantage of considering
local groups is that Lie’s three fundamental theorems have shown
that such a group can be completely characterized in terms of the
infinitesimal generators of their Lie algebra, which are relatively
easy to find. Once the infinitesimal generators of the Lie algebra
are known, the corresponding Lie groups can be found by expo-
nentiation using Taylor’s theorem (Gilmore, 1974). Attempts have
been made to globalize Lie’s transformation theory (see for example
Palais, 1957) but the applications make use of only the local theory
since only those group elements in a neighbourhood of the iden-
tity can in general be guaranteed to transform functions. Non-local
symmetries of differential equations have also been studied for some
time now (Muriel and Romero, 2001). Theoretical investigations of
non-local symmetries are based on the theory of coverings in which
a system of differential equations is said to cover another system of
equations (called the covering system) provided its solutions give
rise to solutions of the covered system. Symmetries of the covered
system arise as a non-local symmetry of the covered system. This
procedure however works only for differential equations that admit
non-abelian Lie algebras. The next few definitions are useful. Let
S denote the set of possible states of a physical system, then

Definition 1. A group G is a symmetry group of S if for each
s ∈ S and g ∈ G, g.s ∈ S whenever g.s is defined.
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It is clear from the above definition that symmetries may be used
to generate new solutions if one has found a solution. Instead of
looking for the Lie group G, we look for it’s Lie algebra g. The
corresponding group elements can then be found by exponentiation
using Taylors theorem, Ifidon (2003). The infinitesimal generators
of the Lie algebra is

χ =

p∑
i=1

ηi(x, u)
∂

∂xi
+

q∑
l

ϕl(x, u)
∂

∂ul
(1)

the procedure for finding ηi(x, u) and ϕl(x, u) is given explicitly
in Olver (1986). We briefly outline this process. First the kth
prolongation Prkχ of the vector field χ can be calculated through
the prolongation formulae

Prkχ = χ+
∑
l

∑
J

(
Ψl
)J ∂

∂ulJ
(2)

where the J-sum over all partitions J ≡ (j1, j2, ..., jn) with 0 <∑
ji ≤ k and

(
Ψl
)J

= DJ

(
Υ l −

∑
i

uJi ξ
i

)
+
∑
i

ulJ,iξ
i (3)

here

uJ,i =
∂uJ
∂xi

, uJ = ∂Ju, DJ = Dj1
1 �Dj2

2 � ...Djn
n (4)

and

Di =
∂

∂xi
+
∑
l

∑
J

ulJ,i
∂

∂ulJ
0 ≤

∑
ji ≤ k (5)

is the derivative operator.

Theorem 0.1. Suppose Δ(x, u(k)) = 0 is a system of partial dif-
ferential equations. Then G is a symmetry group of the equation
Δ = 0 iff

PrkχΔ(x, u(k)) = 0 (6)

whenever Δ(x, u(k)) = 0

for proof see Nwachuku and Ifidon (1991).

Definition 2. Let G be such that

g1 · (g2 · s) = (g1g2) · s g1, g2 ∈ G

e · s = s

where e is the identity element in G, then G is called a group of
symmetries for S.
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In quantum mechanics the set of states S = Ĥ is the set of all
rays φ̂{λφ, λ ∈ C} where φ̂ is a nonzero vector in the complex
Hilbert space H .
Next we show that if G is a local transformation group then the

action of G on the set of states {Ĥ} preserves transitional proba-
bilities.

Theorem 0.2. Given a ray φ̂ ∈ Ĥ, if G is a Lie group of symme-
tries for H, then the probability of going from the state g · φ to the
state g · ψ is the same as that of going from φ to ψ for all g ∈ G
and φ, ψ ∈ H.

Proof. Consider a ray φ̂ ∈ Ĥ . It’s trajectory may be calculated by
computing solutions to the equation.

∂

∂t
(φ1) = iH(φ1) (7)

where H is a self adjoint operator called the Hamiltonian of the
system.
Thus a ray φ̂ ∈ Ĥ may be uniquely determined by a pair of points

(x, φ) ∈ R
P ×H.

Here x ∈ R
d represents the real line probability measures φ assigns

to the various self adjoint operators in H as it evolves in time. If
G acts regularly on R

d ×H , then since G is a local transformation
group, we have for every g ∈ G, close to the identity

g(x, φ) = (Λg, x, λgφ) = (x̃, φ̃) = g · φ
where (Λg, λg) are the C∞ composition maps of G. Thus G can be
viewed as acting to change our frame of reference since g·φ is the old
state φ viewed form anew frame of reference. Since acting to change
the frame of reference does not change the state vector, we have
a transformation in which norms are preserved. We can conclude
therefore that ifG is a local transformation group, then the action of
G on the set of states Ĥ preserve transition probabilities in H . �
Next we find out which Lie group G leaves (7) invariant. In the

sequel, we shall assume that our system consists of a single spinless
particle moving in a conservative force potential v = v(x, y, z) so
that the Hilbert space is H = L2(R3, η) : η Lesbesgue measure. A
state vector φ would be represented by a wave function Ψ(x, y, z; t)
satisfying ∂Ψ

∂t
= −iHΨ with

H = −∇2

2
+ V (8)
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where ∇2 denotes the Laplacian. (8) is the time dependent Schrödi-
nger equation.
The rest of this paper is organised as follows, in sec.2. the infini-

tesimal criteria for G- invariance of a system of partial differential
equations is adapted in the derivation of the one-parameter group
of symmetries for the system (8). It has been shown (Theorem 0.2)

that if G is a Lie group of symmetries for the set of states Ĥ then G
preserves transition probabilities in Ĥ . Furthermore, we show that
(8) admits the 13 one-parameter Lie group which are generators
of the group SL(6,R) in the representation state as a symmetric
group. Thus we conclude that SL(6,R) is the maximal group of
symmetries for non-relativistic quantum systems which preserves
transition probabilities as well as the dynamics of the system. The
fact that the generators of this group are integrals of motion lead
to a number of conservation laws in quantum mechanics. The con-
servation of energy, linear and angular momentum are well known
conservation laws, which are consistent with our formulation. Other
conservation laws are similarly derived. Group invariant solutions
to the Schrödinger equation which are useful in scattering theory
are constructed for various values of the potential in sec 3. The
scale invariant solutions give a state of the system for which ex-
act values for all three components of the angular momentum can
be specified. In sec 4 we give an overview of the advantages of
considering Lie groups.

2. DERIVATION OF THE INFINITESIMAL GENERATORS OF
THE GROUP

Given a local group of transformation G acting on N × M the
space of the independent and the dependent variable (x, u), there
is induced an action of G on the space N × M (k) consisting of
points (x, u(k)) where u(k) represents derivatives of the dependent

variables of order ≤ k given by ∂ju = ∂ju

∂
j1
xp ...∂

jp
xp

,0 ≤ |J | ≤ k, |J | =
ji + j2 + · · ·+ jp See (Nwachuku and Ifidon 1991).
This induced action of G, called the k−th prolongation of G,

can easily be obtained from the corresponding prolonged infini-

tesimal generators P
(k)
r χ of the group which are vector fields on

N × M (k) and have a relatively simple expression. The genera-
tors χ of the group are vector fields on N × M given by χ =∑p

i=1 ζ
i(x, u) ∂

∂xi
+
∑q

i=1 ϕi(x, u)
∂
∂ui

where p and q represents the
number of independent variable in the space N ×M respectively.
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The corresponding expression for the prolonged vector field is then

P k
r χ = χ+

q∑
i=1

∑
J

ϕri (x, u
(k))

∂

∂uiJ

with

φJl = DJ

(
φl −

p∑
i=1

ujiξl +

p∑
i=1

ulJ,iξl

)

where
DJ = Dj1

1 ◦Dj2
2 ◦ · · · ◦Djn

n

is the total derivative operator. The infinitesimal criteria for in-
variance of a system of partial differential equations ∇(x, u(k)) = 0
under the action of G states that G is a symmetry group of the sys-
tem ∇(x, u(k)) = 0 if and only if for every infinitesimal generators
χ of G.

P
(k)
l χ∇(x, u(k)) = 0 (9)

whenever
∇(x, u(k)) = 0

for the case of the Schrödinger equation

∇(x, u(k)) = Ψ1 + i(−∇2)Ψ (10)

A typical vector field on R
4 × R

2 with coordinates (x, y, z, t, v,Ψ)
is given by

χ = ξ∂x + η∂y + λ∂z + γ∂ + Φ∂x + ϕ∂Ψ (11)

where the coefficients {ξ, η, λ, γ, φ,Φ} are arbitrary functions of
x, y, z, v and Ψ. The corresponding second prolongation of χ is

P (2)
r χ = χ+

∑
J

θJ∂ΨJ
+
∑
J

ΛJ∂vj (12)

where the J−sum is over all partitions

J = {(1, 0, 0, 0)(0, 1, 0, 0)(0, 0, 1, 0)(0, 0, 0, 1)(1, 1, 0, 0)(1, 0, 1, 0)
(1, 0, 0, 1)(0, 1, 1, 0)(0, 1, 0, 1)(0, 0, 1, 1)(2, 0, 0, 0)(0, 2, 0, 0)
(0, 0, 2, 0)(0, 0, 0, 2)}

Substitution of (11) and (12) in (9) yields

iθ(0,0,0,1) + θ(2,0,0,0) + θ(0,2,0,0) + θ(0,0,3,0) − vΦ−Ψϕ = 0

subject to
iΨ+Ψxx +Ψyy +Ψzz − vψ (13)
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where

θ(0,0,0,1) =

{
Φt −Ψxξt −Ψyηt −Ψxλt +Ψz(λΨ − γt)
−ΨtΨxξΨ −ΨtΨyηΨ −ΨtΨzλΨ −Ψ2

tγΨ

θ(0,0,0,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φxx −Ψx(2γxΨ − ξxx)−Ψyηxx −Ψzλxx −Ψlγxx
+Ψxx(ΦΨ − 2ξx)− 2Ψxxλx − 2Ψxxλx − 2Ψtxγx
+Ψ2

x(φΨΨ − 2ξΨx)− 2ΨxΨyηΨx
+2vxΦxx2Ψxvx(φvΨ − ξvx)2ψxvx(ϕvΨ − ξvx)
+2ΨxΨxλxΨ − 2ΨxΨtγΨx − 2ΨxΨzλxΨ−
2ΨzΨtγxΨ − vxΨyηxv − 2Ψzvxλxv − 2vxΨlγxv−
3ΨxΨxxξΨΨxxΨyηΨ −ΨxxΨzλΨ+ΨxxΨtγΨ−
2Ψxxvxξv − 2ΨxΨxyηv − 2ΨxΨxzλΨ − 2vxΨxzηv−
2ΨxΨxtγΨ −Ψ3

xξΨΨ −Ψ2
xΨyηΨΨ −Ψ2

xΨzλΨΨ

−Ψ2
xΨlγΨΨ − 2Ψ2

xvxξvΨ − 2vxΨxΨyηvΨ
−ΨxΨzvxλvΨ − 2vΨxΨtγvΨ + v2xΦvv
−Ψxv

2
xξvv − v2xΨyηvv − v2xΨtγvv + vxxΦv

−Ψxvxxξr − vxxΨyηy +Ψzvxxλv − vxxΨtv

θ(0,2,0,0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φyy −Ψxξyy +Ψy(2ΦΨy − ηyy)−Ψyλyy −Ψzλyy
−2ΨxΨyξΨy +Ψ2

y(ΦΨΨ − 2ξΨx)− 2Ψy2ΨzλΨy
−2ΨtΨyγΨy − 2Ψxyξy +Ψ2

yy(φΨ − 2ξy)− 2Ψzyλy
−2Ψtyγy + 2vyΦvy − 2Ψxvyξxy + 2Ψyvy(ΦvΨ − ηxy)
−2Ψzvyλxy − 2Ψtvyγvy − 2ΨxΨ

2
yξΨΨ −Ψ3

yηΨΨ

−Ψ2
yΨzλΨΨ −ΨtΨ

2
yγΨΨ − 2ΨyΨxyξΨ − 3ΨyΨyyηΨ

−2ΨyΨxyλΨ − 2ΨyΨtyγΨ − 2ΨxΨyvyξvΨ − 2vyΨ
2
yΦΨv

−2ΨyΨzvyλvΨ − 2ΨyΨtγΨv − 2Ψxyvyξv −ΨxΨyyξΨ
−ΨyyΨzλΨ −ΨyyΨtγΨ − 2Ψyyvyηy − 2Ψxyvyλv
−vyΨtyγv + y2yΨvv − v2yΨxξvv − v2yΨyηvv −Ψzv

2
yλvv

−Ψtv
2
yγvv −Ψzvyyλv −Ψtvyyγv
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θ(0,0,0,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φzz −Ψxξzz −ΨyηzzΨz(2ΦΨz − λzz)−Ψtγzz
−2ΨyΨzξΨz +Ψ2

z(ΦΨ − 2λΨz − 2λΨz)− 2ΨzΨtγΨz
−2Ψxzξz − 2Ψyzηz +Ψzz(ΦΨ − 2λz)− 2Ψztγz
+2vzΦvz − 2vzΨxξxz − 2vzΨyηvzvz(ΦvΨ − λvz)
−2vzΨtγvz −Ψ2

zΨxξΨΨ −Ψ2
zΨyηΨΨ −Ψ3

zλΨΨ

−Ψ2
zΨtγΨΨ − 2ΨzΨxzξΨ − 2ΨzΨyzηΨ − 3ΨzΨzzλΨ

−2ΨxΨztγΨ − 2vzΨzΨxξΨv − 2ΨzvzΨyηvΨ − 2vΨxzξv
−2ΨzΨyηvΨ − 2vzΨxzξv − 2vzΨyzηv −ΨzzΨxξΨ
−ΨzzΨyηΨ −ΨzzΨtγΨ − 2vzΨzzλv − 2vzΨztγv
+v2zΦyy − v2zΨvv − ξvv − v2zΨyηvv − v2zΨzλvv
−v2zΨtηvv + vzzΦv − vvvΦv − vzzΨxξv
−vzzΨyηv − vzzΨzλv − vzzΨtγv

from (??) and (13) the coefficient function {ξ, η, λ, γ, φ,Φ} satisfy
the symmetry equations

2Φψv − ξxx − ξyy − ξzz + ivψvψ(Ψx − ξΨ)− iξt = 0 (14)

2Φyψ − ηxx − ηyy − ηzz + ivψvψ(Ψy − ηΨ)− iηt = 0 (15)

2Φzψ − λxx − λyy − λzz + ivψvψ(Ψz − λΨ)− iλt = 0 (16)

γt − 2ξx − i(γxx + γyy + γzz)− ivψvψ = 0 (17)

γt − 2ηy − i(γxx + γyy + γzz)− ivψvψ = 0 (18)

γt − 2λy − i(γxx + γyy + γzz)− ivψvψ = 0 (19)

ηx − ξy = 0 (20)

ηΨ = ηv = λΨ = λv = ξΨ = ξv = γΨ = γv = γx = γy = γz = 0
(21)

Φxx + Φyy + Φzz − vΦzz −ΨΦ+ ivΨvΨx + γyy + γzz + iΦt

+vΨ(Φv − γt) + iv2Ψ2γΨ = 0 (22)
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the most general solutions to the set of equations (14)-(22) are given
by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = 1
2
(c1t + c2)x− c10z − c11y + c4t+ c5

η = 1
2
(c1t+ c2)y − c12z − c11y + c6t+ c7

λ = 1
2
(c1t+ c2)z − c10z − c12y + c8t+ c9

γ = c1t
2 + c2t+ c3

Φ = 1
2

(
1
4
c1(x

2 + y2 + z2) + c4x+ c6y + c8z + c0
)
Ψ

φ = −(c1t+ c2)v +
3
4
ic1

(23)

where ci, i = 0, 1, . . . , 12 are arbitrary real constants. Hence the
infinitesimal symmetry algebra G of the Schrödinger equation (8)
is of dimensions 13, and is spanned by the basis vectors⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ1 = ∂x
χ2 = ∂y
χ3 = ∂z
χ4 = ∂t
χ5 = x∂x + y∂y + z∂z + 2t∂t − 2v∂v
χ6 = −z∂x + x∂z
χ7 = −y∂x + x∂y
χ8 = −z∂y + y∂z
χ9 = t∂x +

i
2
xΨ∂v

χ10 = t∂y +
i
2
xΨ∂v

χ11 = t∂z +
i
2
Ψ∂Ψ

χ12 = t∂z + ty∂y + tz∂z + t2∂z +
1
4
(x2 + y2 + z2)Ψ∂Ψ

+
(
3
2
i− 2tv

)
∂v

χ13 =
i
2
Ψ∂Ψ

(24)

the generators (24) satisfy the Lie commutation relations
[L, L] = L, [L, V ] = V , [T, V ] = P , [L, P ] = P ,
[χ5, V ] = V , [χ5, P ] = P , [χ5, T ] = T , [χ5, χ12] = χ12,
[P, V ] = χ13, [T, χ12] = χ5, [P, χ12] = V
with other commutation relation vanishing. Here

Lj = (x× v) = ξjikx
i∂k

Vj = t∇j +
1

2
XjΨ∂Ψ

Pj = ∇j

T = ∂t
It can be shown that the regular representation of this algebra is
that of the thirteen dimensional subalgebra of SL(6,R). Observe
that the fact that the generators χ of this group are integrals of
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the motion lead to a number of conservation laws in quantum me-
chanics. For instance to each of the components of the generators,
, is associated an observable called the angular momentum of the
system. The fact that the angular momentum in a given direction
is an integral of the motion is the quantum mechanical analog of
the law of conservation of angular momentum. The laws of con-
servation of total energy and linear momentum corresponds to the
generators T and P and so on. Other conservation laws an be sim-
ilarly obtained. From (23) it can be seen that the vector fields χ
are of the form

χ =

p∑
i=1

ξi(x)
∂

∂χ
+ φ(x, u)

∂

∂u

which implies the symmetry group is projectile (Hammermesh, 1983
). It can be shown that [H,χ] = 0 for all infinitesimal generators
of the group, where H is the Hamiltonian of the system. Thus the
dynamics of the system is preserved.

3. APPLICATION TO THE SOLUTION OF THE SCHRÖDINGER
EQUATION

Now suppose that G acts regularly on Z ×M , so that the quotient
space Z/G can be regarded as a differentiable manifold, (Palais,
1957 as well as Pestov, 1995), then if ∇ is a system of partial
differential equation defined on the space Z which has G as its
symmetry group, there is a system of partial differential equations
∇/G ⊂ JK(Z/G, p − 1) where l is the dimensions of the orbits
of G and JK(Z, p) is the extended k-jet bundle of p-sections of Z
corresponding to the various partial derivatives of the dependent
variables of order ≤ k, since G leaves Δ invariant, the problem of
finding the G invariant solutions to Δ is equivalent to solving the
reduced system Δ/G in p− l independent variables. The solutions
of Δ/G when lifted back to Δ gives all the G-invariant solution
of Δ. As an illustration of this we consider the scale invariant
solutions, which are more representative. Other solutions may be
constructed in a similar fashion. In this case, the vector field is
χ5 = x∂y + z∂z + 2t∂t − 2v∂y with corresponding one parameter
group G5 = exp(λχ5) whose group action is

G5 : (x, y, z, t, v,Ψ) → (exp(λ), xλ, λ,

exp(λ)z, exp(2λ)t, exp(2− λ)v,Ψ) (25)
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in order that G5 acts regularly, we must consider only the subman-
ifold Z = R

6 = {0}, which is non Hausdorff so that Z/G5 can be
realized as a 6 dimensional Torus T 6 with four exceptional points

q++ = {x = y = z = t = 0,∇ > 0,Ψ > 0}
q+− = {x = y = z = t = 0,∇ > 0,Ψ < 0}
q−+ = {x = y = z = t = 0,∇ < 0,Ψ > 0}
q−− = {x = y = z = t = 0,∇ < 0,Ψ < 0}

corresponding to four vertical orbits. Therefore a G5 invariant so-
lution of the Schrödinger equation corresponds to a curve in Z/G5

which is a solution to Δ/G5. In order that the G5 invariant solu-
tion be a single valued function of x, y, z, t, we concentrate on the
Hursdorff submanifold T ⊂ Z/G5. In this case the curve does not
pass through q++, q+−, q−+, q−−. Choose local coordinates

ξ =
x2 + y2 + z2

t
; vξ = vt (26)

clearly ξ and v are invariant under the group action of G5. Treating
ξ as the new independent variable and substituting (26) into (8) we
see that

Δ/G ≡ 4Ψξξ + (6− iξ)Ψξ − vξΨ = 0 (27)

G5−invariant solutions to (8) corresponding to various values of the
potential v can now be found. For instance, for the potential.

V =
−6α

x2 + y2z2
, α ∈ R; vξ = −6α

ξ
(28)

(27) becomes

2

3
x2Ψxx + x(1 +X)Ψx + αΨ = 0 (29)

where x = iξ
6
. Using the transformation (29) becomes

Qxx +

(
−1

4
+

3

4x′
+

1
4
− μ2

x′2
Q

)
= 0 (30)

where x′ = −3
2
x and μ2 = 23

8
− 3α

(30) is the differential equation satisfied by the Kummer Confluent
Hypergeometric function (Abramowits and Stegtm,1965). There-
fore

Ψ(x, y, z, t) =

(
i

4

(
x2 + y2 + z2

t

))
1

F1

(
μ− 1

4
, 1 + 2μ,

1

4

(
x2 + y2 + z2

t

))
(31)
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where μ2 = 23
8
−3α are the G5 invariant solutions of the Schrödinger

equation (8) corresponding to the potential

v(x, y, z) = − 6α

x2 + y2 + z2
, α ∈ R

Other G5-invariant solutions can be constructed for various values
of v using different coordinate patches on Z/G5. The G5-invariant
solution (31), represents a special state of the system in which an
exact value for all three components of the angular momentum
Z = (χ6, χ7, χ8) can be specified, since ψ is an eigen state of each
component of L with eigen value zero (Schiff, 1968). Note that
since the components of Z do not commute, the system cannot
in general be assigned definite values for all angular momentum
components simultaneously. Also given an initial state φ ∈ (R3)
the position probability measure over any measurable subset Δ ⊂
R

3 (Borel subset) for the state φ, evolving in the presence of a
conservative force filed potential v ≈ 1

x2+y2+z2
can be asymptotically

obtained from (31) for large positive or negative times. This is
useful in scattering theory. Next we give a general perspective on
the usefulness of considering Lie group.

4. PROLONGATIONS; GENERALIZED ROTATIONS IN H

Let H = {λφ} be the set of all possible states of a quantum sys-
tem, where φ is a non-zero vector in the complex Hilbert space and
λ are scalars. The transformation from φ → g · φ where g is an
operation from H to H is usually referred to generalized rota-
tion of the state vectors in H . Usually the generalized rotations
do not conserve norms in II, thus operations for which norms are
conserved are useful in quantum mechanic. Now consider that set
Z = R

n × H and where x = (x1, x2, . . . , xn) ∈ R
n are real line

projection valued measures, then a pair of points (x,Q) ∈ Z de-
termines uniquely a particular pure state of the system. Let G be
a Lie group of symmetries for II and consider the group action
of G on Z. if G acts regularly on Z, we may view the quotient
space Z/G as a differentiable manifold. Let Zq be q-section of Z
the Zq would be characterized by local coordinate systems which
are regular on Z due to the regularity of the action of G on Z.
If is the dimension of the orbits of G, then due to the regular co-
ordinate structure of Z. we construct a subbundle (Zq, PG, Zq−1),
where PG = (P1, . . . , Pq−1) are q−1 independent composition maps
of G. Thus there is a projection of Zq−1. Now since from section 1,
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G preserves transition probabilities in H , we have a generalized ro-
tation of state vectors in H in which norms are preserved (Mackey
1978, Kuku et al 1985). These generalised rotations. Comprising
symmetry transformation which involve stretching sealing or con-
traction as well as pure rotation. Constitute a change of axes in H
without a change in the state vectors defining the system. How-
ever a change in the frame of reference would involve a change in
the choice for representation. Since a particular state vector has
different components when referred to different axes and these con-
stitute the different representation of the state. Thus one expects
a change in the representation of the state vectors. Our theory as-
certains that under the prolonged action of g one obtains in Zq−1,
new representations of the state vectors in q−1 power components.
Since Zq−1 comprises of state vectors whose components are defined
on R

q−1. Therefore for complex quantum systems, one obtains new
symmetries which greatly reduces the complexity of the system.
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