AN AUGMENTED CUBIC LINE SEARCH ALGORITHM FOR SOLVING HIGH-DIMENSIONAL NONLINEAR OPTIMIZATION PROBLEMS

I. NWAEZE ${ }^{1}$, S.U. ISIENYI and LI ZHENGUI

Abstract

This paper presents a performance study of a one-dimensional search algorithm for solving general highdimensional nonlinear optimization problems. The proposed approach is a hybrid between the conventional cubic line search algorithm and a variant of Armijo's line search algorithm. The resulting algorithm, called Augmented Cubic line search, was tested on some standard optimization problems, with a view to observing how optimization techniques for nonlinear optimization problems respond with increasing dimension. To this end, we report the successful performance of the algorithm on objective functions with 5,000 and 10, 000 independent variables..

Keywords and phrases: Armijo's line search algorithm, Highdimensional nonlinear optimization problems, Augmented Cubic line search.
2010 Mathematical Subject Classification: 65k, 90c

1. INTRODUCTION

Many conjugate gradient methods seek to optimize an objective function, f, by choosing the best step length $\alpha=\alpha_{k}$ that optimizes $f\left(x_{k}+\alpha d_{k}\right)$ on the line $x=x_{k}+\alpha d_{k}$ through a descent direction d_{k}. Wolfe [1] stated that the α_{k} satisfies, at least approximately, the requirement

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k}\right)=\text { Optimize } f\left(x_{k}+\alpha d_{k}\right) \tag{1}
\end{equation*}
$$

Therefore, if $\phi: \Re \rightarrow \Re$ is defined by

$$
\begin{equation*}
\phi(\alpha)=f\left(x_{k}+\alpha d_{k}\right) \tag{2}
\end{equation*}
$$

then, one method of determining α_{k} is to estimate a local optimizer of ϕ, so that α_{k} satisfies the condition

[^0]\[

$$
\begin{equation*}
\phi^{\prime}(\alpha)=0, \tag{3}
\end{equation*}
$$

\]

where ϕ^{\prime} is the derivative of ϕ.
In general, (3) is a nonlinear equation and so it is difficult to be solved analytically.
Therefore, a numerical method for estimating the value of α which satisfies (3) must be used. Some researchers such as Nwaeze [2], Nwaeze and Bamigbola [3], Nwaeze [4], Hestenes [5], Turner [6], Brian et al [7] and Himmelblau [8] used various line search methods. The commonly-used line search rules are as follows.
(a) Minimization Rule. At each iteration, α_{k} is selected so that

$$
\begin{equation*}
f\left(x_{k}+\alpha_{k} d_{k}\right)=\min _{\alpha>0} f\left(x_{k}+\alpha d_{k}\right) \tag{4}
\end{equation*}
$$

(b) Approximate Minimization Rule. At each iteration, α_{k} is selected so that

$$
\begin{equation*}
\alpha_{k}=\min \left\{\alpha \mid g\left(x_{k}+\alpha d_{k}\right)^{T} d_{k}=0, \alpha>0\right\} \tag{5}
\end{equation*}
$$

(c) Armijo Rule. Set scalars $s_{k}, \beta, L>0, \sigma$.with
$s_{k}=-g_{k}^{T} d_{k} /\left(L\left\|d_{k}\right\|^{2}\right), \beta \in(0,1)$ and $\sigma \in(0,0.5)$. Then α_{k} is the largest α in
$\left\{s_{k}, \beta s_{k}, \beta^{2} s_{k}, \ldots\right\}$ such that

$$
\begin{equation*}
f_{k}-f\left(x_{k}+\alpha d_{k}\right) \geq-\sigma \alpha g_{k}^{T} d_{k} . \tag{6}
\end{equation*}
$$

(d) Strong Wolfe Rule. α_{k} is chosen to satisfy
$f_{k}-f\left(x_{k}+\alpha d_{k}\right) \geq-\sigma \alpha g_{k}^{T} d_{k}$ and

$$
\begin{equation*}
\left|g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k}\right| \leq-\beta g_{k}^{T} d_{k} \tag{7}
\end{equation*}
$$

where $\beta \in(0,1), f_{k}=f\left(x_{k}\right)$ and $\sigma \in(0,0.5)$.
(e) Cubic line search as described in section 2.
(f) Modified Armijo Rule as described in section 3.

The cubic line procedure, generally, provides much more rapid convergence to the desired optimum point of the objective function. The convergence of Armijo's rule is later slow when the dimensionality of the objective function is high, though, many researchers appraised Armijo's rule as a good tool for solving nonlinear equations. It implies that Armijo's algorithm could, quickly, generate a good estimate of α in equation (1) if the step length is made larger in size. In sections 2 and 3, we consider the effectiveness and accuracy of cubic and Armijo-type line search methods. In section 4,
we consider the Augmented Cubic line search procedure. Numerical examples were implemented and displayed in section 5. Finally, section 6 summarizes the findings of this paper with a conclusion.

2. PRELIMINARY

2.1 Cubic line search procedure

Suppose α_{1} and α_{2} are distinct values of α in equation (1). Define a cubic polynomial

$$
\begin{equation*}
\psi(\alpha)=a \alpha^{3}+b \alpha^{2}+c \alpha+d \tag{8}
\end{equation*}
$$

for which

$$
\begin{aligned}
& \psi\left(\alpha_{i}\right)=\phi_{i}, \quad \phi_{i}=\phi\left(\alpha_{i}\right), \quad i=1,2 \\
& \psi^{\prime}\left(\alpha_{i}\right)=\phi_{i}^{\prime}, \quad \phi_{i}^{\prime}=\phi_{i}^{\prime}\left(\alpha_{i}\right) \\
& \psi^{\prime}(\alpha)=\frac{d}{d \alpha} \phi(\alpha)
\end{aligned}
$$

The unique optimizer, $\alpha *$, of, if it exists, satisfies $\psi^{\prime}(\alpha)=0$ and $\psi^{\prime \prime}(\alpha)>0$. It follows that $\alpha *$ satisfies $3 a \alpha^{2}+2 b \alpha+c=0$ and $3 a \alpha+b>0$. Thus, $\alpha *=\frac{-b+\left(b^{2}-3 a c\right)^{\frac{1}{2}}}{3 a}$, if a is nonzero,
$\alpha *=\frac{-c}{2 b}$, if $a=0$.
The conventional cubic line search procedure was built upon the following iterative technique. If a is nonzero,

$$
\begin{equation*}
\alpha_{k+1}=\alpha_{k}+\frac{-b+\left(b^{2}-3 a c\right)^{\frac{1}{2}}}{3 a} \tag{9}
\end{equation*}
$$

and if $a=0$ we have

$$
\alpha_{k+1}=\alpha_{k}-\frac{c}{2 b} .
$$

The algorithm terminates when $\left|\alpha_{k+1}-\alpha_{k}\right|$ is less than a prescribed number so that α_{k+1} becomes an adequate estimate of $\alpha *$.
However, the above algorithm sometimes, yields a complex value of $\alpha *$ when $b^{2}<3 a c$. This makes the computation of $\alpha *$ to be very tedious and unreliable.

2.2 Modified Armijo line search technique

We modify Armijo's line search to take the following form.
Set scalars $s_{k}, \beta, L_{k}>0, \sigma, \omega$ with $s_{k}=-g_{k}^{T} d_{k} /\left(L_{k}\left\|d_{k}\right\|^{2}\right), \beta \in$ $(0,1), \omega \in[0,2)$ and $\sigma \in(0,0.5)$. Then we choose α_{k}, as the largest value α from the set of values $s_{k}, \beta s_{k}, \beta^{2} s_{k}, \beta^{3} s_{k}, \ldots$, such
that

$$
\begin{gather*}
f_{k}-f\left(x_{k}+\alpha d_{k}\right) \geq-\sigma \alpha\left[g_{k}^{T} d_{k}+0.5 \alpha \omega L_{k}\left\|d_{k}\right\|^{2}\right] . \tag{10}\\
L_{k}=\frac{\left\|g_{k}-g_{k-1}\right\|}{\left\|x_{k}-x_{k-1}\right\|} . \tag{11}
\end{gather*}
$$

In computations we used $\sigma=0.35, \beta=0.85 \mathrm{and} \omega=1$. The step size, α_{k}, defined by this method is larger than that defined in the original Armijo line search. It implies that it is easier to find α_{k} in this variant than in Armijo's rule.

2.3 Augmented Cubic line search procedure.

This paper presents an Augmented cubic line search procedure. It is a hybrid of the conventional cubic line search and the Armijotype technique. This method is designed to complement cubic line search method when it runs into a complex value. The method starts off line search iteration with cubic method and switches onto Armijo-type procedure, in the $k^{t h}$ iteration level, whenever cubic method fails. In the $(k+1)^{t h}$ iteration level, the method continues processing with the cubic scheme, if that iteration level is feasible. The Augmented Cubic line search involves the following iterative steps.
$\alpha_{k+1}=\alpha_{k}+\frac{-b+\left(b^{2}-3 a c\right)^{\frac{1}{2}}}{3 a}$, if a is nonzero, $b^{2}>3 a c, \alpha_{k+1}=$ $\alpha_{k}-\frac{c}{2 b}$, if $a=0$ and
$\alpha_{k+1}=\alpha_{k}$, by Modified Armijo line search, if $b^{2}<3 a c$.
The algorithm is terminated when $\left|\alpha_{k+1}-\alpha_{k}\right|$ is less than a prescribed number so that α_{k+1} is an adequate estimate of $\alpha *$. Results of problem 1, in section 5 , is a simple illustration of augmented cubic line search method implemented in a conjugate gradient method described in [3].

3. Numerical Examples

A java program implemented the Augmented Cubic line search method, using Nwaeze and Bamigbola, Polak Ribierre and Fletcher Reeves conjugate gradient methods (CGM), on the following optimization problems.

Problem 1: Minimize

$$
f(x)=\left(x_{1}-1\right)^{4}+\left(x_{2}-3\right)^{2}+4\left(x_{3}+5\right)^{4} ; \quad x_{0}=[4,2,-1]^{T}
$$

Table 1: Results of problem 1 where I is Iterations.

I	x_{1}	x_{2}	x_{3}	$f\left(x_{1} ; x_{2} ; x_{3}\right)$	α_{k}	$b^{2}-3 a c$
1	4	2	-1	1106	$4.5818 \mathrm{e}-3$	1.266 e 16
2	3.5052	2.0092	-5.6918	41.28405	$1.2225 \mathrm{e}-4$	3.401 e 15
3	3.4843	2.0097	-5.8142	40.8275884	$4.3529 \mathrm{e}-2$	4.634 e 7
4	0.7604	2.0971	-4.9473	0.81849334	$5.1617 \mathrm{e}-4$	1.231 e 7
5	0.8115	2.0964	-4.9582	0.81771935	$2.2181 \mathrm{e}-2$	77536.76
6	0.8299	2.1363	-4.7328	0.76725791	$3.0575 \mathrm{e}-3$	6437.89
7	Cubic method fails.					-10561.5
Armijo-type method corrects cubic method						
7	1.1235	2.9659	-5.0066	0.00139545		
	Cubic method continues					
8	1.0935	2.9966	-4.9928	0.00008799		
.		
.		
18	1.0001	2.9998	-4.9999	0.00000004		

Exact solution: $x_{1}=1, x_{2}=3, x_{3}=-5, f\left(x_{1}, x_{2}, x_{3}\right)=0$.
Problem 2: Minimize

$$
\begin{gathered}
F(x)=\sum_{i=1}^{n} 100\left(x_{2 i}-x_{2 i-1}^{2}\right)^{2}+\left(\left(1-x_{2 i-1}\right)^{2},\left[x_{0}\right]_{2 i}=1\right. \\
\quad \text { and }\left[x_{0}\right]_{2 i-1}=-1.2
\end{gathered}
$$

Table 2: Results of problem 2.

CGM	n	Iterations	Time(s)	Function value
Nwaeze and Bamigbola	5000	26	103	$9.374 \mathrm{E}-7$
Polak Ri- bierre	5000	50	56.9	$2.99 \mathrm{E}-5$
Fletcher Reeves	5000	81	98.2	$1.6119 \mathrm{E}-6$

Problem 3: Minimize

$$
f(x)=\sum_{i=1}^{n}\left[n-\sum_{j=1}^{n} \cos \left(x_{j}\right)+i\left(1-\cos \left(x_{i}\right)\right)-\sin \left(x_{i}\right)\right]^{2},\left[x_{0}\right]_{i}=\frac{1}{n}
$$

Table 3: Results of problem 3.

CGM	n	Iterations	Time(s)	Function value
Nwaeze and Bamigbola	10,000	3	38.5	$3.0 \mathrm{E}-6$
Polak Ri- bierre	10,000	2	184	$8.0 \mathrm{E}-6$
Fletcher Reeves	10,000	2	184	$8.0 \mathrm{E}-6$

Problem 4: Minimize

$$
F(x)=\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}+\left[\sum_{i=1}^{n} i\left(x_{i}-1\right)\right]^{2}+\left[\sum_{i=1}^{n} i\left(x_{i}-1\right)\right]^{4},\left[x_{0}\right]_{i}=1-i / n
$$

Table 4: Results of problem 4.

CGM	n	Iterations	Time(s)	Function value
Nwaeze and Bamigbola	10,000	30	109	0.00000002
Polak Ri- bierre	10,000	19	94.4	$1.52 \mathrm{E}-8$
Fletcher Reeves	10,000	21	107	0.000001

The above program results confirm that Augmented Cubic line search would be a very useful tool in any conjugate gradient method. This is true since the method successfully led to the optimization of high dimensional objective functions, given in problems 1 to 4 , through different conjugate gradient methods.

4. CONCLUDING REMARKS

Augmented Cubic line search method is highly effective and accurate. It complements the conventional cubic line search procedure when applied in any conjugate gradient algorithm. Numerical examples on standard optimization problems reveal that the method led to the successful optimization of objective functions with 5000 and 10,000 independent variables. Thus, any large scale conjugate gradient scheme could utilize the fast convergent property of this Augmented Cubic line search method.

In Fig. 1, the critical value of the temperature is plotted against Newtonian parameter δ.

REFERENCES

[1] A. M Wolfe (1978), Numerical methods for unconstrained optimization, An Introduction Published by Van Nostand Reinhold ltd., England.
[2] E. Nwaeze (2011), A Modified Nonlinear Conjugate Gradient Method for Solving Nonlinear Regression Problems, International Journal of Advanced Engineering Sciences and Technologies, 2 (2), 180-186.
[3] E. Nwaeze and O. M. Bamigbola (2010), A New Conjugate Gradient Method for Solving Nonlinear unconstrained optimization problems, International Journal of Advanced Engineering Sciences and Technologies, 2 (2), 187-193.
[4] E. Nwaeze (2011), An Extended Conjugate Gradient Method for Solving Equality Constrained Nonlinear Optimization Problems, Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine 2 (3), 45-49.
[5] M. R. Hestenes (1980), Conjugate Methods In Optimization. A Springer-Verlag Publication, New York.
[6] P. R. Turner (2000), Numerical Analysis. Published by MacMillan press Ltd., London
[7] D. B. Brian and R.G. Gerald (1987), Optimization Methods In Pascal. Published by Edward Arnold Ltd., London.
[8] D. M. Himmelblau (1972), Applied Nonlinear programming. McGraw-Hill Book Company, London.

DEPARTMENT OF MATHEMATICS AND STATISTICS, AKANU IBIAM FEDERAL POLYTECHNIC UNWANA, AFIKPO
E-mail address: nwaezeema@yahoo.com
DEPARTMENT OF MATHEMATICS AND STATISTICS, AKANU IBIAM FEDERAL POLYTECHNIC UNWANA, AFIKPO
E-mail address: isienyido@yahoo.com
COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE, CHONGQING
THREE GORGES UNIVERSITY, CHONGQING, CHINA
E-mail addresses: zhichiicck@yahoo.com

[^0]: Received by the editors March 10, 2011; Revised: April 18, 2012; Accepted: April 23, 2012
 ${ }^{1}$ Corresponding author

