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AN APPLICATION OF THE NEW DISSIPATIVE
CRITERION FOR SECOND ORDER NONLINEAR

DIFFERENTIAL EQUATIONS.
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Abstract. Using the new dissipative criterion towards Yacu-
bovich Oscillations, we give some extensions of earlier result
on dissipativity of some nonlinear differential equations of the
second order. The frequency domain methods are used on
Rayleigh and Liénard equations.
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1. Introduction

Over the years, the study of qualitative properties of non-linear
differential equations of the form

X
′
= F (t, X) (1.1)

have been linked to obtaining a Lyapunov function V = V (t, X)
where properties are linked to F (t, X). For example,[9, 10, 17], it is

known that if V (t, X) is positive definite and V̇ |(1.1) is negative def-
inite, we are guaranteed the qualitative properties as boundedness,
stability and many other properties for (1.1). However, it is very
difficult to always construct such a function V (t, X). In attempt
to overcome this difficulty, Yacubovich [18], Kalman [12], Popov
[15] and later Yacubovich [19, 20], came out with what we now
call the Kalman-Yacubovich -Popov (KYP) lemma,(cf:[1, 2, 3, 4],
[5, 7, 11, 21]) which helped to discuss the dissipative properties of
systems of the form

X
′
= AX −Bϕ(σ) + P (t, X), σ = C∗X (1.2)
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with A an n × n stable matrix, B and C n ×m-matrices, ϕ(σ) =
col(ϕj(σj)), (j = 1, 2, . . . , m), (ϕj(σj) being real-valued functions),
P (t, X) is a perturbation term, a vector function of t and X, and
C∗ is the complex conjugate transpose of matrix C.
The development came from the consideration of the non - per-

turbed system

X
′
= AX −Bϕ(σ), σ = C∗X (1.3)

such that

ϕ
j
≤ ϕj(σj)

σj
≤ ϕ̄j, (j = 1, 2, . . . , m) (1.4)

that is ϕj ∈ ℵ(ϕ
j
, ϕ̄j), with ϕ

j
, ϕ̄j ∈ IR. (cf [16]).

The absolute stability of (1.3), i.e. a global asymptotic stability
of the equilibrium X ≡ 0 for all ϕ, with ϕj ∈ ℵ(ϕ

j
, ϕ̄j) was studied

using the special Lyapunov function

V (X) = X∗HX + β

∫ σ=C∗X

0

ϕ(λ)dλ,

” a quadratic form plus integral of the nonlinear function”.
The KYP lemma introduced the same problem to the frequency

domain inequality

1

ϕ̄
+Re(1 + iωβ)G(iω) > 0 (1.5)

ensuring absolute stability for ϕ ∈ ℵ(0, ϕ̄), here G(s) = C∗(sI −
A)−1B is the transfer function.
Our main objective in this paper is focused on the application

of the new criterion for dissipative systems of the second order
nonlinear differential equations. This will allow us to generalize
and expand the scope for the applicability of such to equations
with two nonlinear functions.
Let us first give the basic definitions and theorem that will be

used in the paper.

Definition 1.1. [10, 13, 14] A system of equations, Ẋ = F (t, X),
satisfying the conditions of uniqueness and continuity with respect
to initial conditions, will be said to be dissipative if there exist a
constant ρ > 0 such that lim supt→∞ ‖X(t; t0, X0)‖ < ρ for every
solution.

Definition 1.2. Moreover, this will be said to be uniformly dissi-
pative if there exists ρ > 0 such that for all α > 0 and t0 ≥ 0,
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there exists T (α) such that for all X0 with ‖X0‖ ≤ α we have
‖X(t; t0, X0)‖ ≤ ρ for t ≥ t0 + T (α).

The recent effort by Vl. Rasvan ([16]) has motivated our thinking
back to this work.
The generalized theorem for discussing uniform dissipativity of

system (1.2) is

Theorem 1.1. Consider

X
′
= AX −Bϕ(σ) + P (t, X), σ = C∗X (1.6)

Suppose for |α| ≥ λ0, 0 ≤ αϕj(α) ≤ μj
oα

2;−αj
1 ≤ ϕ

′
j(α) ≤ αj

2;μ
j
o ≤

αj
1; |P (t, X)| ≤ ρ
If there exist diagonal matrices D1 > 0, D2, D3 ≥ 0 such that

π(ω) ≡ D1 +Re[D1(diag(μ
j
o) + iωD2)G(iω)]

+ω2[D3(I +Re(diag(αj
2 − αj

1)G(iω)))]

−G∗(−iω)D3diag(α
j
1α

j
2)G(iω) > 0 (1.7)

for all real ω. Furthermore, assume that

lim inf
|λ|→∞

D2|λ|−2diag[

∫ λ

0

ϕj(α)dα− λ

2
ϕj(λ)] ≥ 0,

then system (1.6) is uniformly dissipative.

Remark 1.1. We note that unlike the earlier results, that had only
the sector conditions, this is having conditions on the derivatives of
the nonlinearities ( ϕ(σ).)

Remark 1.2. We also note that, when D3 ≡ 0 in (1.7), the in-
equality reduces to

π(ω) ≡ D1 +Re[D1(diag(μ
j
o) + iωD2)G(iω)] > 0 (1.8)

for all ω ∈ IR.

2. Application to equation with one non-linearity

Let us first consider the second order equation with one nonlin-
earity, just to see the simple application of theorem 1.1.
Consider

ẍ+ 2pωnẋ+ ω2
nx+ ω2

nγ(x) = q(t, x, ẋ) (2.1)

which can be re-written as

ẍ+ 2pωnẋ+ ω2
nεx+ ω2

n[(1− ε)x+ γ(x)] = q(t, x, ẋ)
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or

ẍ+ 2pωnẋ+ ω2
nεx+ ω2

nϕ(x) = q(t, x, ẋ)

where ϕ(x) = (1− ε)x+ γ(x).
Let us put this in the form of (1.2) by setting{

ẋ = y
ẏ = −2pωny − ω2

nεx− ω2
nϕ(x) + q(t, x, y).

(2.2)

Thus by choosing

A =

(
0 1

−ω2
nε −2pωn

)
;X =

(
x
y

)
;C =

(
1
0

)
;

B =

(
0
ω2
n

)
;P (t, X) =

(
0

q(t, x, y)

)
, (2.3)

we have system (1.2).
Then the transfer matrix G(s) = C∗(sI − A)−1B = 1

Δ(s)
ω2
n with

Δ(s) = (s2 + 2pωns+ ω2
nε). Clearly, G(0) = ε−1 > 0.

Taking ϕ = 0 and choosing in (1.7), D1 = 1
ϕ̄
, D2 = θ, D3 = 0,

we have the frequency domain inequality as

π(ω) ≡ 1

ϕ̄
+

(ω2
nε− ω2 − 2pωnθ)ω

2
n

(ω2
nε− ω2)2 = 4p2ω2

nω
2
> 0

for all ω ≥ 0.
Now, this will be true if and only if

(ω2
nε− ω2)2 + 4p2ω2

nω
2 + ϕ̄(ω2

nε− ω2 − 2pωnθ)ω
2
n > 0. (2.4)

After some simplifications, this reduces to

ω4 + ω2{ω2
n[4p

2 − 2ε− ϕ̄]}+ ω4
n[ε

2 + ϕ̄ε− βϕ̄] > 0 (2.5)

with β = 2pθ
ωn

.

We note the fact that a quadratic inequality v2 + kv + l > 0 for
all v ≥ 0 is true if and only if k2 − 4l < 0.
Using this fact, we have that (2.5) will be true for all ω ≥ 0, if

(4p2 − 2ε− ϕ̄)2 − 4(ε2 + ϕ̄ε− βϕ̄) < 0, for ϕ̄ > 0.

That is,

ϕ̄2 + 4(β − 2p2)ϕ̄+ 4(ε− 2p2)2 − 4ε2 < 0.

Again, using a quadratic property, this will hold if

(β − 2p2)2 − [(ε− 2p2)2 − ε2] > 0, for ϕ̄ > 0.

That is

β2 − 4p2β + 4p2ε > 0, for ϕ̄ > 0. (2.6)
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Now, choosing β between two positive roots of

β2 − 4p2β + 4p2ε = 0

then, (2.6) will be true for all ϕ̄ > 0, which may be arbitrarily large.
This will then give us the sector and slope conditions.

ϕ(σ)

σ
> −G(0)−1 = −ε,

for |σ| ≥ λo.
This will again give us condition on our original nonlinear function

γ(x)

γ(x)

x
> −1 − ε, −1 < γ′(x) < −1 + ϕ̄, ∀ |x| ≥ λo. (2.7)

Theorem 2.1. Subject to conditions (2.7), equation (2.1) is uni-
formly dissipative.

Remark 2.1. This only shows the type of difficulties that occur for
one nonlinear function in the considered equation.

3. Further Applications to equations with two
non-linearities

The main contribution will be to consider equations of two non-
linear functions of the second order, namely the Liénard equation

ÿ + f(y)ẏ + g(y) = q(t, y, ẏ) (3.1)

and the Rayleigh equation

ẍ+ F (ẋ) + g(x) = q(t, x, ẋ) (3.2)

where F (z) =
∫ z

0
f(s)ds.

We have the following definition:

Definition 3.1. Under the frequency-domain criteria (1.7) we shall
say that the system

X
′
= AX −Bϕ(σ) + P (t, X), σ = C∗X (3.3)

has the dual system

X ′ = A∗X − Cϕ̃(σ̃) + P̃ (t, X), σ̃ = B∗X (3.4)

where A∗, B∗ are complex conjugates transpose of matrices A and
B and C as given above.

Remark 3.1. The frequency domain conditions, (1.7), for dual
systems are equivalent. (cf.[4])
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Lemma 3.1. Under the frequency domain criteria the Rayleigh
equation (3.2) is a dual to the Liénard equation (3.1).

Proof: Let F (y) = 2py+Φ(y), g(x) = ν2x+γ(x), (p > 0, ν > 0).
This is clear if we re-write (3.2) as a system form:

ẋ = y,

ẏ = −ν2x− 2py − γ(x)− Φ(y) + q(t, x, y) (3.5)

for which

A =

(
0 1

−ν2 −2p

)
;X =

(
x
y

)
;B =

(
0 0
1 1

)
;

C =

(
1 0
0 1

)
;P (t, X) =

(
0

q(t, x, y)

)
;

σ = C∗X =

(
x
y

)
;ϕ(σ) =

(
γ(x)
Φ(y)

)
. (3.6)

The Liénard equation is equivalent to the system

ẋ = −ν2y − γ(y) + q(t, x, y)

ẏ = x− 2py − Φ(y) (3.7)

which indeed is

ÿ = ẋ− 2pẏ − Φ′(y)ẏ

= −ν2y − γ(y)− F ′(y)ẏ + q(t, x, y)

= −g(y)− f(y)ẏ + q(t, x, y).

Thus

ÿ + f(y)ẏ + g(y) = q(t, y, ẏ).

Hence system (3.7) is a dual for system (3.5) with

Ã =

(
0 −ν2

1 −2p

)
= A∗;X =

(
x
y

)
; B̃ =

(
1 0
0 1

)
= C;

C̃ =

(
0 0
1 1

)
= B; P̃ (t, X) =

(
q(t, x, y)

0

)
;

σ̃ = C̃∗X =

(
y
y

)
; ϕ̃(σ̃) =

(
γ(y)
Φ(y)

)
.

This completes the proof of the lemma.
Now, let us consider the main results of this paper on the systems

(3.5) and (3.7).
Consider the Rayleigh equation

ẍ+ F (ẋ) + g(x) = q(t, x, ẋ)
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or equivalently,

ẍ+ 2pẋ+ Φ(ẋ) + ν2x+ γ(x) = q(t, x, ẋ)

with F (y) = 2py + Φ(y), g(x) = ν2x + γ(x), (p > 0, ν > 0), such
that the nonlinearities Φ(y), γ(x) satisfy

0 ≤ yΦ(y) ≤ μ2y
2, 0 ≤ xγ(x) ≤ μ1x

2,

0 ≤ Φ′(y) ≤ μ2, 0 ≤ γ′(x) ≤ μ1 (3.8)

for |y| ≥ λo, |x| ≥ λo and |q(t, x, ẋ)| ≤ ρo.

Theorem 3.1. The Rayleigh equation (3.2) is uniformly dissipative
if there exist ε > 0, η > 0, μ1 > 0, and μ2 > 0 such that for |y| ≥ λo

and |x| ≥ λo and |q(t, x, ẋ)| ≤ ρo

ε ≤ F (y)

y
≤ μ2, η ≤ g(x)

x
≤ μ1.

In the same vein, the Liénard equation is uniformly dissipative as
a DUAL of Rayleigh equation.

Theorem 3.2. The Liénard equation (3.1) is uniformly dissipative
if there exist ε > 0, η > 0, μ1 > 0, and μ2 > 0 such that for
|z| ≥ λo and |y| ≥ λo and |q(t, y, ẏ)| ≤ ρo

ε ≤
∫ y

0
f(s)ds

y
≤ μ2, η ≤ g(y)

y
≤ μ1.

4. Sketch of proof of Theorem 3.1

First, we note that, with the choice of

A =

(
0 1

−ν2 −2p

)
;X =

(
x
y

)
;B =

(
0 0
1 1

)
;

C =

(
1 0
0 1

)
;P (t, X) =

(
0

q(t, x, y)

)
;

σ = C∗X =

(
x
y

)
;ϕ(σ) =

(
γ(x)
Φ(y)

)
;

we have

(sI −A) =

(
s −1
ν2 s+ 2p

)
; det(sI − A) = s2 + 2ps+ ν2.

Hence A is stable.
If we denote Δ(iω) = det(iω − A) = ν2 − ω2 + 2piω, then,

(iωI − A)−1 =
1

Δ(iω)

(
2p+ iω 1
−ν2 iω

)
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and the transfer matrix is

G(iω) = C∗(iωI −A)−1B =
1

Δ(iω)

(
1 1
iω iω

)
.

If we choose τ1 > 0, τ2 > 0, D1 = diag(τ1, τ2), D2 = diag(λ1, λ2)
and D3 = 0, the frequency domain inequality (1.7) becomes

π(ω) ≡

⎛
⎜⎝

2τ1 + 2Re[ τ1μ1+iωλ1

Δ(iω)
] [ τ1μ1+iωλ1

Δ(iω)
− λ2ω2+iωτ2μ2

Δ(−iω)
]

τ1μ1−iωλ1

Δ(iω)
+ −λ2ω2+iωτ2μ2

Δ(−iω)
2τ2 + 2Re[−λ2ω2+iωτ2μ2

Δ(iω)
]

⎞
⎟⎠

> 0. (4.1)

After some calculations, this becomes

π(ω) ≡
⎛
⎝ π11 π12

π21 π22

⎞
⎠ > 0 (4.2)

where

π11 = 2τ1 +
2

|Δ|2 [μ1τ1(ν
2 − ω2) + 2pω2λ1],

π12 =
2

|Δ|2{[(ν
2 − ω2)(μ1τ1 − ω2λ1) + 2pω2(λ1 + μ2τ2)]

−2piω(μ1τ1 + ω2λ2)}
= τ̄21,

π22 = 2τ2 +
2ω2

|Δ|2 [2pμ2τ2 − λ2(ν
2 − ω2)],

with |Δ|2 = Δ(iω)Δ(−ω) = (ν2 − ω2)2 + 4p2ω2.
On setting λ2 = 0, γ1 = τ1μ1

τ2μ2
, γ2 = λ1

τ1
, the frequency domain

condition can be verified using Sylvester’s criterion on the positivity
of the determinant of the principal minors of π(ω).
Hence, for this to be true, it is sufficient to have the determinant

of π(ω) > 0.
This simplifies to

ω2 +
1

ω2
(ν4 + μ1ν

2 − γ1μ1μ2

4
)

> 2ν2−2p(2p+ μ2)+μ1 −(2p+μ2

2
)γ2+

μ1μ2

4γ1
+
γ2
2

4
.
γ1μ2

μ1
(4.3)

We note that a function H(v) = v + k
v
for positive values of v

attains it minimum at v1 =
√
k. Moreover, it has its minimum

value as Hmin(v1) = 2
√
k.
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Using this fact, we have that the minimum of the left hand side
of the inequality (4.3) for ω ∈ IR is√

4ν2(ν2 + μ1)− μ1μ2γ1,

whenever 0 < γ1 < 4ν2(ν2 + μ1)(μ1μ2)
−1.

Hence the required conditions can be obtained.
Let,

C(μ1, μ2, γ1) =
√
4ν2(ν2 + μ1)− μ1μ2γ1+2p(2p+μ2)−2ν2−μ1μ2

4γ1
−μ1

the frequency domain condition will be true if we have γ1 and γ2
such that

(
γ1μ2

4μ1
)γ2

2 − (2p+
μ2

2
)γ2 − C(μ1, μ2, γ1) < 0.

This is possible if

(2p+
μ2

2
)2 + (

γ1μ2

μ1
)C(μ1, μ2, γ1) < 0.

Using the expression for C(μ1, μ2, γ1), as

γ1μ2

μ1

C(μ1, μ2, γ1) = −μ2
2

4
+O(γ1)

then we have (4.3) will be true for small values if γ1.
This concludes the proof of Theorem 3.1, using theorem 1.1.
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