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ABSTRACT. We use coincidence degree arguments to prove the
existence and uniqueness of periodic solutions of the equation

xiv(t) + a
...
x (t) + bẍ(t) + g(t, ẋ(t− τ )) + dx = p(t)

x(i)(0) = x(i)(2π), i = 0, 1, 2, 3.
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1. INTRODUCTION

In a recent paper [5] we proved the existence of periodic solution of
the fourth order delay equation of the form

xiv(t) + a
...
x (t) + bẍ(t) + cẋ(t) + g(t, x(t− τ) = p(t)

x(i)(0) = x(i)(2π), i = 0, 1, 2, 3.

where a, b, c are constants, g is a Caratheodory’s function p(t) ∈ L1
2π

and τ ∈ [0, 2π) is a fixed time delay.
In this paper we shall investigate the existence and uniqueness of

2π - periodic solution for the fourth order periodic boundary value
problem with delay of the form.

xiv(t) + a
...
x (t) + bẍ(t) + g(t, ẋ(t− τ)) + dx = p(t)

x(i)(0) = x(i)(2π), i = 0, 1, 2, 3.
(1.1)

where a, b and d are constants g is a Caratheodory’s function p(t) ∈
L1
2π and τ ∈ [0, 2π) is a fixed time delay. The unknown function x :
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[0, 2π] → R is defined for 0 ≤ t ≤ τ by x(t−τ) = x(2π−(t−τ)). It is
pertinent to note that some problems in biological or physiological
systems can be modeled by fourth order differential equations with
time delay. For instance, the oscillatory movements of muscles that
occur from the interaction of a muscle with its load [7]. Other
applications can be found in [3] and references therein.
In section 2 of this paper we shall consider the problem of non-

existence of non-trivial 2π periodic solutions of some linear ana-
logues of (1.1). In section 3 we shall prove that under suitable
conditions on the constants a, b, d and on the asymptotic behaviour

of the ratio
g(t, y)

ay
the equation (1.1) possesses at least one 2π-

periodic solution for each p(t) ∈ L1
2π. The techniques of proof uses

coincidence degree theory [6] and the apriori estimates are obtained
by adapting the methods established in [4].
In section 4 we shall obtain uniqueness results. In what follows

we shall use the following notations and definitions. Let R denote
the real time and I the interval [0, 2π]. The following spaces will
be used. Lk

2π = Lk(I, R) are the usual Lebesque spaces, 1 ≤ k < ∞
with x ∈ Lk

2π, 2π-periodic

Hk
2π = Hk(I, R)

⎧⎪⎪⎨
⎪⎪⎩

x : I → R, x, ẋ, . . . , xk−1 are absolutely
continuous and xk ∈ L2

2π

x(i)(0) = x(i)(2π) i = 0, 1, 2, 3, . . . , k − 1

with norm

‖x‖2Hk
2π

=

(
1

2π

∫ 2π

0

x(t)dt

)2

+
1

2π

k∑
i=1

∫ 2π

0

|x(i)(t)|2

and
W k,1

2π =
{
x : I → R, x, ẋ, . . . , xk−1 are absolutely continuous,

xk ∈ L2
2π

and x(i)(0) = x(i)(2π), i = 0, 1, 2, 3, . . . , k − 1
}

with norm

‖x‖2
W k,1

2π

=
1

2π

k∑
i=0

∫ 2π

0

|x(i)(t)|dt.

A function x ∈ W 4,1
2π is a solution of (1.1) if it satisfies (1.1) almost

everywhere on R.
For such a solution we set
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x = x̄+ x̃ where

x̄(t) = a0 +
n∑

k=1

(ak cos kt + bk sin kt) (1.2)

x̃(t) =

∞∑
k=n+1

(ak cos kt + bk sin kt) (1.3)

2. The Linear Case
We consider in this section the problem of non-existence of non-

trivial periodic solution for some linear analogue of (1.1). We shall
consider the linear equation.

xiv + a
...
x (t) + bẍ(t) + c(t)ẋ(t− τ) + dx = 0

x(i)(0) = x(i)(2π), i = 0, 1, 2, 3
(2.1)

where a, b, d are constants and c(t) ∈ L1
2π.

We have the following results.

Theorem 2.1
Let n ≥ 1 be an integer and let the following conditions be satis-

fied.

(i) a 	= 0
(ii) b > n2

(iii) 0 < d < n
(iv) n2 ≤ a−1c(t) ≤ (n + 1)2 holds uniformly a.e. in t ∈ [0, 2π]

with strict inequalities n2 < a−1c(t), a−1c(t) < (n+1)2 hold-
ing on subsets of [0, 2π] of positive measure.

Suppose that there exists constant δ > 0 with δ > |a|−1 then the
boundary value problem (2.1) has no non-trivial periodic solution
in W 4,1

2π .

Proof.
We set Γ(t) = a−1c(t) and rewrite (2.1) in the form

a−1[xiv(t) + bẍ(t) + dx(t)]+
...
x +Γ(t)ẋ(t− τ) = 0 (2.2)

Let x = x̄+ x̃ ∈ H3
2π be any solution of (2.2). Then on multiplying

(2.2) by ˙̄x(t−τ)− ˙̃x(t) and integrating over I, we obtain I1+I2 = 0,
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where

0 =
1

2π

∫ 2π

0

( ˙̄x(t− τ)− ˙̄x(t))a−1[xiv + bẍ+ dx]dx ≡ I1.

+
1

2π

∫ 2π

0

( ˙̄x(t− τ)− ˙̃x(t)){...x +Γ(t)ẋ(t− τ)}dt ≡ I2

≡ I1 + I2

To estimate I1 we observe from definition (1.2) and (1.3) that

1

2π

∫ 2π

0

˙̄x(t− τ)xiv(t)dt =

n∑
k=1

k5(a2k + b2k) sin kτ

1

2π

∫ 2π

0

˙̄x(t− τ)ẍ(t)dt = −
n∑

k=1

k3(a2k + b2k) sin kτ

1

2π

∫ 2π

0

˙̄x(t− τ)
...
x (t) = −

n∑
k=1

k4(a2k + b2k) cos kτ

1

2π

∫ 2π

0

˙̄x(t− τ)xdt = −
n∑

k=1

(a2k + b2k) sin kτ

Thus,

I1 = a−1
n∑

k=1

[k5 − bk3 − dk][a2k + b2kk] sin kτ

|I1| ≤ |a−1|
n∑

k=1

{|k5 − bk3 + dk|[a2k + b2k]}

from conditions (ii) and (iii) we get

|I1| ≤ |a−1|
n∑

k=1

k2(a2k + b2k) =
|a|−1

2π

∫ 2π

0

˙̄x2(t)dt

≤ |a−1||ẍ|22
≤ |a|−1|ẋ|2H1

2π

I2 =
1

2π

∫ 2π

0

( ˙̄x(t− τ)− ˙̃x(t))(
...
x +Γ(t)ẋ(t− τ))dt

= −
n∑

k=1

k4(a2k + b2k) cos kτ +
1

2π

∫ 2π

0

Γ(t) ˙̄x2(t− τ))dt
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+
1

2π

∫ 2π

0

Γ(t) ˙̄x(t− τ) ˙̃x(t− τ)dt +
1

2π

∫ 2π

0

¨̃x2dt

− 1

2π

∫ 2π

0

Γ(t) ˙̃x(t)ẋ(t− τ)dt

≥ − 1

2π

∫ 2π

0

¨̄x2dt− 1

2π

∫ 2π

0

Γ(t) ˙̄x2(t− τ)dt

+
1

2π

∫ 2π

0

Γ(t) ˙̄x(t− τ) ˙̃x(t− τ)dt +
1

2π

∫ 2π

0

¨̃x2(t)dt

− 1

2π

∫ 2π

0

Γ(t) ˙̄x(t) ˙̃x(t− τ)dt

using

−ab =
(a− b)2

2
− a2

2
− b2

2
we get

− 1

2π

∫ 2π

0

¨̄x2(t)dt +
1

2π

∫ 2π

0

Γ(t) ˙̄x2(t− τ)dt

+ 1
2π

∫ 2π

0
Γ(t) ˙̄x2(t− τ) ˙̃x(t− τ)dt

+
1

2π

∫ 2π

0

¨̄x2(t)dt+
1

2π

∫ 2π

0

Γ(t)

2
[ ˙̄x(t− τ) + ¨̃x(t− τ)− ˙̃x(t)]2dt

+
1

2π

∫ 2π

0

Γ(t)

2
[ ˙̄x2(t− τ)− ˙̃x2(t− τ)− 2 ˙̄x(t− τ) ˙̃x(t− τ)− ˙̃x2(t)]dt

= − 1

2π

∫ 2π

0

¨̄x2(t)dt+
1

2π

∫ 2π

0

Γ(t)

2
˙̄x2(t− τ)dt

+
1

2π

∫ 2π

0

¨̃x2(t)dt+
1

2π

∫ 2π

0

Γ(t)

2
[− ˙̃x2(t− τ)− ˙̃x2(t)]dt

− 1

2π

∫ 2π

0

Γ(t)

2
˙̄x2(t− τ)dt +

1

2π

∫ 2π

0

Γ(t)

2
[ ˙̄x(t− τ) + ˙̃x(t− τ)− ˙̃x(t)]2dt

=
1

2

(
1

2π

∫ 2π

0

[¨̃x2(t− τ)− Γ(t) ˙̃x2(t− τ)]dt

)
+

1

2

(
1

2π

∫ 2π

0

¨̃x2(t− τ)

)

+
1

2

(
1

2π

∫ 2π

0

[Γ(t) ˙̄x2(t− τ)− ¨̄x2(t− τ)]dt

)

+
1

2π

∫ 2π

0

Γ(t)

2
[ ˙̄x(t− τ) + ˙̃x(t− τ)− ˙̃x(t)]2dt

−1
2

(
1
2π

∫ 2π

0
¨̄x2(t− τ)dt

)
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Since Γ(t) ≥ n2 for a.e., t ∈ [0, 2π] the last two terms imply that

−1

2

(
1

2π

∫ 2π

0

¨̄x2(t− τ)dt

)

+1
2

(
1
2π

∫ 2π

0
Γ(t)[ ˙̄x(t− τ) + ( ˙̃x(t− τ)− ˙̃x)]2

)
dt

≥ −1

2

(
1

2π

∫ 2π

0

¨̄x2(t− τ)dt

)
+

n2

2

(
1

2π

∫ 2π

0

˙̄x2(t− τ)dt

)

+
n2

2

(
1

2π

∫ 2π

0

˙̄x(t− τ) ˙̃x(t)

)2

dt

+
n2

2π

∫ 2π

0

˙̄x(t− τ) ˙̄x(t − τ)dt− n2

2π

∫ 2π

0

˙̄x(t− τ) ˙̄x(t)dt ≥ 0

Since the last two terms are zero by orthogonality of ˙̄x and ˙̃x and
the sum of the first two terms is non-negative by Parseval’s equality.
It follows that

I2 ≥ 1

2

(
1

2π

∫ 2π

0

[¨̃x2(t− τ)− Γ(t) ˙̃x2(t− τ)]

)
dt

+
1

2

(
1

2π

∫ 2π

0

[Γ(t) ˙̄x2(t− τ)− ¨̄x2(t− τ)]dt

)
≥ δ|ẋ|2H1

2π

by Lemma (2.2) and (2.3) of [4]. Therefore,

0 = I1 + I2 ≥ δ|ẋ|2H2
2π
− |a|−1δ|ẋ|2H1

2π

= (δ − |a|−1)δ|ẋ|2H1
2π

Since δ > |a|−1 we conclude that ẋ = 0 and hence x = constant.
It is clear that x = constant cannot be a solution of (2.1) since
d 	= 0.
Therefore x = 0.

3. The Non-Linear Case
We shall consider here the non-linear boundary value problem of

the form.

xiv + a
...
x +bẍ+ g(t, ẋ(t− τ)) + dx = p(t)

x(i)(0) = x(i)(2π), i = 0, 1, 2, 3.
(3.1)

where a, b, d are constants and p(t) ∈ L1
2π, g : I × R → R is such

that g(t + 2π, x) = g(t, x) and is a Caratheodory function with
respect to L1

2π, that is
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(i) g(·, x) is measurable on I for each x ∈ R
(ii) g(t) is continuous on R for a.e. t ∈ I
(iii) for each r > 0 there exists Yr ∈ L1

2π such that

|g(t, x| ≤ Yr(t) (3.2)

For almost everywhere t ∈ I and all x ∈ R such that |x| ≤ r.
We have the following Lemma.

Lemma 3.1
Let all the conditions of theorem 2.1 be satisfied. Assume that

α, β ∈ L1
2π satisfy the following conditions:

n2 ≤ a−1a(t) ≤ a−1β(t) ≤ (n+ 1)2

For a.e. t ∈ [0, 2π] where n ≥ 1 is an integer and n2 ≤ a−1α(t),
α−1β(t) < (n+1)2 on subsets of [0, 2π] of positive measure. Suppose
that there exists constant ε > 0, and δ0 > 0 with

a−1α(t)− ε ≤ a−1c(t) ≤ a−1β(t) + ε (3.3)

Then∫ 2π

0

|xiv + a
...
x +bẍ+ c(t)ẋ(t− τ) + dx|dt ≥ δ0|x|H4.1

2π
(3.4)

Proof.
The proof follows the same procedure as in Lemma 3.1 of [5].

We shall now prove the following existence result for equation (3.1).

Theorem 3.1
Let a, b, d be constants such that

(i) a 	= 0
(ii) b > n2

(iii) 0 < d < n

and let g be a Caratheodory’s function such that the inequalities

n2 ≤ α(t)

α
≤ lim

|y|→∞
inf

g(t, y)

ay
≤ lim

|y|→∞
sup

g(t, y)

ay
≤ β(t)

a
≤ (n+ 1)2

(3.5)
hold uniformly for a.e. t ∈ I, where n ≥ 1 is an integer, α, β ∈ L1

2π

and the strict inequalities n2 < a−1c(t), a−1c(t) < (n+ 1)2 hold on
subsets of I of positive measure. Suppose that there exists δ > 0
such that δ > |a|−1 then the boundary value problem (3.1) has at
least one solution in W 4,1

2π .
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Proof.
Let ε > 0 be associated to α, β in Lemma 3.1 then by (3.5) there

exists a constant r = r(ε) such that

α(t)

a
− ε ≤ g(t, y)

ay
≤ β(t)

a
+ ε

for a.e. t ∈ I and all y ∈ R with |y| ≥ r.
Define a function

Ỹ : R → R (3.6)

by

Ỹ (t, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y−1g(t, y) if |y| ≥ r

yr−1g(t, r) + (1− yr−1)β(t), 0 ≤ y < r

yr−2g(t, r) + (1 + yr−1)β(t), −r < y ≤ 0

(3.7)

Hence,

α(t)

a
− ε ≤ Ỹ (t, y)

ay
≤ β(t)

a
+ ε (3.8)

For a.e. t ∈ [0, 2π} and all y ∈ R with |y| ≥ r.
Define g̃ and φ by g̃(t, x) = Ỹ (t, x)x, φ(t, x) = g(t, x)− g̃(t, x) and
observe that both g̃ and φ are caratheodory’s functions.
Hence there exists Yr ∈ L1

2π such that

|φ(t, x)| ≤ Yr(t) (3.9)

for a.e. t ∈ I and all x ∈ R where Yr = Yr(α, β).
Thus equation (3.1) is equivalent to

xiv + a
...
x +bẍ+ Ỹ (t, ẋ(t− τ))ẋ(t− τ) + φ(t, ẋ(t− τ)) + dx = p(t)

x(i)(0) = x(i)(2π), i = 0, 1, 2, 3
(3.10)

To apply coincidence degree theory [6] to (3.1) written in the form
(3.10) we set

X = W 4,1
2π , Z = L1

2π,
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domL = {x ∈ X : x(i)(0) = x(i)(2π) and
...
x is absolutely continuous

on [0, 2π]}.
L : domL ⊂ X → Z, x → xiv + a

...
x +bẍ+ dx

H : domL ⊂ X → Z, x → g̃(t, ẋ(t− τ))

A : domL ⊂ X → Z, x → β(t)ẋ(t− τ)

G : domL ⊂ X → Z, x → φ(t, ẋ(t− τ))

T : domL ⊂ X → Z, x → −p(t)

It is easily seen that H and G are well defined and L− compact on
bounded subsets of X and that L is a linear Fredholm mapping of
index zero.
Thus solving problem (3.1) is equivalent to solving the equation.

Lx+Gx+Hx+ Tx = 0 (3.11)

where x ∈ domL.
Using theorem 4.5 of [6] equation (3.11) will have a solution if we
can show that for each λ ∈ [0, 1] and each x ∈ domL such that

Lx+ (1− λ)Ax+ λGx+ λHx+ λTx = 0 (3.12)

we have
|x|W 4,1

2π
< ρ for some ρ > 0

Let x ∈ domL satisfy (3.12) for some λ ∈ [0, 1].
Then

xiv + a
...
x +bẍ+ [(1− λ)β(t) + λỸ (t, ẋ(t− τ))]ẋ(t− τ)

+λφ(t, ẋ(t− τ)) + dx = λP (t) (3.13)

and by (3.8) we have

α(t)

a
− ε ≤ (1− λ)β(t)

a
≤ λỸ (t, (̇− τ))

a
≤ β(t)

a
+ ε

Hence using Lemma 3.1 and (3.9) we get

0 = |xiv + a
...
x +bẍ+ [(1− λ)β(t) + λỸ (t, ẋ(t− τ))]ẋ(t− τ)

+λφ(t, ẋ(t− τ)) + dx− λp(t)|L1
2π

≥ δ0|x|W 4,1
2π

− (|Yr|+ |P |L1
2π
)

and hence

|x|W 4,1
2π

≤ δ−1
0 (|Yr|+ |P |L1

2π
) = R(a, B, α).
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To complete the proof we choose ρ such that ρ > δ−1
0 (|Yr|L1

2π
+

|P |L1
2π
) �

4. Uniqueness Result
In this section we shall establish a uniqueness result for equation

(3.1).

Theorem 4.1
Let all the conditions of theorem 3.1 hold with g satisfying

n2 ≤ α(t)

a
≤ g(t, ẋ)− g(t, ẏ))

a(ẋ− ẏ)
≤ β(t)

a
≤ (n+ 1)2 (4.1)

for a.e. t ∈ [0, 2π] and all ẋ 	= ẏ ∈ R with α and β as in theorem
3.1.
Then problem (3.1) has a unique solution for each P ∈ L1

2π

Proof.
Since condition (4.1) implies (3.5), theorem 3.1 ensures the exis-

tence of at least one solution.
Now let x and y be solutions of (3.1). Then by setting v = x− y,

v is a solution of the problem

viv + a
...
v +bv̈ + g(t, v̇ + ẏ − g(t, ẏ) + dv = 0 (4.2)

Define f : I × R → R by

f(t) =

⎧⎨
⎩

v̇−1[g(t, v̇ + ẏ)− g(t, ẏ)], if v̇ 	= 0

α(t), if v̇ = 0

Then (4.2) can be written in the form

viv + a
...
v +bv̈ + f(t)v̇ + dv = 0 (4.3)

with
α(t)

a
≤ f(t)

a
≤ β(t)

a
for a.e. t ∈ I and all v̇ ∈ R.
If v̇ = 0 on every subset of [0, 2π] of positive measure then v =
constant = 0.
Since d 	= 0. Hence x = y.
Suppose on the other hand that v̇(t) 	= 0 on a certain subset of

[0, 2π] of positive measure, then using the arguments of theorem
2.1 we arrive that v = 0 and hence x = y. �
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