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BOUNDEDNESS OF SOLUTIONS OF SOME THIRD

ORDER NON-AUTONOMOUS ORDINARY

DIFFERENTIAL EQUATIONS

D. O. ADAMS, M. O. OMEIKE1, O. T. MEWOMO AND I. O. OLUSOLA

ABSTRACT. We study the behavior of the solutions of the dif-
ferential equation
...
x +(a(t, x, ẋ, ẍ)+m(t, x, ẋ, ẍ))ẍ+b(t)g(x, ẋ)+c(t, x, ẋ, ẍ)h(x) = p(t, x, ẋ, ẍ)

and present sufficient conditions on the functions involved under
which the solutions of the differential equation are bounded.
Some results on the regularity and asymptotic behavior of the
solutions are also obtained.
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1. INTRODUCTION

Here the differential equation
...
x +(a+m)

..
x +b(t)g(x,

.
x) + ch(x) = p(t, x,

.
x,

..
x) (1)

is considered, where a, m, c are continuous functions of t, x,
.
x,

..
x,

the functions b, g, h, and p depend only on the argument displayed
explicitly and the dots denote differentiation with respect to t. It
is mainly assumed that the function b is continuous on R

+ (R+ =
(0,∞)), and the functions a, m, c, g, h and p are continuous for
all values of their respective arguments.
Equation (1) for which (a +m) = f(x,

.
x,

..
x), b(t) = 1 and c = 1

have been studied extensively by several authors. For example, we
refer to the book of Ressig et al [10] as a survey and the papers
[2, 3, 7, 9, 11]. The special case for which (a + m) = f(x,

.
x,

..
x

), b(t) �= 1 and c(t) �= 1 have received little attention due to the
difficulty in constructing suitable scalar function. For example see
[4],[5] and [6], and the references cited therein. However, Zarghamee
and Mehri [14], Mehri and Shadman [13] and Tunç [12] have studied
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particular cases of equation (1) for the boundedness, regularity and
asymptotic behavior of solutions using energy functions.
The motivation for the present work is derived from the papers

of the authors mentioned above. Our aim is to further extend
their results to the more general equation (1) for the boundedness,
regularity and asymptotic behavior of solutions.

2. STATEMENT OF RESULTS

Theorem 1. In our main results we assume the following assump-
tions:
(i) b(t) > 0 and b′(t) > 0 for all t ∈ R

+;
(ii) |a(t, x, y, z)| ≤ α2(t) where α2 ∈ L1(0,∞) and t ∈ R

+;
(iii) m(t, x, y, z) ≥ 0 for all t ∈ R

+ and x, y, z ∈ R;
(iv) yg(x, y) ≥ 0 and ygx(x, y) ≤ 0 for all x, y ∈ R and
lims−→±∞G(x, s) = +∞ where G(x, s) =

∫ s

0
g(x, τ)dτ ;

(v) |c(t, x, y, z)| ≤ γ(t) where γ ∈ L1(0,∞) and t ∈ R
+;

(vi) |h(x)| ≤ k|x| for all x ∈ R
+, k a positive constant;

(vii) |p(t, x, y, z)| ≤ e(t) for all t ∈ R
+ and x, y, z ∈ R;

(viii) There are arbitrary continuous functions αo, α1, β and γ on
R

+ such that α0, α1 and γ are positive and decreasing and β is
positive and increasing on (0,∞);

(ix) α2(t),
e(t)√
b(t)

,
(

α0(t)
α1(t)

) 1
2

,
(

α1(t)b(t)
β(t)

) 1
2

, γ(t)
(

β(t)
α0(t)b(t)

) 1
2 ∈ L1(0,∞),

where L1(0,∞) is a space of Lebesque integrable functions.
Then, for every solution x(t) of the equation (1),

x

√
α0(t)

β(t)
,

.
x

√
α1(t)

β(t)
and

..
x

1√
b(t)

are bounded for all t ∈ R.

Remark 1. It should be noted that for the special case p(t, x, y, z)
≡ 0 in equation (1) the conclusion of Theorem 1 also remains valid.
Remark 2. Consequently, if a(t, x, y, z) = 0 and c(t, x, y, z) ≡ c(t)
then the equation (1) reduces to the non-linear equation of Cemil
Tunç [12] in which the assumptions (i), (iii)-(ix) remain valid.

Proof. Let
.
x= y,

.
y= z, and transform Eq. (1) into the system

.
x= y,

.
y= z, (2)
.
z= −(a(t, x, y, z) +m(t, x, y, z))z − b(t)g(x, y)

−c(t, x, y, z)h(x) + p(t, x, y, z).
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Now, throughout all the main results established here, our main
tool is the continuous differentiable energy functionE = E(t, x, y, z)
defined by:

E :=
α0(t)

β(t)
x2 +

α1(t)

β(t)
y2 +

1

b(t)
z2 + 2G(x, y) (3)

where α0, α1, β and b are positive continuous functions on (0,∞)
for all t ∈ R

+. Since the coefficients α0, α1, β and b in Eq. (3)
are positive and G(x, y) > 0, then it is clear that the function E
defined by Eq. (3) is positive definite.
Let (x, y, z) = (x(t), y(t), z(t)) be an arbitrary solution of the sys-
tem Eq. (2). Differentiating the function E = E(t, x, y, z) given by
Eq. (3) along the solution (x, y, z) of the system of the Eq. (2), it
can easily be followed that

.

E ≡ dE

dt
=

∂E

∂x
y +

∂E

∂y
z +

∂E

∂z

.
z +

∂E

∂t
(4)

=
(α′

0(t)

β(t)
− α0(t)β

′(t)
β2(t)

)
x2 +

(α′
1(t)

β(t)
− α1(t)β

′(t)
β2(t)

)
y2

− b′(t)
b2(t)

z2 − 2a(t, x, y, z)

b(t)
z2 − 2m(t, x, y, z)

b(t)
z2 + 2y

∫ y

0

gx(x, τ)dτ

+
2α0(t)

β(t)
xy +

2α1(t)

β(t)
yz − 2c(t, x, y, z)

b(t)
h(x)z +

2p(t, x, y, z)

b(t)
z. (5)

Clearly, using the assumptions imposed on the functions α0, α1, β,
b and the assumptions (iii)-(iv), show that(α′

0(t)

β(t)
− α0(t)β

′(t)
β2(t)

)
< 0,

(α′
1(t)

β(t)
− α1(t)β

′(t)
β2(t)

)
< 0,− b′(t)

b2(t)
< 0,

−2m(t, x, y, z)

b(t)
≤ 0 and 2y

∫ y

0

gx(x, τ)dτ ≤ 0.

Hence, we now obtain from Eq. (5) that

.

E≤ −2a(t, x, y, z)

b(t)
z2 +

2α0(t)

β(t)
xy +

2α1(t)

β(t)
yz − 2c(t, x, y, z)

b(t)
h(x)z

+
2p(t, x, y, z)

b(t)
z.
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Using the assumptions (ii), (v) - (vii) and in view of the inequality
achieved above, we obtain

.

E ≤ 2α2(t)

b(t)
z2+

2α0(t)

β(t)
|x||y|+2α1(t)

β(t)
|y||z|+2kγ(t)

b(t)
|x||z|+2|e(t)|

b(t)
|z|.
(6)

Considering yg(x, y) ≥ 0 and with the properties of the functions
α0, α1, β, b of the theorem, it is clear from Eq. (3) that

|x| ≤
( β(t)

α0(t)

) 1
2
E

1
2 ,

|y| ≤
( β(t)

α1(t)

) 1
2

E
1
2

and

|z| ≤ b
1
2 (t)E

1
2 ≤ b

1
2 (t)

(1
2
+

E

2

)
.

Therefore, each term of inequality (6) becomes

2α2(t)

b(t)
z2 ≤ 2α2(t)E,

2α0(t)

β(t)
|x||y| ≤ 2

(α0(t)

α1(t)

) 1
2

E,

2α1(t)

β(t)
|y||z| ≤ 2

(α1(t)b(t)

β(t)

) 1
2
E, (7)

2|e(t)|
b(t)

|z| ≤ |e(t)|
b

1
2 (t)

+
|e(t)|
b

1
2 (t)

E,

2kγ(t)

b(t)
|z||x| ≤ 2kγ(t)

( β(t)

α0(t)b(t)

) 1
2
E.

Hence, as a result of what is obtained in inequalities (7), inequality
(6) now implies

.

E≤ 2α2(t)E + 2
(α0(t)

α1(t)

) 1
2
E + 2

(α1(t)b(t)

β(t)

) 1
2
E +

|e(t)|
b

1
2 (t)

+
|e(t)|
b

1
2 (t)

E

+2kγ(t)
( β(t)

α0(t)b(t)

) 1
2
E. (8)

We re-write inequality (8) as

.

E≤ |e(t)|
b

1
2 (t)

+ Φ(t)E(t), (9)
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where

Φ(t) = 2
[
α2(t)+

(α0(t)

α1(t)

) 1
2
+
(α1(t)b(t)

β(t)

) 1
2
+

|e(t)|
2b

1
2 (t)

+kγ(t)
( β(t)

α0(t)b(t)

) 1
2
]
.

(10)
Integrating inequality (9) from 0 to t, we have

E(t)−E(0) ≤
∫ t

0

|e(τ)|
b

1
2 (τ)

dτ +

∫ t

0

Φ(τ)E(τ)dτ.

Having assumption (viii) in mind, and using Gronwall’s inequality,
we finally obtain

E(t) ≤ A exp
(∫ t

0

Φ(τ)dτ
)

for some constant A, where A = E(0) +
∫ t

0
|e(τ)|
b
1
2 (τ)

dτ.

Thus, by assumption (ix) of Theorem 1, we have Φ ∈ L1(0,∞),
which implies the boundedness of the function E. Hence, we can

conclude that α0(t)
β(t)

x2, α1(t)
β(t)

y2 and 1
b(t)

z2 are bounded, so this result

guarantees the boundedness of

x
√

α0(t)
β(t)

,
.
x
√

α1(t)
β(t)

,
..
x 1√

b(t)
. This completes our proof.

Theorem 2. The assumptions of Theorem 1 remains valid. Thus:
(x) there exist a positive constant M such that m(t, x, y, z) ≥ M
for all t ∈ R

+ and x, y and z �= 0 ∈ R and b′(t) + 2Mb(t) > 0 for
all t ∈ R;
(xi) there are arbitrary continuous functions αo, α1, β, and γ on
R

+ = (0,∞) such that α0, α1 and γ are positive and decreasing, β
is positive and increasing for all t ∈ R

+, and

e2(t)

b′(t) + 2Mb(t)
,

e(t)√
b(t)

, α2(t),
(α0(t)

α1(t)

) 1
2

,
(α1(t)b(t)

β(t)

) 1
2

,

γ(t)
( β(t)

α1(t)b(t)

) 1
2 ∈ L1(0,∞).

Then, the conclusion of Theorem 1 holds.
Proof. As known, the function E defined in Eq. (3) is positive
definite. Now, subject to the assumptions of Theorem 2, an easy
calculation from Eq. (3) and Eq. (2) show that

.

E ≡ dE

dt
=

(α′
0(t)

β(t)
− α0(t)β

′(t)
β2(t)

)
x2 +

(α′
1(t)

β(t)
− α1(t)β

′(t)
β2(t)

)
y2

− b′(t)
b2(t)

z2 − 2

b(t)
(a(t, x, y, z) +m(t, x, y, z))z2 + 2y

∫ y

0

gx(x, τ)dτ
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+
2α0(t)

β(t)
xy +

2α1(t)

β(t)
yz − 2c(t, x, y, z)

b(t)
h(x)z +

2p(t, x, y, z)

b(t)
z

≤ − 2

b(t)
m(t, x, y, z)z2− b′(t)

b2(t)
z2+

2p(t, x, y, z)

b(t)
z− 2

b(t)
a(t, x, y, z)z2

+
2α0(t)

β(t)
xy +

2α1(t)

β(t)
yz − 2c(t, x, y, z)

b(t)
h(x)z

≤ −2M
1

b(t)
z2 − b′(t)

b2(t)
z2 + 2

|e(t)|
b(t)

|z|+ 2α2(t)

b(t)
z2 + 2

α0(t)

β(t)
|x||y|

+2
α1(t)

β(t)
|y||z|+ 2k

γ(t)

b(t)
|z||x|

= −(b′(t) + 2Mb(t))
z2

b2(t)
+ 2

|e(t)|
b(t)

|z|+ 2α2(t)

b(t)
z2 + 2

α0(t)

β(t)
|x||y|

+2
α1(t)

β(t)
|y||z|+ 2k

γ(t)

b(t)
|z||x|

≤ −(b′(t)+2Mb(t))
( z2

b2(t)
−2

|e(t)||z|
b(t)(b′(t) + 2Mb(t))

+
e2(t)

(b′(t) + 2Mb(t))2

− e2(t)

(b′(t) + 2Mb(t))2

)
+

2α2(t)

b(t)
z2 + 2

α0(t)

β(t)
|x||y|+ 2

α1(t)

β(t)
|y||z|

+2k
γ(t)

b(t)
|z||x|

= −(b′(t) + 2Mb(t))
( |z|
b(t)

− |e(t)|
(b′(t) + 2Mb(t))

)2

+
e2(t)

b′(t) + 2Mb(t)

+2
[
α2(t) +

(α0(t)

α1(t)

) 1
2
+
(α1(t)b(t)

β(t)

) 1
2
+ kγ(t)

( β(t)

α0(t)b(t)

) 1
2
]
E.

This implies that

.

E≤ e2(t)

b′(t) + 2Mb(t)
+
[
Φ(t)− |e(t)|

2b
1
2 (t)

]
E, (11)

where Φ(t) is the same as in Eq. (10). Similarly, as in the proof of
Theorem 1, integrating inequality (11) from 0 to t, and considering
assumption (xi) of Theorem 2 and the application of Gronwall’s
inequality, one can easily deduce the boundedness of the function
E. The proof is now complete.
Remark 3. Theorem 2 improves the second theorem of Mehri and
Shadman [13]. The assumptions

b′(t) + 2Mb(t) > 0 and
e2(t)

b′(t) + 2Mb(t)
∈ L1(0,∞)



BOUNDEDNESS OF SOLUTIONS OF SOME THIRD ORDER. . . 235

of Theorem 2 are less restrictive than that

b′(t) + 2Ma(t)b(t) > 0 and
e2(t)

b′(t) + 2Ma(t)b(t)
∈ L1(0,∞),

where a(t) ≥ 0 established in Mehri and Shadman (Theorem 2,
[13]), and the equation (1) includes the equation considered therein.

The next theorem is concerned with the regularity of solutions of
differential equation (1).
Theorem 3. Let all the conditions of Theorem 2 hold. Then,
every solution of the equation (1) satisfies( |α′

0(t)|
β(t)

) 1
2
x ∈ L2(0,∞) and

( |α′
1(t)|
β(t)

) 1
2 .
x∈ L2(0,∞).

If in addition, we assume

l.u.b
b2(t)

b′(t) + 2Mb(t)
= μ < ∞, t ≥ 0,

then
..
x∈ L2(0,∞).

Proof. However, following the procedure as indicated in Theorem
1 and Theorem 2 above, except for some minor modification, we
obtain as follows:

.

E≤
(α′

0(t)

β(t)
−α0(t)β

′(t)
β2(t)

)
x2+

(α′
1(t)

β(t)
−α1(t)β

′(t)
β2(t)

)
y2− b′(t)

b2(t)
z2−2M

b(t)
z2

+
|e(t)|√
b(t)

+ 2
[
α2(t) +

(α0(t)

α1(t)

) 1
2
+
(α1(t)b(t)

β(t)

) 1
2
+

|e(t)|
2b

1
2 (t)

+kγ(t)
( β(t)

α0(t)b(t)

) 1
2
]
E

=
(α′

0(t)

β(t)
− α0(t)β

′(t)
β2(t)

)
x2 +

(α′
1(t)

β(t)
− α1(t)β

′(t)
β2(t)

)
y2 − b′(t)

b2(t)
z2

−2M

b(t)
z2 +

|e(t)|√
b(t)

+ Φ(t)E(t),

where Φ(t) is given by the Eq. (10).

Hence, it follows that(α0(t)β
′(t)

β2(t)
− α′

0(t)

β(t)

)
x2+

(α1(t)β
′(t)

β2(t)
−α′

1(t)

β(t)

)
y2+

b′(t) + 2Mb(t)

b2(t)
z2
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≤ − .

E +
|e(t)|√
b(t)

+ Φ(t)E(t).

(12)
Integrating both sides of inequality (12) from 0 to t, we obtain∫ t

0

[(α0(τ)β
′(τ)

β2(τ)
− α′

0(τ)

β(τ)

)
x2 +

(α1(τ)β
′(τ)

β2(τ)
− α′

1(τ)

β(τ)

)
y2

+
b′(τ) + 2Mb(τ)

b2(τ)
z2
]
dτ

≤ E(0)− E(t) +

∫ t

0

|e(τ)|√
b(τ)

dτ + k1

∫ t

0

Φ(τ)dτ,

where it is assumed that E(t) ≤ k1, t > 0. In view of the assump-
tions of Theorem 3, and the boundedness of the function E(t), we
can easily conclude that∫ t

0

|α′
0(τ)|
β(τ)

x2dτ < ∞,

∫ t

0

|α′
1(τ)|
β(τ)

y2dτ < ∞ and

∫ t

0

z2dτ < ∞, t ≥ 0.

The proof of Theorem 3 is now complete.
Theorem 4. Let all the hypothesis of Theorem 3 be satisfied
except
m(t, x, y, z) ≥ M , and besides, we assume that b(t), a(t, x, y, z),
c(t, x, y, z), p(t, x, y, z) are bounded for all t ≥ 0 and m(t, x, y, z) ≤
M2 for all t ∈ R

+ and x, y and z �= 0 ∈ R, where M2 is a positive
constant. Then the solutions of the equation (1) for which

..
x is

bounded, satisfy
lim

t−→∞
..
x (t) = 0.

Proof. It can easily be written from Eq. (2) that

|z .
z | ≤ z2|a(t, x, y, z) +m(t, x, y, z)|+ |z|b(t)|g(x, y)|

+|z||c(t, x, y, z)||h(x)|+ |z||p(t, x, y, z)|.
Since the function g is continuous and x and y are bounded on
R, the function g is bounded on R, and by using the assumptions
(vii), m(t, x, y, z) ≤ M2 of Theorem 4 and the boundedness of the
function g, say |g(x, y)| ≤ k2 where k2 is a positive constant which
we now assume, we have

|z .
z | ≤ (α2(t) +M2)b(t)

z2

b(t)
+ k2b

3
2 (t)

|z|√
b(t)

+kγ(t)
√

b(t)

√
β(t)

α0(t)

|z|√
b(t)

|x|√
β(t)/α0(t)

+ |e(t)|
√
b(t)

|z|√
b(t)

.
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Hence, the expression on the right is bounded. Thus

lim
t−→∞

z(t) = 0,

(see Bihari [1]).

Similar results could be obtained for x and y by imposing more
restrictive conditions on the differential equation (1). For exam-

ple, if we take l.u.b. β(t)√
α′
1(t)

≤ c1, then, by Theorem 3, we have

y ∈ L2(0,∞).

Since
.
y= z, then

.
y is also bounded. Hence

lim
t−→∞

y(t) = 0,

(see argument in Lefschetz [8], p.289 - 291, Mehri and Shadman
[13]).

Example: Here we consider suitable application for the first the-
orem in the form
...
x +

(
− (1+ t2+ x2 + (

.
x)2 + (

..
x)2)−1 + (2+ t2 + x2 + (

.
x)2+ (

..
x)2)

)
..
x

+(t2+1)3
.
x +

1

(t2 + 1)7
x = e(t).

The equivalent system form become
.
x= y,
.
y= z,
.
z=

(
(1 + t2 + x2 + y2 + z2)−1 − (2 + t2 + x2 + y2 + z2)

)
z

−(t2 + 1)3y − 1

(t2 + 1)7
x+ e(t).

Now, let

α2(t) =
1

t2 + 1
, α0(t) =

1

(t2 + 1)5
, α1(t) =

1

(t2 + 1)3
,

β(t) = (t2 + 1)6, γ(t) =
1

(t2 + 1)7
.

Clearly, α0(t), α1(t) and γ are positive and decreasing functions,
β(t) is positive and increasing functions on (0,∞), and(α0(t)

α1(t)

) 1
2

=
1

t2 + 1
∈ L1(0,∞),
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(α1(t)b(t)

β(t)

) 1
2

=
1

(t2 + 1)3
∈ L1(0,∞),

γ(t)
( β(t)

α0(t)b(t)

) 1
2
=

1

(t2 + 1)3
∈ L1(0,∞).

Now, if we choose e(t) such that e(t)√
b(t)

= e(t)

(t2+1)
3
2
∈ L1(0,∞), then

for every solution x(t) of equation (1), one can reach the following
conclusion:

x(t)

(t2 + 1)
11
2

,

.
x (t)

(t2 + 1)
9
2

and

..
x (t)

(t2 + 1)
3
2

are bounded for all t ≥ 0.

In view of the above choice, we have that

E(t, x, y, z) =
α0(t)

β(t)
x2 +

α1(t)

β(t)
y2 +

1

b(t)
z2 + 2

∫ y

0

φ(τ)dτ

=
1

(t2 + 1)11
x2 +

1

(t2 + 1)9
y2 +

1

(t2 + 1)3
z2 + 2

∫ y

0

τdτ

=
1

(t2 + 1)11
x2 +

1

(t2 + 1)9
y2 +

1

(t2 + 1)3
z2 + y2.

It is clear that the function E = E(t, x, y, z) is a positive definite
function.
Now, differentiating the function E along the above system, we
obtain (following Eq. (4)),

.

E= − 22t

(t2 + 1)12
x2 +

2

(t2 + 1)11
x

.
x − 18t

(t2 + 1)10
y2 +

2

(t2 + 1)9
y

.
y

− 6t

(t2 + 1)4
z2 +

2

(t2 + 1)3
z

.
z +2y

.
y

= − 22t

(t2 + 1)12
x2+

2

(t2 + 1)11
xy− 18t

(t2 + 1)10
y2+

2

(t2 + 1)9
yz− 6t

(t2 + 1)4
z2

+
2(1 + t2 + x2 + y2 + z2)−1

(t2 + 1)3
z2 − 2(2 + t2 + x2 + y2 + z2)

(t2 + 1)3
z2

− 2

(t2 + 1)10
xz +

2e(t)

(t2 + 1)3
z.

Based on assumptions imposed on α2(t), α0(t), α1(t), β(t), in The-
orem 1 and the assumptions (i) and (iii), we now obtain

.

E ≤ 2(1 + t2 + x2 + y2 + z2)−1

(t2 + 1)3
z2 +

2

(t2 + 1)11
xy +

2

(t2 + 1)9
yz

− 2

(t2 + 1)10
xz +

2e(t)

(t2 + 1)3
z
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≤ 2

(t2 + 1)4
z2 +

2

(t2 + 1)11
|x||y|+ 2

(t2 + 1)9
|y||z|

+
2

(t2 + 1)10
|x||z|+ 2e(t)

(t2 + 1)3
|z|.

Now, from the scalar function employed for the equation in example
1 and the results obtained in Eq. (6), we can deduce that

.

E ≤ 2
[ 2

t2 + 1
+

e(t)

2(t2 + 1)
3
2

+
2

(t2 + 1)3

]
E(t) +

e(t)

(t2 + 1)
3
2

= Φ(t)E(t) +
e(t)

(t2 + 1)
3
2

,

where

Φ(t) = 2
[ 2

t2 + 1
+

e(t)

2(t2 + 1)
3
2

+
2

(t2 + 1)3

]
.

Integrating the above from 0 to t, we obtain

E(t)−E(0) ≤
∫ t

0

E(τ)Φ(τ)dτ +

∫ t

0

e(τ)

(τ 2 + 1)
3
2

dτ.

Applying the Gronwall’s inequality, we finally find

E(t) ≤ B exp
(∫ t

0

Φ(τ)dτ
)

where B = E(0) +
∫ t

0
e(τ)

(τ2+1)
3
2
dτ. Thus, Φ ∈ L1(0,∞) implies the

boundedness of E, and hence the boundedness of

x√
β(t)/α0(t)

,

.
x√

β(t)/α1(t)
and

..
x√
b(t)

.

This shows the useful application of Theorem 1.
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