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STRONG CONVERGENCE OF A MODIFIED

AVERAGING ITERATIVE ALGORITHM FOR

ASYMPTOTICALLY NONEXPANSIVE MAPS

M. O. OSILIKE1, E. E. CHIMA2, P. U. NWOKORO AND F. U. OGBUISI

ABSTRACT. Let C be a nonempty closed convex subset of a
real Hilbert space and let T : C → C be an asymptotically
nonexpansive mapping with F (T ) = {x ∈ C : Tx = x} �= ∅. Let
{αn}∞n=1, and {tn}∞n=1 be real sequences in (0, 1). Let {xn}∞n=1

be the sequence generated from an arbitrary x1 ∈ C by{
νn := PC

(
(1− tn)xn

)
, n ≥ 1

xn+1 := (1− αn)νn + αnT
nνn, n ≥ 1,

where PC : H → C is the metric projection. Under some appro-
priate mild conditions on {αn}∞n=1 and {tn}∞n=1, we prove that
{xn}∞n=1 converges strongly to a fixed point of T . No compact-
ness assumption is imposed on T or C and no further require-
ment is imposed on F (T ).
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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈., .〉 and induced
norm ||.||. Let C be a nonempty closed convex subset of H. A
mapping T : C → C is said to be L-Lipschitzian if there exists
L ≥ 0 such that

||Tx− Ty|| ≤ L||x− y||, ∀x, y ∈ C. (1.1)

T is said to be a contraction if L ∈ [0, 1) and T is said to be
nonexpansive if L = 1. T is said to be asymptotically nonexpansive
(see for example [1]) if there exists a sequence {kn}∞n=1 ⊆ [1,∞)
with lim

n→∞
kn = 1 such that

||T nx− T ny|| ≤ kn||x− y||, ∀x, y ∈ C. (1.2)
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It is well known (see for example [1]) that the class of nonexpansive
mappings is a proper subclass of the class of asymptotically nonex-
pansive mappings. T is said to be uniformly L-Lipschitzian if there
exists L ≥ 0 such that

||T nx− T ny|| ≤ L||x− y||, ∀x, y ∈ C. (1.3)

T is said to be demiclosed at p if whenever {xn}∞n=1 is a sequence
in C which converges weakly to x∗ ∈ C and {Txn}∞n=1 converges
strongly to p, then Tx∗ = p. It is well known that if T : C → C is
asymptotically nonexpansive, then T is uniformly L-Lipschitzian;
(I − T ) is demiclosed at 0, and F (T ) is closed and convex (see
for example [2-3]). The modified Mann iteration scheme {xn}∞n=1

generated from an arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1, (1.4)

where the control sequence {αn}∞n=1 is a real sequence in [0, 1] satis-
fying some appropriate conditions has been used by several authors
for the approximation of fixed points of asymptotically nonexpan-
sive maps. (see for example [4-9]). The iteration algorithm (1.4)
is a modification of the well known Mann iterative algorithm (see
[10]) generated from an arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.5)

where the control sequence {αn}∞n=1 is a real sequence in [0, 1] sat-
isfying some appropriate conditions.
In real Hilbert spaces, it is known (see for example [8]) that if

C is a nonempty closed convex subset of a real Hilbert space H ,
and T : C → C is an asymptotically nonexpansive mapping with
sequence {kn}∞n=1 ⊆ [1,∞),

∑∞
n=1(kn − 1) < ∞, and a nonempty

fixed point set F (T ), then the modified iteration sequence {xn}
generated by (1.4) is an approximate fixed point sequence (i.e.,
||xn − Txn|| → 0 as n → ∞) if αn ∈ [a, b] ⊆ (0, 1), ∀n ≥ 1. This
together with the demiclosedness of (I − T ) at 0 yield that {xn}
converges weakly to a fixed point of T .
To obtain strong convergence of the modified Mann algorithm to a

fixed point of an asymptotically nonexpansive mapping, additional
conditions are usually required on T and or the subset C (see for
example [6-9]). Even for nonexpansive maps, additional conditions
are required on T or C to obtain strong convergence using the
Mann algorithm (1.5). In [11], Genel and Lindenstraus provided an
example of a nonexpansive mapping defined on a bounded closed
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convex subset of a Hilbert space for which the Mann iteration does
not converge to a fixed point of T .
Recently Yao, Zhou and Liou [12] (see also [13-14]) studied a

modified Mann iteration algorithm {xn} generated from an arbi-
trary x1 ∈ H by

{
νn = (1− tn)xn

xn+1 = (1− αn)νn + αnTνn.
(1.6)

where {tn} and {αn} are real sequences in (0, 1) satisfying some
appropriate conditions. They proved strong convergence of the
modified algorithm to a fixed point of a nonexpansive mapping
T : H → H when F (T ) �= ∅.
Clearly, the modified Mann iteration algorithm reduces to the

normal Mann iteration algorithm when tn ≡ 0.
It is our purpose in this paper to modify the algorithm (1.6) and

prove that the modified algorithm converges strongly to a fixed
point of asymptotically nonexpansive mapping T : C → C, where
C is a nonempty closed convex subset of a real Hilbert space H and
F (T ) �= ∅.

2. PRELIMINARY

In what follows, we shall need the following results.

Lemma 2.1 [15] Let {an}∞n=1 be a sequence of non negative real
numbers such that

an+1 ≤ (1− λn)an + λnγn + σn, n ≥ 1,

where {λn} ⊆ (0, 1), {γn} ⊆ �, and {σn} is a sequence of nonnega-
tive real numbers such that

(i) λn ∈ [0, 1],Σ∞
n=0λn = ∞, or equivalently Π∞

n=0(1− λn) = 0,
(ii) lim sup

n→∞
γn ≤ 0, and

(iii) Σ∞
n=0σn < ∞.

Then limn→∞ an = 0.
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It is also well known that in real Hilbert spaces H , we have the
following (see for example [16]).

(i) ‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉, ∀x, y ∈ H, (2.2)

(ii) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2
− α(1− α)‖x− y‖2, (2.3)

∀x, y ∈ H and α ∈ [0, 1],

(iii) if {xn}∞n=1 is a sequence in H which converges weakly to z,

then,

lim sup
n→∞

||xn − z||2 = lim sup
n→∞

||xn − y||2 + ||z − y||2, ∀y ∈ H. (2.4)

Let C be a closed convex subset of a real Hilbert space H . Let
PC : H → C denote the metric projection (the proximity map)
which assigns to each point x ∈ H the unique nearest point in C,
denoted by PC(x). It is well known that

z = PC(x) if and only if 〈x− z, z − y〉 ≥ 0, ∀y ∈ C, (2.5)

and that PC is nonexpansive.

3. MAIN RESULTS

We now introduce the following iterative algorithm analogous to
the one studied in [12]:

Modified Averaging Mann Algorithm. Let C be a nonempty
closed convex subset of a real Hilbert space and let T : C → C be a
giving mapping. For arbitrary x1 ∈ C our iteration sequence {xn}
is given by {

νn = PC

(
(1− tn)xn

)
xn+1 = (1− αn)νn + αnT

nνn.
(3.1)

where {tn} and {αn} are real sequences in (0, 1) satisfying some
appropriate conditions that will be made precise in our strong con-
vergence theorem.

We now prove the following convergence theorem:

Theorem 3.1 Let C be a nonempty closed convex subset of
a real Hilbert space and let T : C → C be an asymptotically
nonexpansive mapping with sequence {kn}∞n=1 ⊆ [1,∞) such that∑∞

n=1(kn − 1) < ∞. Let F (T ) �= ∅ and let {tn}∞n=1 and {αn}∞n=1 be
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sequences in (0, 1) satisfying the conditions:
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;

(c3) lim
n→∞

1
tn
(kn − 1) = 0;

(c4) αn ∈ [a, b] ∀n ≥ 1 and for some a, b ∈ (0, 1).
Then the modified averaging iteration sequence {xn}∞n=1 generated
from an arbitrary x1 ∈ C by (3.1) converges strongly to a fixed
point of T .

Proof. Let p ∈ F (T ) be arbitrary. Then using (2.3) we obtain

||xn+1 − p||2 = ||(1− αn)(νn − p) + αn(T
nνn − p)||2

= (1− αn)||νn − p||2 + αn||T nνn − p||2
−αn(1− αn)||νn − T nνn||2

≤
[
1 + αn(k

2
n − 1)

]
||νn − p||2

−αn(1− αn)||νn − T nνn)||2 (3.2)

≤
[
1 + αn(k

2
n − 1)

]
||νn − p||2. (3.3)

It follows from (3.3) that

||xn+1 − p|| ≤
[
1 + αn(k

2
n − 1)

]
||νn − p||

≤
[
1 + αn(k

2
n − 1)

]
||(1− tn)xn − p||

≤
[
1 + αn(k

2
n − 1)

][
(1− tn)||xn − p||+ tn||p||

]
≤

[
1 + αn(k

2
n − 1)

]
max

{
||xn − p||, ||p||

}
...

≤
n∏

j=1

[
1 + αj(k

2
j − 1)

]
max

{
||x1 − p||, ||p||

}
. (3.4)

Since
∑∞

n=1(kn − 1) < ∞ if and only if
∑∞

n=1(k
2
n − 1) < ∞, it

follows from (3.4) that {xn}∞n=1 is bounded. Hence {νn}∞n=1 is also
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bounded. Furthermore, it follows from (2.2) that

||xn − xn+1||2 = ||xn − νn + νn − xn+1||2
≤ ||νn − xn+1||2 + 2〈xn − νn, xn − xn+1〉
≤ ||νn − xn+1||2 + 2||xn − νn||||xn − xn+1||
≤ ||νn − xn+1||2 + 2tn||xn||||xn − xn+1||. (3.5)

From (3.1) and (3.5) we obtain

||νn − T nνn||2 =
1

α2
n

||νn − xn+1||2

≥ 1

α2
n

[
||xn − xn+1||2 − 2tn||xn||||xn − xn+1||

]
. (3.6)

Since {νn}∞n=1 is bounded, then

||νn − p||2 ≤ D, ∀n ≥ 1 and for some D > 0,

and hence using condition (c4) and (3.6) in (3.2) we obtain

||xn+1 − p||2 ≤
[
1 + αn(k

2
n − 1)

]
||νn − p||2

−αn(1− αn)||νn − T nνn||2

≤ ||νn − p||2 − (1− αn)

αn

[
||xn − xn+1||2

−2tn||xn||||xn − xn+1||
]
+ αn(k

2
n − 1)D

≤ ||(1− tn)xn − p||2 − (1− b)

b

[
||xn − xn+1||2

−2tn||xn||||xn − xn+1||
]
+ αn(k

2
n − 1)D

= ||xn − p||2 − 2tn〈xn, xn − p〉+ t2n||xn||2

−k
[
||xn − xn+1||2 − 2tn||xn||||xn − xn+1||

]
+αn(k

2
n − 1)D, ( where k :=

(1− b)

b
> 0)

= ||xn − p||2 − k||xn − xn+1||2 + tn

[
tn||xn||2

+2k||xn||||xn − xn+1|| − 2〈xn, xn − p〉
]

+αn(k
2
n − 1)D. (3.7)

Since {xn}∞n=1 is bounded, we have that there exists M > 0 such
that

tn||xn||2+2k||xn||||xn−xn+1||−2〈xn, xn−p〉 ≤ M, ∀n ≥ 1. (3.8)
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From (3.7) and (3.8) we obtain

||xn+1−p||2−||xn−p||2+k||xn−xn+1||2 ≤ Mtn+αn(k
2
n−1)D. (3.9)

To complete the proof, we now consider the following two cases:
Case 1. Suppose {||xn − p||}∞n=1 is a monotone sequence, then
we may assume that {||xn − p||} is monotone decreasing. Then
lim
n→∞

||xn − p|| exists and it follows from (3.9), conditions (c1) and

lim
n→∞

kn = 1 that

lim
n→∞

||xn − xn+1|| = 0. (3.10)

Furthermore,

||νn − xn|| ≤ tn||xn|| → 0 as n → ∞, and

||νn − xn+1|| ≤ ||νn − xn||+ ||xn − xn+1|| → 0 as n → ∞.

Hence

||νn − T nνn|| ≤ 1

αn

||νn − xn+1|| ≤ 1

a
||νn − xn+1|| → 0 as n → ∞,

and

||xn − T nxn|| ≤ ||xn − νn||+ ||νn − T nνn||
+||T nνn − T nxn||

≤ (1 + kn)||xn − νn||
+||νn − T nνn|| → 0 as n → ∞.

Observe also that since T is uniformly L-Lipschitzian we obtain

||νn − Tνn|| ≤ ||νn − T nνn||+ ||T nνn − Tνn||
≤ ||νn − T nνn||+ L||T n−1νn − νn||
≤ ||νn − T nνn||+ L||T n−1νn − T n−1νn−1||

+L||T n−1νn−1 − νn−1||+ L||νn−1 − νn||
≤ ||νn − T nνn||+ L||T n−1νn−1 − νn−1||

+L(1 + L)||νn − νn−1||
≤ ||νn − T nνn||+ L||T n−1νn−1 − νn−1||

+L(1 + L)
[
||νn − xn||+ ||xn − xn−1||

+||xn−1 − νn−1||
]
→ 0 as n → ∞. (3.11)
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Furthermore,

||xn − Txn|| ≤ ||xn − T nxn||+ ||T nxn − Txn||
≤ ||xn − T nxn||+ L||T n−1xn − xn||
≤ ||xn − T nxn||+ L||T n−1xn − T n−1xn−1||

+L||T n−1xn−1 − xn−1||+ L||xn−1 − xn||
≤ ||xn − T nxn||+ L||T n−1xn−1 − xn−1||

+L(1 + L)||xn − xn−1|| → 0 as n → ∞. (3.12)

Since lim
n→∞

||xn−Txn|| = lim
n→∞

||νn−Tνn|| = lim
n→∞

||νn−xn|| = 0, then

the demiclosedness property of (I − T ), (2.4) and usual standard
argument yield that {xn}∞n=1 and {νn}∞n=1 converge weakly to some
x∗ ∈ F (T ).
Since ||νn−x∗||2 ≤ D2, ∀n ≥ 1, and for some D2 > 0, then using

(3.3) we obtain

||xn+1 − x∗||2 ≤ ||νn − x∗||2 + αn(k
2
n − 1)D2

≤ ||(1− tn)(xn − x∗)− tnx
∗||2 + αn(k

2
n − 1)D2

≤ (1− tn)
2||xn − x∗||2 − 2tn(1− tn)〈xn − x∗, x∗〉

+t2n||x∗||2 + αn(k
2
n − 1)D2

≤ (1− tn)||xn − x∗||2 − 2tn(1− tn)〈xn − x∗, x∗〉
+t2n||x∗||2 + αn(k

2
n − 1)D2. (3.13)

Thus

||xn+1 − x∗||2 ≤ (1− tn)||xn − x∗||2 + tnγn + σn, ∀n ≥ 1,

where γn := −2(1− tn)〈xn−x∗, x∗〉+ tn||x∗||2 → 0 as n → ∞, and
σn = αn(k

2
n−1)D2, with

∑∞
n=1 σn < ∞. It now follows from Lemma

2.1 that {xn}∞n=1 converges strongly to x∗. Consequently, {νn}∞n=1

converges strongly to x∗.
Case 2. Suppose {||xn − p||}∞n=1 is not a monotone decreasing
sequence, then set Γn := ||xn−p||2 and let τ : N → N be a mapping
defined for all n ≥ N0 for some sufficiently large N0 by

τ(n) := max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.
Then τ is a non-decreasing sequence such that τ(n) → ∞ as n →
∞ and Γτ(n) ≤ Γτ(n)+1, for n ≥ N0. Using (c1) and (c2) in (3.9)
we obtain

||xτ(n)+1−xτ(n)||2 ≤ 1

k

[
Mtτ(n)+ατ(n)(k

2
τ(n)−1)D

]
→ 0 as n → ∞.

(3.14)
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Following the same argument as in Case 1, we obtain

||ντ(n)−Tντ(n)|| → 0 as n → ∞ and ||xτ(n)−Txτ(n)|| → 0 as n → ∞.

As in Case 1 we also obtain that {xτ(n)} and {ντ(n)} converge weakly
to some x∗ in F (T ). Furthermore, for all n ≥ N0, we obtain from
(3.13) that

0 ≤ ||xτ(n)+1 − x∗||2 − ||xτ(n) − x∗||2

≤ tτ(n)

[
−2(1− tτ(n))〈xτ(n) − x∗, x∗〉+ tτ(n)||x∗||2

+D2ατ(n)

(k2
τ(n) − 1)

tτ(n)
− ||xτ(n) − x∗||2

]
(3.15)

It follows from (3.15) that

||xτ(n) − x∗||2 ≤ 2(1− tτ(n))〈x∗ − xτ(n), x
∗〉+ tτ(n)||x∗||2

+D2ατ(n)

(k2
τ(n) − 1)

tτ(n)
→ 0 as n → ∞.

Thus
lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1.

Furthermore, for n ≥ N0, we have Γn ≤ Γτ(n)+1 if n �= τ(n) (i.e
τ(n) < n), because Γj > Γj+1 for τ(n) + 1 ≤ j ≤ n. It then follows
that for all n ≥ N0 we have

0 ≤ Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

This implies lim
n→∞

Γn = 0, and hence {xn}∞n=1 converges strongly to

x∗ ∈ F (T ). �

Corollary 3.1 Let C be a nonempty closed convex subset of a real
Hilbert space H with 0 ∈ C. Let T : C → C be an asymptotically
nonexpansive mapping with sequence {kn}∞n=1 ⊆ [1,∞) such that∑∞

n=1(kn − 1) < ∞. Let F (T ) �= ∅ and Let {tn}∞n=1 and {αn}∞n=1

be sequences in (0, 1) satisfying the conditions:
(c1) lim

n→∞
tn = 0;

(c2)
∑∞

n=1 tn = ∞;
(c3) lim

n→∞
1
tn
(kn − 1) = 0;

(c4) αn ∈ [a, b] ∀n ≥ 1 and for some a, b ∈ (0, 1).
Then the modified averaging iteration sequence {xn}∞n=1 generated
from an arbitrary x1 ∈ C by{

νn = (1− tn)xn

xn+1 = (1− αn)νn + αnT
nνn.



250 M. O. OSILIKE, E. E. CHIMA, P. U. NWOKORO AND F. U. OGBUISI

converges strongly to a fixed point of T .

Remark 3.1 Prototype for our real sequences {tn}∞n=1 and {αn}∞n=1

are:

tn :=

√
kn − 1 +

1

n+ 1
, n ≥ 1; αn :=

n

2(n+ 1)
⊆

[1
4
,
1

2

]
, n ≥ 1.
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