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HYPONORMALITY-PRESERVING FINITE RANK

PERTURBATIONS OF TERRACED MATRICES

H. C. RHALY JR.

ABSTRACT. Suppose M is a terraced matrix that is a hyponor-
mal bounded linear operator on �2. Here we determine con-
ditions under which there exists a finite rank terraced matrix
F �= 0 such that M + F is also hyponormal. Two different ap-
proaches are employed. One approach uses Sylvester’s criterion,
and the other uses the recently defined concept of supraposi-
normality. Examples include generalized Cesàro operators of
order one and terraced matrices associated with some logistic
sequences.
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1. INTRODUCTION

A lower triangular matrix M , acting as a bounded operator on �2,
is terraced if its row segments are constant (see [2], [3]). Recall
that M is hyponormal if it satisfies

[M∗,M ] :≡ M∗M −MM∗ ≥ 0.
The best-known hyponormal terraced matrix is the Cesàro matrix
(see [1]), whose row segments are given by the sequence

{ 1
n+1

: n ≥ 0}.
Let M(a) denote the terraced matrix whose row segments are

given by the positive-termed sequence a :≡ {an}∞n=0. The following
example is what motivated this paper.
Example 1.1: (Modified Cesàro matrix). Consider the terraced
matrix M(b) with b :≡ {bn} given by bn = 1

n+1
for all n ≥ 1 and

b0 > 0. In [5] it was demonstrated that M(b) is not hyponormal
for b0 �= 1.
It seems natural to ask whether this fragile behavior is typical

of hyponormal terraced matrices, and that has led to the following
question. As usual, B(H) denotes the set of all bounded linear
operators on the Hilbert space H .
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Question 1.2: Given a hyponormal terraced matrix M ∈ B(�2),
when is it possible to identify a finite rank operator F �= 0 such
that M + F is also a hyponormal terraced matrix?
In answering this question, two distinct approaches will be em-

ployed. The approach in Section 2 involves determinants, while
that of Section 3 avoids them.

2. USING SYLVESTER’S CRITERION

Suppose that a :≡ {an} is a sequence of positive numbers such
that the terraced matrix M :≡ M(a) ∈ B(�2) is hyponormal, so
[M∗,M ] is a positive operator; by Sylvester’s criterion, all the lead-
ing principal minors of [M∗,M ] must be positive. The entries of
[M∗,M ] :≡ [Δmn] are given by

Δmn =

⎧⎨
⎩

∑∞
k=m a2k − (n+ 1)aman if m > n;∑∞
k=n a

2
k − (n + 1)a2n if m = n;∑∞

k=n a
2
k − (m+ 1)aman if m < n.

If U denotes the unilateral shift and n is a fixed positive integer,
then since M is hyponormal, (U∗)n[M∗,M ]Un is also a positive
operator, and again by Sylvester’s criterion, all the leading principal
minors of (U∗)n[M∗,M ]Un must be positive.
Proposition 2.1: Assume that the entries an of the terraced ma-
trix M :≡ M(a) ∈ B(�2) satisfy 2a1 �= 3a2. If M is hyponormal
and M(b) denotes the terraced matrix associated with the sequence
{bn} satisfying b0 = 3a2 and b1 =

3
2
a2, while bn = an for all n ≥ 2,

then M(b) is hyponormal.
Proof: First we note that∑∞

k=j a
2
k − (j + 1)a2j ≥ 0

for each j, since these are the diagonal elements of the self-commuta-
tor of the hyponormal operator M(a). Let Sn(b) denote the nth

finite section of [M∗(b),M(b)], where n = 0, 1, 2, .... It must be
shown that det(Sn(b)) ≥ 0 for all n ≥ 0. It is clear that

det(S0(b)) =
∑∞

k=0 b
2
k − b20 =

∑∞
k=1 b

2
k > 0.

For S1(b), we subtract the second column from the first and obtain
an upper triangular matrix with the same determinant as S1(b), so

det(S1(b)) = b0b1(
∑∞

k=1 b
2
k − 2b21) =

9
2a

2
2(
∑∞

k=2 a
2
k − 9

4a
2
2) >

9
2a

2
2(
∑∞

k=2 a
2
k − 3a22) ≥ 0.

For n ≥ 2, we subtract the second column of Sn(b) from the first
column, then the third column from the second, and we obtain
S

′
n(b). Observe that S

′
2(b) is an upper triangular matrix, so

det(S2(b)) = det(S
′
2(b)) = b0b1(b1)(2b2 − b1)(

∑∞
k=2 b

2
k − 3b22) =
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27
8 a

4
2(
∑∞

k=2 a
2
k − 3a22) ≥ 0.

Before proceeding, we illustrate the situation for n = 3 with

S3(b) =

⎛
⎜⎜⎝

∑∞
k=0 b

2
k − b20

∑∞
k=1 b

2
k − b0b1

∑∞
k=2 b

2
k − b0b2

∑∞
k=3 b

2
k − b0b3∑∞

k=1 b
2
k − b0b1

∑∞
k=1 b

2
k − 2b21

∑∞
k=2 b

2
k − 2b1b2

∑∞
k=3 b

2
k − 2b1b3∑∞

k=2 b
2
k − b0b2

∑∞
k=2 b

2
k − 2b1b2

∑∞
k=2 b

2
k − 3b22

∑∞
k=3 b

2
k − 3b2b3∑∞

k=3 b
2
k − b0b3

∑∞
k=3 b

2
k − 2b1b3

∑∞
k=3 b

2
k − 3b2b3

∑∞
k=3 b

2
k − 4b23

⎞
⎟⎟⎠

and the corresponding transformed matrix with the same determi-
nant,

S
′
3(b) =

⎛
⎜⎜⎝

b0b1 ∗ ∗ ∗
0 b1(2b2 − b1) ∗ ∗
0 0

∑∞
k=2 b

2
k − 3b22

∑∞
k=3 b

2
k − 3b2b3

0 0
∑∞

k=3 b
2
k − 3b2b3

∑∞
k=3 b

2
k − 4b23

⎞
⎟⎟⎠ .

For n ≥ 3, the entries below the main diagonal in the first two
columns of S

′
n(b) will all be 0, so

det(Sn(b)) = det(S
′
n(b)) = b0b1[b1(2b2 − b1)]det(Tn−2(b)) =
27
8 a

4
2det(Tn−2(b))

where Tn(b) is the nth(n = 0, 1, 2, ....) finite section of
(U∗)2[M(b)∗,M(b)]U2 = (U∗)2[M(a)∗,M(a)]U2.

Since det(Tn(b)) ≥ 0 for all n, it follows that det(Sn(b)) ≥ 0 for all
n ≥ 3.
Lemma 2.2: Assume that the entries an of the terraced matrix
M :≡ M(a) ∈ B(�2) satisfy (N+1)aN �= (N+2)aN+1 for some N . If
M is hyponormal and M(b) denotes the terraced matrix associated
with the sequence {bn} satisfying bn = N+2

n+1
aN+1 for n = 0, 1, ..., N

and bn = an for all n ≥ N + 1, then∑∞
k=j b

2
k − (j + 1)b2j ≥ 0 for all j.

Proof: For j ≥ N + 1, we have∑∞
k=j b

2
k − (j + 1)b2j =

∑∞
k=j a

2
k − (j + 1)a2j ≥ 0

since M(a) is hyponormal.
For j = 0 the result is clear. In the case 0 < j ≤ N , we have∑∞
k=j b

2
k − (j + 1)b2j =∑N

k=j(
N+2
k+1

aN+1)
2 +

∑∞
k=N+1 a

2
k − (j + 1)(N+2

j+1
aN+1)

2 =∑∞
k=N+1 a

2
k + {( 1

j+1
)2 + ( 1

j+2
)2 + ... + ( 1

N+1
)2 − 1

j+1
}(N + 2)2a2N+1

≥ ∑∞
k=N+1 a

2
k − (N + 2)a2N+1 ≥ 0,

again because of the hyponormality of M(a).
Theorem 2.3: Assume that the entries an of the terraced matrix
M :≡ M(a) ∈ B(�2) satisfy (N+1)aN �= (N+2)aN+1 for some N . If
M is hyponormal and M(b) denotes the terraced matrix associated
with the sequence {bn} satisfying bn = N+2

n+1
aN+1 for n = 0, 1, ..., N

and bn = an for all n ≥ N + 1, then M(b) is hyponormal.
Proof: The proof is modeled on that of Proposition 2.1, which
handled the case N = 1. First we note that Lemma 2.2 guarantees
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that the diagonal elements of [M(b)∗,M(b)] are all positive. For
1 ≤ n ≤ N , S ′

n(b) is obtained from Sn(b) by successively subtracting
the (k+1)st column from the kth column for each k ∈ {1, ..., n}. For
n ≥ N+1, S ′

n(b) is obtained from Sn(b) by successively subtracting
the (k+1)st column from the kth column for each k ∈ {1, ..., N+1}.
Note that when 1 ≤ n ≤ N+1, S ′

n(b) is upper triangular; when n ≥
N+2, the entries below the main diagonal in the first N+1 columns
of S ′

n(b) will all be 0. Note also that det(Sn(b)) = det(S ′
n(b)) for

all n ≥ 1. Now we are ready to show that det(Sn(b)) ≥ 0 for all n.
Once again, the case n = 0 is clear. For 1 ≤ n ≤ N , we have
det(Sn(b)) = {∏n−1

j=0
1

(j+1)2(j+2)}[(N + 2)aN+1]
2n[

∑∞
j=n b

2
j − (n+ 1)b2n]

≥ 0.

For n ≥ N + 1, we have
det(Sn(b)) = {∏N

j=0
1

(j+1)2(j+2)
}[(N + 2)aN+1]

2(N+1)det(Tn−(N+1)(b))

≥ 0,

where Tn(b) is the nth(n = 0, 1, 2, ....) finite section of the positive
operator

(U∗)N+1[M(b)∗,M(b)]UN+1 = (U∗)N+1[M(a)∗,M(a)]UN+1.
Note that F :≡ M(b)−M(a) �= 0 is clearly a finite rank terraced

matrix. The following corollary provides an answer to the question
posed in the Introduction.
Corollary 2.4: If a :≡ {an} is a strictly decreasing positive se-
quence and M(a) is a hyponormal terraced matrix that is not a
scalar multiple of the Cesàro matrix, then there exists a finite rank
terraced matrix F �= 0 such that M(a) + F is also hyponormal.
For 0 ≤ t ≤ 1, let M(t) denote the terraced matrix that arises

from M(a) when a0 is replaced by ta0+(1− t)(2a1); the rest of the
entries of M(a) are left unchanged.
Theorem 2.5: If M(a) is hyponormal for a :≡ {an} strictly de-
creasing and a0 �= 2a1, then M(t) is hyponormal for all t ∈ [0, 1].
Proof: First we note that M(t) is hyponormal when t = 0 by
Theorem 2.3 and when t = 1 by hypothesis, so we focus our at-
tention on the case 0 < t < 1. Replace a0 in [M(a)∗,M(a)] by
ta0 +(1− t)(2a1) to obtain [M(t)∗,M(t)]. Let Sn(t) denote the n

th

finite section of [M(t)∗,M(t)]. Clearly,
det(S0(t)) =

∑∞
k=1 a

2
k > 0.

For n ≥ 1, we subtract the second column of Sn(t) from the first to
obtain S

′
n(t), and then subtract the second row of S

′
n(t) from the

first to obtain Sn
′′(t). To illustrate what happens next, we consider

S
′′
2 (t) =

⎛
⎝

2ta1(a0 − 2a1) + 2a21 ta1(2a1 − a0) ta2(2a1 − a0)
ta1(2a1 − a0)

∑∞
k=1 a

2
k − 2a21

∑∞
k=2 a

2
k − 2a1a2

ta2(2a1 − a0)
∑∞

k=2 a
2
k − 2a1a2

∑∞
k=2 a

2
k − 3a22

⎞
⎠ .
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It follows that det(S2(t)) = det(S
′′
2 (t)) = t2(detX2(t) + detY2(t))

where

X2(t) :≡
⎛
⎝

2a1(a0 − a1) a1(2a1 − a0) a2(2a1 − a0)
a1(2a1 − a0)

∑∞
k=1 a

2
k − 2a21

∑∞
k=2 a

2
k − 2a1a2

a2(2a1 − a0)
∑∞

k=2 a
2
k − 2a1a2

∑∞
k=2 a

2
k − 3a22

⎞
⎠

and

Y2(t) :≡
⎛
⎝

2a1[(
1
t
− 1)a0 + (1− 1

t
)2a1] a1(2a1 − a0) a2(2a1 − a0)

0
∑∞

k=1 a
2
k − 2a21

∑∞
k=2 a

2
k − 2a1a2

0
∑∞

k=2 a
2
k − 2a1a2

∑∞
k=2 a

2
k − 3a22

⎞
⎠ .

Note that det(X2(t)) = det(S
′′
2 (1)) ≥ 0 since M(a) is hyponormal,

and observe that
det(Y2(t)) = 2a1[(

1
t
− 1)a0 + (1 − 1

t
)2a1]

∣∣∣∣
∑∞

k=1 a
2
k − 2a21

∑∞
k=2 a

2
k − 2a1a2∑∞

k=2 a
2
k − 2a1a2

∑∞
k=2 a

2
k − 3a22

∣∣∣∣
≥ 0

since the leading principal minors of U∗[M(a)∗,M(a)]U are all pos-
itive. A similar argument holds for each n ≥ 1, so det(Sn(t)) ≥ 0,
and it follows that M(t) is hyponormal for 0 < t < 1. This com-
pletes the proof.
Corollary 2.6: Suppose M(a) and M(b) are hyponormal terraced
matrices associated with positive decreasing sequences a :≡ {an}
and b :≡ {bn} satisfying a0 �= b0 and an = bn for all n ≥ 1. If
c :≡ {cn} satisfies cn = an for all n ≥ 1 and c0 is between a0 and
b0, then M(c) is also a hyponormal terraced matrix.
Example 2.7: (Generalized Cesàro matrix of order one). Recall
that for fixed k > 0, the generalized Cesàro matrices of order one
are the terraced matrices Ck :≡ M(a) that occur when a :≡ {an}
satisfies an = 1

k+n
for all n. Ck is hyponormal for k ≥ 1; see [8].

(a) Suppose k > 1. If M(b) is the terraced matrix associated with
the sequence b :≡ {bn} defined by b0 = 2

k+1
and bn = an for all

n ≥ 1, then Theorem 2.3 tells us that M(b) is hyponormal.
(b) For k > 1 and 0 ≤ t ≤ 1, take b0 = t( 1

k
) + (1 − t)( 2

k+1
) and

bn = an for all n ≥ 1. By Theorem 2.5, M(b) is hyponormal.

(c) For k > 1, define b0 =
3

k+2
, b1 =

3
2

k+2
, and bn = an for all n ≥ 2.

By Theorem 2.3, M(b) is hyponormal.

3. USING SUPRAPOSINORMALITY

In this section we will make use of a recently-defined concept (see
[7]) that does not require determinants.
Definition 3.1: If H is a Hilbert space and A ∈ B(H), then A is
supraposinormal with interrupter pair (Q,P ) if there exist positive
operators P , Q ∈ B(H) such that AQA∗ = A∗PA, where at least
one of P , Q has dense range.
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The following proposition will aid in the proof of our next theo-
rem.
Proposition 3.2: Assume that the terraced matrix M = M({an})
is a bounded operator on �2 and {an} is strictly decreasing to 0. If

P :≡ diag{an − an+1

a2n
: n = 0, 1, 2, ....} ∈ B(�2)

and

Q :≡ diag{ 1

a0
,
an − an+1

anan+1

: n = 0, 1, 2, ....} ∈ B(�2),

then M is supraposinormal with interrupter pair (Q,P ).
Proof: Once the hypothesis is assumed, it is straightforward to
verify that MQM∗ = M∗PM (reverse L-shaped). Clearly the pos-
itive operators P and Q are one-to-one, so they both have dense
range; thus M is supraposinormal with interrupter pair (Q,P ).
We are now ready to present restrictions on the sequence a :≡

{an} that are sufficient to guarantee that the terraced matrix M :≡
M(a) ∈ B(�2) is hyponormal.
Theorem 3.3: Assume that the terraced matrix M is a bounded
operator on �2, {an} is strictly decreasing to 0, and { an

an+1
} is bounded.

If 0 < a0 < 1 and

an(1− an) ≤ an+1 ≤ an
1 + an

for each nonnegative integer n, then M is hyponormal.
Proof: By Proposition 3.2, we have MQM∗ = M∗PM . Note that
I − P ≥ 0 since an(1 − an) ≤ an+1 for all n, and Q − I ≥ 0 since
0 < a0 < 1 and an+1 ≤ an

1+an
for all n. It follows that

〈[M∗,M ]f, f〉 = 〈(I − P )Mf,Mf〉+ 〈(Q− I)M∗f,M∗f〉 ≥ 0

for all f , so M is hyponormal.
We note that Proposition 3.2 and Theorem 3.3 are special cases

of results presented in [7]. A result similar to Theorem 3.3 appears
in [4], obtained using a different approach.
Example 3.4: (a) (A logistic sequence). Consider the terraced
matrix M(a) associated with the sequence a :≡ {an} determined
as follows: Choose a0 = 1

2
and an+1 = an(1 − an) for each n ≥ 1.

Note that a1 =
1
4
and a2 =

3
16
. We know that M(a) is hyponormal

by Theorem 3.3.
(b) Let M(b) denote the terraced matrix associated with a sequence
{bn} such that 1

3
≤ b0 < 1 and bn = an for all n ≥ 1. Then M(b)

will also be hyponormal by Theorem 3.3.
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(c) Let M(b) denote the terraced matrix associated with a sequence
{bn} satisfying bn = an for all n ≥ 2 but b0 �= a0 and b1 �= a1. If
we take b0 =

3
10

and b1 =
3
13
, then M(b) is hyponormal by Theorem

3.3.
The next example involves both Theorem 2.3 and Theorem 3.3.

Example 3.5: Let M(a) denote the terraced matrix with a0 =
1
10

and an+1 = an(1 − an) for all n > 0. By Theorem 3.3, M(a) is
hyponormal. Note that a1 = 9

100
, so a0 �= 2a1. If we define {bn}

so that b0 = 2a1 = 9
50

and bn = an for all n ≥ 1, then M(b) is
hyponormal by Theorem 2.3. It is interesting to note, however,
that M(b) does not satisfy the hypothesis of Theorem 3.3 since
b1 < b0(1− b0).

4. REMARKS

If C1 denotes the Cesàro matrix and Q :≡ diag{q, 1, 1, 1, 1, 1, ....}
where 1

2
≤ q < 1, it follows from [6, Proposition 1] that

√
QC1

√
Q is

a hyponormal operator, although it is not a terraced matrix. How-
ever,

√
QC1

√
Q is factorable, as is C1; recall that a lower triangular

matrix M :≡ M({ai}, {cj}) is factorable if its nonzero entries mij

satisfy mij = aicj where ai depends only on i and cj depends only
on j. Also, since

√
QC1

√
Q − C1 has nonzero entries only in the

first column, it is not hard to verify that this difference is a rank
one operator and is therefore compact.
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