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ABSTRACT. In this work, we examine the n-weak amenability
of some semigroup algebras and the second dual A′′ of a Banach
algebra A. Let S be a semigroup, for the Banach semigroup
algebra � 1(S) on S, we show that, in the case where S is right
zero semigroup, � 1(S) is n-weakly amenable if and only if n is
odd.
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1. INTRODUCTION

In [4], Dales, Ghahramani, and Gronbaek introduced the concept
of n-weak amenability for Banach algebras for n ∈ N. They de-
termined some relations between m- and n-weak amenability for
general Banach algebras and for Banach algebras in various classes,
and proved that, for each n ∈ N, (n+ 2)- weak amenability always
implies n-weak amenability. Let A be a weakly amenable Banach
algebra. Then it is also proved in [4] that in the case where A is an
ideal in its second dual (A′′,�), A is necessarily (2m − 1)-weakly
amenable for each m ∈ N. The authors of [4] asked the follow-
ing questions: (i) Is a weakly amenable Banach algebra necessarily
3-weakly amenable? (ii) Is a 2-weakly amenable Banach algebra
necessarily 4-weakly amenable? A counter-example resolving ques-
tion (i) was given by Zhang in [14], but it seems that question (ii)
is still open.
It is also shown in [4, Corollary 5.4] that for certain Banach space
E the Banach algebra N (E) of nuclear operators on E is n-weakly
amenable if and only if n is odd.
A class of Banach algebra that was not considered in [4] is the
Banach algebra on Semigroup. Mewomo in [12], considered the
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Rees matrix semigroup S, and show that l1(S) is (2k + 1)-weakly
amenable for a Rees matrix semigroup S.
In this work, we examine the n-weak amenability of some semigroup
algebras, and give an easier example of a Banach algebra which is
n-weakly amenable if and only if n is odd. We also examine the
n-weak amenability of the second dual A′′.
Let L1(G) be the group algebra of a locally compact group G [3,
§3.3]. Then Johnson has proved that L1(G) is amenable if and
only if G is amenable ([9], [3, Theorem 5.6.42]) and that L1(G) is
always weakly amenable ([10], [3, Theorem 5.6.48]). It is proved
in [4, Theorem 4.1] that each group algebra is n-weakly amenable
whenever n is odd, and it is conjectured that L1(G) is n-weakly
amenable for each n ∈ N; this is true whenever G is amenable, and
it is true when G is a free group [11].

2. PRELIMINARY

First, we recall some standard notions; for further details, see [3].
Let A be an algebra. The character space of A is denoted by ΦA.
Let X be an A-bimodule. A derivation from A to X is a linear map
D : A → X such that

D(ab) = Da · b+ a · Db (a, b ∈ A) .

For example, for each x ∈ X, the map δx : A → X defined by
δx(a) = a · x − x · a, (a ∈ A) is a derivation; derivations of this
form are the inner derivations.
Let X be a Banach space. Then the spaces X(n) for n ∈ Z+ are
the iterated duals of X, where we take X(0) = X . Let λ ∈ X ′. We
denote by λ(2n) ∈ X(2n+1) the 2nth. dual of λ for n ∈ Z+, where
λ(0) = λ. Clearly λ(2n) | X = λ, where we regard X as a closed
subspace of X(2n). The second dual of X is X ′′, and the canonical
embedding of X in X ′′ is denoted by i or .̂ The weak-* topology on
X ′ is denoted by σ(X ′, X). We shall use the Goldstine’s theorem:
for each Λ ∈ X ′′, there is a net xα in X such that ‖xα‖ ≤ ‖Λ‖ and
x̂α → Λ in (X ′′, σ(X ′′, X ′)).
Let A be a Banach algebra, and let X be an A-bimodule. Then X
is a Banach A-bimodule if X is a Banach space and if there is a
constant k > 0 such that

‖a · x‖ ≤ k ‖a ‖ ‖x‖ , ‖x · a‖ ≤ k ‖a ‖ ‖x‖ (a ∈ A, x ∈ X) .
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By renorming X, we can suppose that k = 1. For example, A itself
is a Banach A-bimodule, and X ′, the dual space of a Banach A-
bimodule X, is a Banach A-bimodule with respect to the module
operations specified for by

〈x, a · λ〉 = 〈x · a, λ〉, 〈x, λ · a〉 = 〈a · x, λ〉 (x ∈ X)

for a ∈ A and λ ∈ X ′, where 〈., .〉 is the duality pairing of X
and X ′; we say that X ′ is the dual module of X . Successively, the
duals X(n) are Banach A-bimodules; in particular A(n) is a Banach
A-bimodule for each n ∈ N. We take X(0) = X .
Let A be a Banach algebra, and let X be a Banach A-bimodule.
Then Z 1(A,X) is the space of all continuous derivations from A
into X, N 1(A,X) is the space of all inner derivations from A into
X, and the first cohomology group of A with coefficients in X is
the quotient space

H 1(A,X) = Z 1(A,X)/N 1(A,X) .

The Banach algebra A is amenable if H 1(A,X ′) = {0} for each Ba-
nach A-bimodule X and weakly amenable if H 1(A,A′) = {0}. Fur-
ther, as in [4], A is n-weakly amenable for n ∈ N if H 1(A,A(n)) =
{0}, and A is permanently weakly amenable if it is n-weakly amena-
ble for each n ∈ N. For instance, each C∗-algebra is permanently
weakly amenable [4, Theorem 2.1]. As we stated, each group alge-
bra is n-weakly amenable whenever n is odd.

3. n-WEAK AMENABILITY OF THE SECOND DUAL

Arens in [1] defined two products, � and ♦, on the bidual A′′ of
Banach algebra A; A′′ is a Banach algebra with respect to each of
these products, and each algebra contains A as a closed subalgebra.
The products are called the first and second Arens products on A′′,
respectively. For the general theory of Arens products, see [3, 5, 6].
We recall briefly the definitions. For Φ ∈ A′′, we set

〈a, λ · Φ〉 = 〈Φ, a · λ〉, 〈a, Φ · λ〉 = 〈Φ, λ · a〉 (a ∈ A, λ ∈ A′) ,

so that λ · Φ,Φ · λ ∈ A′. Let Φ,Ψ ∈ A′′. Then

〈Φ�Ψ, λ〉 = 〈Φ, Ψ · λ〉, 〈Φ♦Ψ, λ〉 = 〈Ψ, λ · Φ〉 (λ ∈ A′) .

Suppose that Φ,Ψ ∈ A′′ and that Φ = limα aα and Ψ = limβ bβ
for certain nets (aα) and (bβ) in A. Then Φ�Ψ = limα limβ aαbβ
and Φ♦Ψ = limβ limα aαbβ , where all limits are taken in the weak-∗
topology σ(A′′, A′) on A′′. We define the product � on A(2n) for
n ∈ N inductively. Indeed, assume that � is defined on A(2n), and
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set B = (A(2n),�). Then (A(2n+2),�) = (B′′,�). Let ϕ ∈ ΦA.
Then we show below that ϕ(2n) is a character on (A(2n),�).

The following result is well known, see [5, Theorem 2.17]:
Theorem 3.1: Let A be a Banach algebra. Then both (A′′,�) and
(A′′,♦) are Banach algebras containing A as a closed subalgebra.
Let A be a Banach algebra, and let ϕ : A → C be a character on A.
For n ∈ N, denote by ϕ2n : A(2n) → C the (2n)th dual of ϕ. Then
we have the following:
Lemma 3.2: For each n ∈ N, the functional ϕ2n is a character on
(A(2n),�) with ϕ2n | A = ϕ.
Proof: We prove this by induction on n ∈ N.
Let Φ,Ψ ∈ A′′ with Φ = limα aα and Ψ = limβ bβ, as above. Since
ϕ2 is weak-* continuous, certainly,

ϕ2(Φ�Ψ) = lim
α

lim
β

ϕ(aα)ϕ(bβ) = ϕ2(Φ)ϕ2(Ψ),

and so ϕ2 is a character on (A′′,�).
For arbitrary n, the results follows by induction, since
A(2n+2) = A(2n). �
For a Banach algebra A, let Aop be the Banach algebra with the
underlying Banach space as A and with product ◦ given by
a ◦ b = ba.
Proposition 3.3: Let A be a Banach algebra. Then:
(i) A is permanently weakly amenable if and only if Aop is perma-
nently weakly amenable.
(ii) Let A be commutative. Then (A′′,�) is permanently weakly
amenable if and only if (A′′,♦) is permanently weakly amenable.
Proof: (i) This is trivial.
(ii) Since A is commutative, then λ · Φ = Φ · λ (λ ∈ A′,Φ ∈ A′′),
and Φ�Ψ = Ψ♦Φ (Φ,Ψ ∈ A′′), and so (A′′,♦) = (A′′,�)op.
Thus by (i), (A′′,�) is permanently weakly amenable if and only if
(A′′,♦) is permanently weakly amenable. �
Proposition 3.4: Let A be a Banach algebra and suppose A
admits a continuous anti-isomorphism. Then (A′′,�) is perma-
nently weakly amenable if and only if (A′′,♦) is permanently weakly
amenable.
Proof: Let τ : A → A be continuous anti-isomorphism of A.
Let Φ,Ψ ∈ (A′′,�) and let (aα) and (bβ) be nets in A such that
Φ = limα aα and Ψ = limβ bβ . Let τ ′′ : (A′′,�) → (A′′,♦) be the
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second dual of τ. Then

τ ′′(Φ�Ψ) = lim
α

lim
β

τ ′′(aαbβ)

= lim
α

lim
β

τ ′′(bβ)τ ′′(aα)

= τ ′′(Ψ)♦τ ′′(Φ).
Thus τ ′′ is an isomorphism from (A′′,�) onto (A′′,♦)op and so, by
Proposition 3.3 (i), (A′′,�) is permanently weakly amenable if and
only if (A′′,♦) is permanently weakly amenable. �
We recall that a Banach algebra A is a dual Banach algebra [5,
Definition 2.23] if there is a closed submodule X of A′ such that
X ′ = A as a Banach space.
Theorem 3.5: Suppose A is a dual Banach algebra. If (A′′,�) is
(2n− 1)-weakly amenable, then A is (2n− 1)-weakly amenable for
n ∈ N.
Proof: Since A is dual Banach algebra, let A = X ′, for some
Banach space X such that X̂ is a submodule of the dual module
A′ = X ′′. Let i : X → A′ be the canonical map and i′ : A′′ → X ′ =
A be the dual map of i. We first show that i′ is a homomorphism
from (A′′,�) onto A.

Let Φ,Ψ ∈ A′′, such that Φ = limα âα,Ψ = limβ b̂β for nets (aα), (bβ)
in A, where the limits are taken in the weak-∗ topology σ(A′′, A′)
on A′′. Then we have

i′(Φ�Ψ) = i′(lim
α

lim
β

âαb̂β)

= lim
α

lim
β

i′((aαbβ))

= lim
α

lim
β
(aαbβ)

= lim
α

aα lim
β

bβ

= lim
α
(i′(aα) lim

β
i′(bβ))

= i′(Φ)i′(Ψ)

where the limits are taken in the weak-∗ topology σ(A′′, A′) on A′′.
Thus i′ : A′′ → A is an algebra homomorphism from A′′ onto A.
For i : X → A′ with A = X ′, clearly i(2n) : A(2n−1) → A(2n+1) and
i(2n−1) : A(2n) → A(2n−2), n ∈ N.
Let a ∈ A, then for x ∈ X, we have

〈i′(â), x〉 = 〈â, i(x)〉 = 〈a, x〉.
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Thus i′(â) = a. and in general i(2n−1)(b̂) = b for b ∈ A(2n−2) and

b̂ ∈ A(2n). Let D : A → A(2n−1) be a derivation. Then D ≡ i(2n) ◦
D ◦ i′ : A′′ → A(2n+1) is clearly a derivation, since for Φ1,Φ2 ∈ A′′

and Ψ ∈ A(2n), we have

〈D(Φ1�Φ2),Ψ〉 = 〈(i(2n) ◦D ◦ i′)(Φ1�Φ2),Ψ〉
= 〈D(i′(Φ1)i

′(Φ2)), i
(2n−1)(Ψ)〉

= 〈D(i′(Φ1)i
′(Φ2) + i′(Φ1)D(i′(Φ2))), i

(2n−1)(Ψ)〉
= 〈D(i′(Φ1)), i

′(Φ2)i
(2n−1)(Ψ)〉+ 〈D(i′(Φ2)), i

(2n−1)(Ψ)i′(Φ1)〉
= 〈D(i′(Φ1)), i

(2n−1)(Φ2�Ψ)〉+ 〈D(i′(Φ2)), i
(2n−1)(Ψ�Φ1)〉

= 〈i(2n)(D(i′(Φ1))),Φ2�Ψ〉+ 〈i(2n)(D(i′(Φ2))),Ψ�Φ1〉
= 〈(i(2n) ◦D ◦ i′)(Φ1) · Φ2 + Φ1 · (i(2n) ◦D ◦ i′)(Φ2),Ψ〉

= 〈D(Φ1) · Φ2 + Φ1 ·D(Φ2),Ψ〉.
Hence D is a derivation. Since A′′ is (2n − 1)- weakly amenable,
there exists λ ∈ A(2n+1) such that

D(Φ) = Φ · λ− λ · Φ (Φ ∈ A′′).

Now A(2n−2) and A(2n) are A-bimodules and the canonical map
j : A(2n−2) → A(2n) is an A-bimodule morphism, and so is j′ :
A(2n+1) → A(2n−1).
Let γ = j′(λ), λ ∈ A(2n+1). Then for a ∈ A, b ∈ A(2n−2), we have

〈D(a), b〉 = 〈D(i′(â)), i(2n−1)(b̂)〉
= 〈i(2n)D(i′(â)), b̂〉
= 〈D(â), j(b)〉

= 〈â · λ− λ · â), j(b)〉
= 〈j′(â · λ− λ · â), b〉

= 〈a · j′(λ)− j′(λ · a, b〉
= 〈a · γ − γ · a), b〉.

Thus, D(a) = a · γ − γ · a (a ∈ A, γ ∈ A(2n−1)), and so D : A →
A(2n−1) is inner. Thus A is (2n− 1)-weakly amenable. �

4. n-WEAK AMENABILITY OF SEMIGROUP ALGEBRAS

Let S be a non-empty set. Then

� 1(S) =

{
f ∈ C

S :
∑
s∈S

|f(s)| < ∞
}

,
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with the norm ‖ · ‖1 given by ‖f‖1 =
∑

s∈S |f(s)| for f ∈ � 1(S).
We write δs for the characteristic function of {s} when s ∈ S.
Now suppose that S is a semigroup. For f, g ∈ � 1(S), we set

(f 	 g)(t) =
{∑

f(r)g(s) : r, s ∈ S, rs = t
}

(t ∈ S)

so that f 	g ∈ � 1(S). It is standard that (� 1(S), 	) is a Banach alge-
bra, called the semigroup algebra on S. For a further discussion of
this algebra, see [3, 5], for example. In particular, with A = � 1(S),
we identify A′ with C(βS), where βS is the Stone-Čech compact-
ification of S, and (A′′,�) with (M(βS),�), where M(βS) is the
space of regular Borel measures on βS of S; in this way, (βS,�) is
a compact, right topological semigroup that is a subsemigroup of
(M(βS),�) after the identification of u ∈ βS with δu ∈ M(βS).
There is always one character on the Banach algebra � 1(S): this is
the augmentation character

ϕS : f →
∑
s∈S

f(s) , l1(S) → C .

Let S be a semigroup, and let o ∈ S be such that so = os = o (s ∈
S). Then o is a zero for the semigroup S. Suppose that o /∈ S; set
So = S ∪ {o}, and define so = os = 0 (s ∈ S) and o2 = o. Then
So is a semigroup containing S as a subsemigroup; we say that S
is formed by adjoining a zero to S.
We recall that S is a right zero semigroup if the product in S is
such that

st = t (s, t ∈ S) .

In this case, f 	 g = ϕS(f)g (f, g ∈ � 1(S)).

Theorem 4.1: Let A be a Banach algebra such that
ab = ϕ(a)b (a, b ∈ A), where ϕ ∈ ΦA. Then:

(i) λ · a = ϕ(a)λ and a · λ = 〈a, λ〉ϕ for each a ∈ A and λ ∈ A′ ;
(ii) a · Φ = ϕ(a)Φ and Φ · a = 〈Φ, ϕ〉a for each a ∈ A and

Φ ∈ A′′ ;
(iii) a continuous linear map D : A → A′′ is a derivation if and

only if D(A) ⊂ kerϕ.
Proof: (i) Let a, c ∈ A and λ ∈ A′. Then

〈c, λ · a〉 = 〈ac, λ〉 = 〈ϕ(a)c, λ〉 = 〈c, ϕ(a)λ〉 ,
and so λ · a = ϕ(a)λ. Similarly, a · λ = 〈a, λ〉ϕ.
(ii) Let a ∈ A, λ ∈ A′, and Φ ∈ A′′. Then

〈λ, a · Φ〉 = 〈λ · a, Φ〉 = ϕ(a)〈λ, Φ〉 ,
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and so a · Φ = ϕ(a)Φ. Similarly, Φ · a = 〈Φ, ϕ〉a.
(iii) Let D : A → A′′ be a continuous linear map. Then D is a
derivation if and only if

ϕ(a)〈λ, Db〉 = ϕ(a)〈λ, Db〉+ 〈b, λ〉〈ϕ, Da〉 (a, b ∈ A, λ ∈ A′) ,

and so D is a derivation if and only if 〈ϕ, Da〉 = 0 (a ∈ A). �
The following result is [5, Proposition 2.13].

Theorem 4.2: Let A be a Banach algebra such that ab = ϕ(a)b
(a, b ∈ A), where ϕ ∈ ΦA. Then A is weakly amenable.
We shall extend the result by showing that, in fact, A is n-weakly
amenable for each odd n.

Theorem 4.3: Let A be a Banach algebra such that ab = ϕ(a)b
(a, b ∈ A), where ϕ ∈ ΦA. Then A is (2k − 1)-weakly amenable for
each k ∈ N.
Proof: Let k ∈ N, and let D : A → A(2k−1) be a continuous deriva-
tion. The (2k−2)-dual of D is the map D(2k−2) : A(2k−2) → A(4k−3);
of course this map is continuous with respect to the respective weak-
∗ topologies on A(2k−2) and A(4k−3). Let P : A(4k−3) → A(2k−1) be
the canonical projection that is the dual of the natural injection of
A(2k−2) into A(4k−4), and define

D = P ◦ D(2k−2) : A(2k−2) → A(2k−1) .

The map D is a continuous linear operator with
∥∥D∥∥ = ‖D‖, D

is continuous with respect to the respective weak-∗ topologies on
A(2k−2) and A(2k−1), and D | A = D.
Since D is a derivation and ba = ϕ(b)a (a, b ∈ A), we have

ϕ(b)〈Φ0, Da〉 = ϕ(2k−2)(Φ0)〈b, Da〉+ ϕ(a)〈Φ0, Db〉 (a, b ∈ A)
(1)

for each Φ0 ∈ A(2k−2). Now take Ψ ∈ A(2k−2). Since A is weak-∗
dense in A(2k−2), it follows from (1) that

ϕ(2k−2)(Ψ)〈Φ0, Da〉 = ϕ(2k−2)(Φ0)〈Ψ, Da〉+ ϕ(a)〈Φ0, DΨ〉 (2)

for each a ∈ A and Ψ ∈ A(2k−2).
Let Λ ∈ A(2k−1), and let the inner derivation from A to A(2k−1)

specified by Λ be DΛ. Then

〈Ψ, DΛa〉 = ϕ(2k−2)(Ψ)〈a, Λ〉 − ϕ(a)〈Ψ, Λ〉 (a ∈ A, Ψ ∈ A(2k−2)) .
(3)

Choose Φ0 = a0 ∈ A with ϕ(a0) = 1, and then define

〈Ψ, Λ〉 = 〈a0, DΨ〉 (Ψ ∈ A(2k−2)) .
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Clearly Λ is a continuous linear function on A(2k−2) with ‖Λ‖ ≤
‖D‖ ‖a0‖, and so Λ ∈ A(2k−1). By (3) we have

〈Ψ, DΛa〉 = ϕ(2k−2)(Ψ)〈a0, Da〉−ϕ(a)〈a0, DΨ〉 (a ∈ A, Ψ ∈ A(2k−2)) .

It follows from (2) that 〈Ψ, DΛa〉 = 〈Ψ, Da〉 (a ∈ A, Ψ ∈ A(2k−2)),
and so D = DΛ. Thus D is inner. �
Corollary 4.4: Let S be a right zero semigroup. Then � 1(S) is
(2k − 1)-weakly amenable for each k ∈ N.
Proof: The Banach algebra � 1(S) clearly satisfies the condition in
the above theorem, taking ϕ = ϕS. �
Theorem 4.5: Let S be an infinite right zero semigroup. Then
� 1(S) is not 2-weakly amenable.
Proof: Set A = � 1(S), so that A′′ = M(βS). Clearly ϕS(δu) =
1 (u ∈ βS).
Let u, v ∈ βS \ S with u �= v, let Λ ∈ C(βS), and then define

D(f) = 〈f, Λ〉(δu − δv) (f ∈ A) .

Then D : A → A′′ is a continuous linear map; by Lemma 4.1(iii),
D is a derivation because 〈ϕS, D(f)〉 = 0 (f ∈ A).
Since βS is a Hausdorff and totally disconnected space, there

exists a clopen set F ⊂ βS with u ∈ F and v /∈ F . We choose
s0, t0 ∈ F ∩ S with s0 �= t0, and we define Λ ∈ C(βS) by setting
〈f, Λ〉 = f(s0) (f ∈ A).
Let D be as above, with our chosen value of Λ, and assume to-

wards a contradiction that D = Dμ for some μ ∈ M(βS). Then,
using Lemma 4.1(i), we see that

f(s0)(λ(u)−λ(v)) = 〈f, λ〉〈ϕS, μ〉−ϕS(f)〈λ, μ〉 (f ∈ A, λ ∈ A′) .
(4)

Choosing λ = χF , the characteristic function of F , and f0 = δs0 −
δt0 ∈ A, we see that f0(s0) = χF (u) = 1, χF (v) = 0, and 〈f0, χF 〉 =
ϕS(f0) = 0. This is a contradiction of (4), and so D is not inner.
This shows that A is not 2-weakly amenable. �

Theorem 4.6: Let S be an infinite right zero semigroup. Then
� 1(S) is n-weakly amenable if and only if n is odd.
Proof: By Theorem 4.3, � 1(S) is n-weakly amenable whenever n is
odd. By Theorem 4.5, � 1(S) is not 2-weakly amenable, and hence
not n-weakly amenable for any even n. �
We now give a small extension of the above result.
Let (B, ‖ · ‖B) be a Banach algebra, and let ϕ ∈ ΦB. Define A =
B⊕C (that is the � 1-direct sum of B and C) as a Banach space with



298 O. T. MEWOMO AND O. J. OGUNSOLA

the � 1-norm (that is ‖(b, z)‖ = ‖b‖B+|z| (b, z) ∈ A, b ∈ B, z ∈ C),
and take the product in A to be specified by

(b1, z1)(b2, z2) = (b1b2, ϕ(b1)z2+ϕ(b2)z1+z1z2) (b1, b2 ∈ B, z1, z2 ∈ C) .

Then A is a Banach algebra. Set p = (0, 1), an idempotent in A.
Then Cp is a one-dimensional ideal in A, and Cp has the trace
extension property. We regard ϕ as an element of ΦA by setting
ϕ(p) = 1.
Define q ∈ A′ by setting 〈p, q〉 = 1 and q | B = 0. Let n ∈ N. Then
we have A(n) = B(n) ⊕ Cp as a Banach space with the � 1-norm for
n even, and A(n) = B(n) ⊕Cq as a Banach space with the �∞-norm
for n odd. Clearly b · q = q · b = ϕ(b)q (b ∈ B), and so these
decompositions are B-module decompositions.
Let n ∈ N, and let Λ ∈ A(n). Then

p · Λ = Λ · p =

{ 〈p, Λ〉ϕ (n odd) ,
〈Λ, ϕ〉p (n even) .

(5)

LetD : A → A(n) be a continuous derivation. Then p ·Dp = Dp · p,
and so Dp = 0 by [3, Theorem 1.8.2]. Thus we may regard D as a
continuous derivation D : B → A(n). Suppose that n is even. Then
we may write

Db = D1(b) + d(b)p (b ∈ B) ; (6)

here D1 : B → B(n) is a continuous derivation and d ∈ B′ is a
continuous point derivation at the character ϕ. A similar conclusion
holds in the case where n is odd, with q replacing p in (6).
Now suppose that the product in B is given by b1b2 = ϕ(b1)b2
(b1, b2 ∈ B). Then

ϕ(b1)d(b2) + ϕ(b2)d(b1) = d(b1b2) = ϕ(b1)d(b2) (b1, b2 ∈ B) ,

and so d = 0. Thus we may regard D as a continuous derivation
D : B → B(n). It follows that, for each n ∈ N, the Banach algebra
A is n-weakly amenable if and only if B is n-weakly amenable.

Let S be an infinite right zero semigroup, and let A = � 1(S◦),
B = � 1(S), and p = δo. Then p is an idempotent in A such that Cp
is an ideal in A, and so we are in the above situation, with ϕ = ϕS.
Thus we have the following conclusion.

Theorem 4.7: Let S be an infinite right zero semigroup. Then
� 1(S◦) is n-weakly amenable if and only if n is odd. �
It is shown in [4] that the commutative Banach algebra C(1)(I) of
all continuously differentiable functions on the unit interval is not
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n-weakly amenable for any n ∈ N. We now give an example of the
form A⊕X with this property.
We recall that a Banach algebra A is a dual Banach algebra [5,
Definition 2.23] if there is a closed submodule X of A′ such that
X ′ = A as a Banach space. For example, let A = � 1(S◦) and
B = � 1(S), where S = N and S is a right zero semigroup. Then
A is a dual Banach algebra. Indeed, take set X = c, the space of
convergent sequences, regarded as a subspace of �∞ ⊂ �∞ + Cq =
A′. Clearly X ′ = A as a Banach space. We claim that X is a
closed A-submodule of A′. Indeed, take λ ∈ c and k ∈ N. Then
(δk · λ)(n) = λ(k) and (λ · δk)(n) = λ(n) for n ∈ N, and so
δk · λ, λ · δk ∈ c. Also δo · λ = λ · δo is a constant sequence, and
so belongs to X. It follows that X is an A-submodule.
Let A be a Banach algebra, and let X be a Banach A-bimodule.
Then we set A = A⊕X as a Banach space with the �∞-norm, with
the product given by

(a, x)(b, y) = (ab, a · y + x · b) (a, b ∈ A, x, y ∈ X) .

Then A is a Banach algebra [3, p. 239]. The n-weak amenability of
these algebras is studied in [14], and four conditions which, taken
together, are necessary and sufficient for A to be n-weakly amenable
are given in [14, Theorems 2.1, 2.2].

Theorem 4.8: Let S = N, regarded as an infinite right zero semi-
group, let A = � 1(S◦), and let X = c, regarded as a Banach A-
module. Set A = A⊕X. Then, for each n ∈ N, A is not n-weakly
amenable.
Proof: We have A(k) = X(k+1) as Banach A-bimodules for each
k ∈ Z+. Let k ∈ N.
By Theorem 4.7, A is not 2k-weakly amenable, and so there is a

continuous derivation D : A → X(2k+1) which is not inner. Thus
H 1(A,X(2k+1)) �= {0}. This shows that clause 2 of [14, Theo-
rem 2.1] fails, and so, by that theorem, A is not (2k + 1)-weakly
amenable.
To show that A is not 2k-weakly amenable, it suffices to show that

A is not 2-weakly amenable; for this, we shall follow the argument
in clause 4 of [14, Theorem 2.2].
We have A′′ = A′′ ⊕X ′′ = A′′ ⊕ A′. Define

D : (a, x) → (0, x) , A⊕X → A′′ ⊕X ′′ .

Then D is a continuous linear operator, and it is immediately
checked that D is a derivation. Assume towards a contradiction
that there exists (Φ0, λ0) ∈ A′′ ⊕ A′ such that D = D(Φ0,λ0). Then
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(0, x) = (a ·Φ0, a · λ0+x ·Φ0)−(Φ0 · a, λ · a+Φ0 · x) (a ∈ A, x ∈ X) .
(7)

In particular a · Φ0 = Φ0 · a (a ∈ B), where B = � 1(S). By Lemma
4.4(ii), it follows that ϕS(a)Φ0 = 〈Φ0, ϕS〉a (a ∈ B). Take a ∈ B
with ϕS(a) = 1 and a �∈ CΦ0 to see that necessarily Φ0 = 0. Now
take a = 0 in (7) to see that x = 0 (x ∈ X), a contradiction. Thus
the derivation D is not inner, and so A is not 2-weakly amenable.
�
Let S be a semigroup. For s ∈ S, we define Ls(t) = st,
Rs(t) = ts (t ∈ S). Let F be a non-empty subset of S. Then
s−1F = L−1

s (F ) = {t ∈ S : st ∈ F} and Fs−1 = R−1
s (F ) = {t ∈

S : ts ∈ F}. We recall that S is weakly left (respectively, right)
cancellative if s−1F (respective, Fs−1) is finite for each s ∈ S and
each finite subset F of S, and S is weakly cancellative if it is both
weakly left cancellative and weakly right cancellative. With this
definition, we have the following result:
Theorem 4.9: Let S be an infinite weakly cancellative semigroup.
Then l1(S) is (2n−1)-weakly amenable if l1(S)′′ is (2n−1)-weakly
amenable.
Proof: Since S is weakly cancellative, then l1(S) is a dual Banach
algebra [5, Theorem 4.6], and so, the result follows from Theorem
3.5. �
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