On n-WEAK AMENABILITY OF SEMIGROUP ALGEBRAS

O. T. MEWOMO¹ AND O. J. OGUNSOLA

ABSTRACT. In this work, we examine the *n*-weak amenability of some semigroup algebras and the second dual A'' of a Banach algebra A. Let S be a semigroup, for the Banach semigroup algebra $\ell^1(S)$ on S, we show that, in the case where S is right zero semigroup, $\ell^1(S)$ is *n*-weakly amenable if and only if n is odd.

Keywords and phrases: Banach algebra, n-weak amenability, bounded derivation, dual space, semigroup.

2010 Mathematical Subject Classification: Primary: 46H20; Secondary: 46H10, 46H25

1. INTRODUCTION

In [4], Dales, Ghahramani, and Gronbaek introduced the concept of *n*-weak amenability for Banach algebras for $n \in \mathbb{N}$. They determined some relations between *m*- and *n*-weak amenability for general Banach algebras and for Banach algebras in various classes, and proved that, for each $n \in \mathbb{N}$, (n + 2)- weak amenability always implies *n*-weak amenability. Let *A* be a weakly amenable Banach algebra. Then it is also proved in [4] that in the case where *A* is an ideal in its second dual (A'', \Box) , *A* is necessarily (2m - 1)-weakly amenable for each $m \in \mathbb{N}$. The authors of [4] asked the following questions: (i) Is a weakly amenable Banach algebra necessarily 3-weakly amenable? (ii) Is a 2-weakly amenable Banach algebra necessarily 4-weakly amenable? A counter-example resolving question (i) was given by Zhang in [14], but it seems that question (ii) is still open.

It is also shown in [4, Corollary 5.4] that for certain Banach space E the Banach algebra $\mathcal{N}(E)$ of nuclear operators on E is *n*-weakly amenable if and only if n is odd.

A class of Banach algebra that was not considered in [4] is the Banach algebra on Semigroup. Mewomo in [12], considered the

Received by the editors January 16, 2012; Revised: August 28, 2012; Accepted: October 2, 2012

¹Corresponding author

Rees matrix semigroup S, and show that $l^1(S)$ is (2k + 1)-weakly amenable for a Rees matrix semigroup S.

In this work, we examine the *n*-weak amenability of some semigroup algebras, and give an easier example of a Banach algebra which is *n*-weakly amenable if and only if *n* is odd. We also examine the *n*-weak amenability of the second dual A''.

Let $L^1(G)$ be the group algebra of a locally compact group G [3, §3.3]. Then Johnson has proved that $L^1(G)$ is amenable if and only if G is amenable ([9], [3, Theorem 5.6.42]) and that $L^1(G)$ is always weakly amenable ([10], [3, Theorem 5.6.48]). It is proved in [4, Theorem 4.1] that each group algebra is *n*-weakly amenable whenever n is odd, and it is conjectured that $L^1(G)$ is *n*-weakly amenable for each $n \in \mathbb{N}$; this is true whenever G is amenable, and it is true when G is a free group [11].

2. PRELIMINARY

First, we recall some standard notions; for further details, see [3]. Let A be an algebra. The character space of A is denoted by Φ_A . Let X be an A-bimodule. A *derivation* from A to X is a linear map $D: A \to X$ such that

$$D(ab) = Da \cdot b + a \cdot Db \quad (a, b \in A).$$

For example, for each $x \in X$, the map $\delta_x : A \to X$ defined by $\delta_x(a) = a \cdot x - x \cdot a$, $(a \in A)$ is a derivation; derivations of this form are the *inner derivations*.

Let X be a Banach space. Then the spaces $X^{(n)}$ for $n \in \mathbb{Z}^+$ are the iterated duals of X, where we take $X^{(0)} = X$. Let $\lambda \in X'$. We denote by $\lambda^{(2n)} \in X^{(2n+1)}$ the $2n^{\text{th.}}$ dual of λ for $n \in \mathbb{Z}^+$, where $\lambda^{(0)} = \lambda$. Clearly $\lambda^{(2n)} \mid X = \lambda$, where we regard X as a closed subspace of $X^{(2n)}$. The second dual of X is X'', and the canonical embedding of X in X'' is denoted by i or $\widehat{\cdot}$ The weak-* topology on X' is denoted by $\sigma(X', X)$. We shall use the Goldstine's theorem: for each $\Lambda \in X''$, there is a net x_{α} in X such that $||x_{\alpha}|| \leq ||\Lambda||$ and $\hat{x}_{\alpha} \to \Lambda$ in $(X'', \sigma(X'', X'))$.

Let A be a Banach algebra, and let X be an A-bimodule. Then X is a Banach A-bimodule if X is a Banach space and if there is a constant k > 0 such that

$$||a \cdot x|| \le k ||a|| ||x||, ||x \cdot a|| \le k ||a|| ||x|| \quad (a \in A, x \in X).$$

By renorming X, we can suppose that k = 1. For example, A itself is a Banach A-bimodule, and X', the dual space of a Banach Abimodule X, is a Banach A-bimodule with respect to the module operations specified for by

$$\langle x, a \cdot \lambda \rangle = \langle x \cdot a, \lambda \rangle, \quad \langle x, \lambda \cdot a \rangle = \langle a \cdot x, \lambda \rangle \quad (x \in X)$$

for $a \in A$ and $\lambda \in X'$, where $\langle ., . \rangle$ is the duality pairing of X and X'; we say that X' is the *dual module* of X. Successively, the duals $X^{(n)}$ are Banach A-bimodules; in particular $A^{(n)}$ is a Banach A-bimodule for each $n \in \mathbb{N}$. We take $X^{(0)} = X$.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then $\mathcal{Z}^1(A, X)$ is the space of all continuous derivations from A into $X, \mathcal{N}^1(A, X)$ is the space of all inner derivations from A into X, and the first cohomology group of A with coefficients in X is the quotient space

$$\mathcal{H}^{1}(A, X) = \mathcal{Z}^{1}(A, X) / \mathcal{N}^{1}(A, X) \,.$$

The Banach algebra A is amenable if $\mathcal{H}^1(A, X') = \{0\}$ for each Banach A-bimodule X and weakly amenable if $\mathcal{H}^1(A, A') = \{0\}$. Further, as in [4], A is *n*-weakly amenable for $n \in \mathbb{N}$ if $\mathcal{H}^1(A, A^{(n)}) = \{0\}$, and A is permanently weakly amenable if it is *n*-weakly amenable for each $n \in \mathbb{N}$. For instance, each C^* -algebra is permanently weakly amenable [4, Theorem 2.1]. As we stated, each group algebra is *n*-weakly amenable whenever n is odd.

3. n-WEAK AMENABILITY OF THE SECOND DUAL

Arens in [1] defined two products, \Box and \Diamond , on the bidual A'' of Banach algebra A; A'' is a Banach algebra with respect to each of these products, and each algebra contains A as a closed subalgebra. The products are called the *first* and *second Arens products* on A'', respectively. For the general theory of Arens products, see [3, 5, 6]. We recall briefly the definitions. For $\Phi \in A''$, we set

$$\begin{split} \langle a,\,\lambda\cdot\Phi\rangle &= \langle \Phi,\,a\,\cdot\,\lambda\rangle, \quad \langle a,\,\Phi\cdot\lambda\rangle = \langle \Phi,\,\lambda\,\cdot\,a\rangle \quad (a\in A,\,\lambda\in A')\,,\\ \text{so that }\lambda\cdot\Phi,\,\Phi\cdot\lambda\in A'. \text{ Let }\Phi,\Psi\in A''. \text{ Then} \end{split}$$

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi \cdot \lambda \rangle, \quad \langle \Phi \Diamond \Psi, \lambda \rangle = \langle \Psi, \lambda \cdot \Phi \rangle \quad (\lambda \in A') \,.$$

Suppose that $\Phi, \Psi \in A''$ and that $\Phi = \lim_{\alpha} a_{\alpha}$ and $\Psi = \lim_{\beta} b_{\beta}$ for certain nets (a_{α}) and (b_{β}) in A. Then $\Phi \Box \Psi = \lim_{\alpha} \lim_{\beta} a_{\alpha} b_{\beta}$ and $\Phi \Diamond \Psi = \lim_{\beta} \lim_{\alpha} a_{\alpha} b_{\beta}$, where all limits are taken in the weak-* topology $\sigma(A'', A')$ on A''. We define the product \Box on $A^{(2n)}$ for $n \in \mathbb{N}$ inductively. Indeed, assume that \Box is defined on $A^{(2n)}$, and set $B = (A^{(2n)}, \Box)$. Then $(A^{(2n+2)}, \Box) = (B'', \Box)$. Let $\varphi \in \Phi_A$. Then we show below that $\varphi^{(2n)}$ is a character on $(A^{(2n)}, \Box)$.

The following result is well known, see [5, Theorem 2.17]:

Theorem 3.1: Let A be a Banach algebra. Then both (A'', \Box) and (A'', \diamondsuit) are Banach algebras containing A as a closed subalgebra.

Let A be a Banach algebra, and let $\varphi : A \to \mathbb{C}$ be a character on A. For $n \in \mathbb{N}$, denote by $\varphi^{2n} : A^{(2n)} \to \mathbb{C}$ the $(2n)^{th}$ dual of φ . Then we have the following:

Lemma 3.2: For each $n \in \mathbb{N}$, the functional φ^{2n} is a character on $(A^{(2n)}, \Box)$ with $\varphi^{2n} \mid A = \varphi$.

Proof: We prove this by induction on $n \in \mathbb{N}$.

Let $\Phi, \Psi \in A''$ with $\Phi = \lim_{\alpha} a_{\alpha}$ and $\Psi = \lim_{\beta} b_{\beta}$, as above. Since φ^2 is weak-* continuous, certainly,

$$\varphi^2(\Phi \Box \Psi) = \lim_{\alpha} \lim_{\beta} \varphi(a_{\alpha})\varphi(b_{\beta}) = \varphi^2(\Phi)\varphi^2(\Psi),$$

and so φ^2 is a character on (A'', \Box) .

For arbitrary *n*, the results follows by induction, since $A^{(2n+2)} = A^{(2n)}$.

For a Banach algebra A, let A^{op} be the Banach algebra with the underlying Banach space as A and with product \circ given by $a \circ b = ba$.

 \square

Proposition 3.3: Let *A* be a Banach algebra. Then:

(i) A is permanently weakly amenable if and only if A^{op} is permanently weakly amenable.

(ii) Let A be commutative. Then (A'', \Box) is permanently weakly amenable if and only if (A'', \Diamond) is permanently weakly amenable. **Proof:** (i) This is trivial.

(ii) Since A is commutative, then $\lambda \cdot \Phi = \Phi \cdot \lambda$ $(\lambda \in A', \Phi \in A'')$, and $\Phi \Box \Psi = \Psi \Diamond \Phi$ $(\Phi, \Psi \in A'')$, and so $(A'', \Diamond) = (A'', \Box)^{op}$.

Thus by (i), (A'', \Box) is permanently weakly amenable if and only if (A'', \Diamond) is permanently weakly amenable. \Box

Proposition 3.4: Let A be a Banach algebra and suppose A admits a continuous anti-isomorphism. Then (A'', \Box) is permanently weakly amenable if and only if (A'', \diamond) is permanently weakly amenable.

Proof: Let $\tau : A \to A$ be continuous anti-isomorphism of A. Let $\Phi, \Psi \in (A'', \Box)$ and let (a_{α}) and (b_{β}) be nets in A such that $\Phi = \lim_{\alpha} a_{\alpha}$ and $\Psi = \lim_{\beta} b_{\beta}$. Let $\tau'' : (A'', \Box) \to (A'', \Diamond)$ be the second dual of τ . Then

$$\tau''(\Phi \Box \Psi) = \lim_{\alpha} \lim_{\beta} \tau''(a_{\alpha}b_{\beta})$$
$$= \lim_{\alpha} \lim_{\beta} \tau''(b_{\beta})\tau''(a_{\alpha})$$
$$= \tau''(\Psi) \Diamond \tau''(\Phi).$$

Thus τ'' is an isomorphism from (A'', \Box) onto $(A'', \diamond)^{op}$ and so, by Proposition 3.3 (i), (A'', \Box) is permanently weakly amenable if and only if (A'', \diamond) is permanently weakly amenable. \Box

We recall that a Banach algebra A is a dual Banach algebra [5, Definition 2.23] if there is a closed submodule X of A' such that X' = A as a Banach space.

Theorem 3.5: Suppose A is a dual Banach algebra. If (A'', \Box) is (2n-1)-weakly amenable, then A is (2n-1)-weakly amenable for $n \in \mathbb{N}$.

Proof: Since A is dual Banach algebra, let A = X', for some Banach space X such that \hat{X} is a submodule of the dual module A' = X''. Let $i : X \to A'$ be the canonical map and $i' : A'' \to X' = A$ be the dual map of i. We first show that i' is a homomorphism from (A'', \Box) onto A.

Let $\Phi, \Psi \in A''$, such that $\Phi = \lim_{\alpha} \widehat{a}_{\alpha}, \Psi = \lim_{\beta} \widehat{b}_{\beta}$ for nets $(a_{\alpha}), (b_{\beta})$ in A, where the limits are taken in the weak-* topology $\sigma(A'', A')$ on A''. Then we have

$$i'(\Phi \Box \Psi) = i'(\lim_{\alpha} \lim_{\beta} \widehat{a_{\alpha}} \widehat{b_{\beta}})$$
$$= \lim_{\alpha} \lim_{\beta} i'((a_{\alpha}b_{\beta}))$$
$$= \lim_{\alpha} \lim_{\beta} (a_{\alpha}b_{\beta})$$
$$= \lim_{\alpha} a_{\alpha} \lim_{\beta} b_{\beta}$$
$$= \lim_{\alpha} (i'(a_{\alpha}) \lim_{\beta} i'(b_{\beta}))$$
$$= i'(\Phi)i'(\Psi)$$

where the limits are taken in the weak-* topology $\sigma(A'', A')$ on A''. Thus $i': A'' \to A$ is an algebra homomorphism from A'' onto A. For $i: X \to A'$ with A = X', clearly $i^{(2n)}: A^{(2n-1)} \to A^{(2n+1)}$ and $i^{(2n-1)}: A^{(2n)} \to A^{(2n-2)}, n \in \mathbb{N}$.

Let $a \in A$, then for $x \in X$, we have

$$\langle i'(\hat{a}), x \rangle = \langle \hat{a}, i(x) \rangle = \langle a, x \rangle.$$

Thus $i'(\hat{a}) = a$. and in general $i^{(2n-1)}(\hat{b}) = b$ for $b \in A^{(2n-2)}$ and $\hat{b} \in A^{(2n)}$. Let $D: A \to A^{(2n-1)}$ be a derivation. Then $\overline{D} \equiv i^{(2n)} \circ D \circ i': A'' \to A^{(2n+1)}$ is clearly a derivation, since for $\Phi_1, \Phi_2 \in A''$ and $\Psi \in A^{(2n)}$, we have

$$\begin{split} \langle \overline{D}(\Phi_{1} \Box \Phi_{2}), \Psi \rangle &= \langle (i^{(2n)} \circ D \circ i')(\Phi_{1} \Box \Phi_{2}), \Psi \rangle \\ &= \langle D(i'(\Phi_{1})i'(\Phi_{2})), i^{(2n-1)}(\Psi) \rangle \\ &= \langle D(i'(\Phi_{1})i'(\Phi_{2}) + i'(\Phi_{1})D(i'(\Phi_{2}))), i^{(2n-1)}(\Psi) \rangle \\ &= \langle D(i'(\Phi_{1})), i'(\Phi_{2})i^{(2n-1)}(\Psi) \rangle + \langle D(i'(\Phi_{2})), i^{(2n-1)}(\Psi)i'(\Phi_{1}) \rangle \\ &= \langle D(i'(\Phi_{1})), i^{(2n-1)}(\Phi_{2} \Box \Psi) \rangle + \langle D(i'(\Phi_{2})), i^{(2n-1)}(\Psi \Box \Phi_{1}) \rangle \\ &= \langle i^{(2n)}(D(i'(\Phi_{1}))), \Phi_{2} \Box \Psi \rangle + \langle i^{(2n)}(D(i'(\Phi_{2}))), \Psi \Box \Phi_{1} \rangle \\ &= \langle (i^{(2n)} \circ D \circ i')(\Phi_{1}) \cdot \Phi_{2} + \Phi_{1} \cdot (i^{(2n)} \circ D \circ i')(\Phi_{2}), \Psi \rangle \\ &= \langle \overline{D}(\Phi_{1}) \cdot \Phi_{2} + \Phi_{1} \cdot \overline{D}(\Phi_{2}), \Psi \rangle. \end{split}$$

Hence \overline{D} is a derivation. Since A'' is (2n-1)- weakly amenable, there exists $\lambda \in A^{(2n+1)}$ such that

$$\overline{D}(\Phi) = \Phi \cdot \lambda - \lambda \cdot \Phi \quad (\Phi \in A'').$$

Now $A^{(2n-2)}$ and $A^{(2n)}$ are A-bimodules and the canonical map $j : A^{(2n-2)} \to A^{(2n)}$ is an A-bimodule morphism, and so is $j' : A^{(2n+1)} \to A^{(2n-1)}$.

Let $\gamma = j'(\lambda), \lambda \in A^{(2n+1)}$. Then for $a \in A, b \in A^{(2n-2)}$, we have

$$\langle D(a), b \rangle = \langle D(i'(\hat{a})), i^{(2n-1)}(\hat{b}) \rangle$$

$$= \langle i^{(2n)} D(i'(\hat{a})), \hat{b} \rangle$$

$$= \langle \overline{D}(\hat{a}), j(b) \rangle$$

$$= \langle \hat{a} \cdot \lambda - \lambda \cdot \hat{a}), j(b) \rangle$$

$$= \langle j'(\hat{a} \cdot \lambda - \lambda \cdot \hat{a}), b \rangle$$

$$= \langle a \cdot j'(\lambda) - j'(\lambda \cdot a, b) \rangle$$

$$= \langle a \cdot \gamma - \gamma \cdot a), b \rangle.$$

Thus, $D(a) = a \cdot \gamma - \gamma \cdot a$ $(a \in A, \gamma \in A^{(2n-1)})$, and so $D: A \to A^{(2n-1)}$ is inner. Thus A is (2n-1)-weakly amenable.

4. n-WEAK AMENABILITY OF SEMIGROUP ALGEBRAS

Let S be a non-empty set. Then

$$\ell^{1}(S) = \left\{ f \in \mathbb{C}^{S} : \sum_{s \in S} |f(s)| < \infty \right\},\$$

with the norm $\|\cdot\|_1$ given by $\|f\|_1 = \sum_{s \in S} |f(s)|$ for $f \in \ell^1(S)$. We write δ_s for the characteristic function of $\{s\}$ when $s \in S$. Now suppose that S is a semigroup. For $f, g \in \ell^1(S)$, we set

$$(f \star g)(t) = \left\{ \sum f(r)g(s) : r, s \in S, rs = t \right\} \quad (t \in S)$$

so that $f \star g \in \ell^1(S)$. It is standard that $(\ell^1(S), \star)$ is a Banach algebra, called the *semigroup algebra on* S. For a further discussion of this algebra, see [3, 5], for example. In particular, with $A = \ell^1(S)$, we identify A' with $C(\beta S)$, where βS is the Stone-Čech compactification of S, and (A'', \Box) with $(M(\beta S), \Box)$, where $M(\beta S)$ is the space of regular Borel measures on βS of S; in this way, $(\beta S, \Box)$ is a compact, right topological semigroup that is a subsemigroup of $(M(\beta S), \Box)$ after the identification of $u \in \beta S$ with $\delta_u \in M(\beta S)$. There is always one character on the Banach algebra $\ell^1(S)$: this is

the augmentation character

$$\varphi_S: f \mapsto \sum_{s \in S} f(s), \quad l^1(S) \to \mathbb{C}.$$

Let S be a semigroup, and let $o \in S$ be such that so = os = o ($s \in S$). Then o is a zero for the semigroup S. Suppose that $o \notin S$; set $S^o = S \cup \{o\}$, and define so = os = 0 ($s \in S$) and $o^2 = o$. Then S^o is a semigroup containing S as a subsemigroup; we say that S is formed by *adjoining a zero to S*.

We recall that S is a *right zero semigroup* if the product in S is such that

$$st = t \quad (s, t \in S).$$

In this case, $f \star g = \varphi_S(f)g \ (f, g \in \ell^1(S)).$

Theorem 4.1: Let A be a Banach algebra such that

 $ab = \varphi(a)b \ (a, b \in A)$, where $\varphi \in \Phi_A$. Then:

(i) $\lambda \cdot a = \varphi(a)\lambda$ and $a \cdot \lambda = \langle a, \lambda \rangle \varphi$ for each $a \in A$ and $\lambda \in A'$; (ii) $a \cdot \Phi = \varphi(a)\Phi$ and $\Phi \cdot a = \langle \Phi, \varphi \rangle a$ for each $a \in A$ and $\Phi \in A''$;

(iii) a continuous linear map $D: A \to A''$ is a derivation if and only if $D(A) \subset \ker \varphi$.

Proof: (i) Let $a, c \in A$ and $\lambda \in A'$. Then

$$\langle c, \lambda \cdot a \rangle = \langle ac, \lambda \rangle = \langle \varphi(a)c, \lambda \rangle = \langle c, \varphi(a)\lambda \rangle,$$

and so $\lambda \cdot a = \varphi(a)\lambda$. Similarly, $a \cdot \lambda = \langle a, \lambda \rangle \varphi$. (ii) Let $a \in A, \lambda \in A'$, and $\Phi \in A''$. Then

$$\langle \lambda, a \cdot \Phi \rangle = \langle \lambda \cdot a, \Phi \rangle = \varphi(a) \langle \lambda, \Phi \rangle,$$

and so $a \cdot \Phi = \varphi(a)\Phi$. Similarly, $\Phi \cdot a = \langle \Phi, \varphi \rangle a$.

(iii) Let $D:A\to A''$ be a continuous linear map. Then D is a derivation if and only if

$$\varphi(a)\langle\lambda, Db\rangle = \varphi(a)\langle\lambda, Db\rangle + \langle b, \lambda\rangle\langle\varphi, Da\rangle \quad (a, b \in A, \lambda \in A'),$$

and so D is a derivation if and only if $\langle \varphi, Da \rangle = 0$ $(a \in A)$. \Box The following result is [5, Proposition 2.13].

Theorem 4.2: Let A be a Banach algebra such that $ab = \varphi(a)b$ $(a, b \in A)$, where $\varphi \in \Phi_A$. Then A is weakly amenable.

We shall extend the result by showing that, in fact, A is n-weakly amenable for each odd n.

Theorem 4.3: Let A be a Banach algebra such that $ab = \varphi(a)b$ $(a, b \in A)$, where $\varphi \in \Phi_A$. Then A is (2k - 1)-weakly amenable for each $k \in \mathbb{N}$.

Proof: Let $k \in \mathbb{N}$, and let $D : A \to A^{(2k-1)}$ be a continuous derivation. The (2k-2)-dual of D is the map $D^{(2k-2)} : A^{(2k-2)} \to A^{(4k-3)}$; of course this map is continuous with respect to the respective weak-* topologies on $A^{(2k-2)}$ and $A^{(4k-3)}$. Let $P : A^{(4k-3)} \to A^{(2k-1)}$ be the canonical projection that is the dual of the natural injection of $A^{(2k-2)}$ into $A^{(4k-4)}$, and define

$$\overline{D} = P \circ D^{(2k-2)} : A^{(2k-2)} \to A^{(2k-1)}$$

The map \overline{D} is a continuous linear operator with $\|\overline{D}\| = \|D\|$, \overline{D} is continuous with respect to the respective weak-* topologies on $A^{(2k-2)}$ and $A^{(2k-1)}$, and $\overline{D} \mid A = D$.

Since D is a derivation and $ba = \varphi(b)a$ $(a, b \in A)$, we have

$$\varphi(b)\langle\Phi_0, Da\rangle = \varphi^{(2k-2)}(\Phi_0)\langle b, Da\rangle + \varphi(a)\langle\Phi_0, Db\rangle \quad (a, b \in A)$$
(1)

for each $\Phi_0 \in A^{(2k-2)}$. Now take $\Psi \in A^{(2k-2)}$. Since A is weak-* dense in $A^{(2k-2)}$, it follows from (1) that

$$\varphi^{(2k-2)}(\Psi)\langle\Phi_0, Da\rangle = \varphi^{(2k-2)}(\Phi_0)\langle\Psi, Da\rangle + \varphi(a)\langle\Phi_0, \overline{D}\Psi\rangle \quad (2)$$

for each $a \in A$ and $\Psi \in A^{(2k-2)}$.

Let $\Lambda \in A^{(2k-1)}$, and let the inner derivation from A to $A^{(2k-1)}$ specified by Λ be D_{Λ} . Then

$$\langle \Psi, D_{\Lambda}a \rangle = \varphi^{(2k-2)}(\Psi) \langle a, \Lambda \rangle - \varphi(a) \langle \Psi, \Lambda \rangle \quad (a \in A, \Psi \in A^{(2k-2)}).$$
(3)

Choose $\Phi_0 = a_0 \in A$ with $\varphi(a_0) = 1$, and then define

$$\langle \Psi, \Lambda \rangle = \langle a_0, \overline{D}\Psi \rangle \quad (\Psi \in A^{(2k-2)}).$$

296

Clearly Λ is a continuous linear function on $A^{(2k-2)}$ with $\|\Lambda\| \leq \|D\| \|a_0\|$, and so $\Lambda \in A^{(2k-1)}$. By (3) we have

$$\langle \Psi, D_{\Lambda}a \rangle = \varphi^{(2k-2)}(\Psi) \langle a_0, Da \rangle - \varphi(a) \langle a_0, \overline{D}\Psi \rangle \quad (a \in A, \Psi \in A^{(2k-2)})$$

It follows from (2) that $\langle \Psi, D_{\Lambda}a \rangle = \langle \Psi, Da \rangle$ $(a \in A, \Psi \in A^{(2k-2)})$, and so $D = D_{\Lambda}$. Thus D is inner.

Corollary 4.4: Let S be a right zero semigroup. Then $\ell^1(S)$ is (2k-1)-weakly amenable for each $k \in \mathbb{N}$.

Proof: The Banach algebra $\ell^1(S)$ clearly satisfies the condition in the above theorem, taking $\varphi = \varphi_S$.

Theorem 4.5: Let S be an infinite right zero semigroup. Then $\ell^1(S)$ is not 2-weakly amenable.

Proof: Set $A = \ell^1(S)$, so that $A'' = M(\beta S)$. Clearly $\varphi_S(\delta_u) = 1$ $(u \in \beta S)$.

Let $u, v \in \beta S \setminus S$ with $u \neq v$, let $\Lambda \in C(\beta S)$, and then define

$$D(f) = \langle f, \Lambda \rangle (\delta_u - \delta_v) \quad (f \in A)$$

Then $D: A \to A''$ is a continuous linear map; by Lemma 4.1(iii), D is a derivation because $\langle \varphi_S, D(f) \rangle = 0$ $(f \in A)$.

Since βS is a Hausdorff and totally disconnected space, there exists a clopen set $F \subset \beta S$ with $u \in F$ and $v \notin F$. We choose $s_0, t_0 \in F \cap S$ with $s_0 \neq t_0$, and we define $\Lambda \in C(\beta S)$ by setting $\langle f, \Lambda \rangle = f(s_0) \ (f \in A)$.

Let D be as above, with our chosen value of Λ , and assume towards a contradiction that $D = D_{\mu}$ for some $\mu \in M(\beta S)$. Then, using Lemma 4.1(i), we see that

$$f(s_0)(\lambda(u) - \lambda(v)) = \langle f, \lambda \rangle \langle \varphi_S, \mu \rangle - \varphi_S(f) \langle \lambda, \mu \rangle \quad (f \in A, \lambda \in A') .$$
(4)

Choosing $\lambda = \chi_F$, the characteristic function of F, and $f_0 = \delta_{s_0} - \delta_{t_0} \in A$, we see that $f_0(s_0) = \chi_F(u) = 1$, $\chi_F(v) = 0$, and $\langle f_0, \chi_F \rangle = \varphi_S(f_0) = 0$. This is a contradiction of (4), and so D is not inner. This shows that A is not 2-weakly amenable.

Theorem 4.6: Let S be an infinite right zero semigroup. Then $\ell^1(S)$ is *n*-weakly amenable if and only if *n* is odd.

Proof: By Theorem 4.3, $\ell^1(S)$ is *n*-weakly amenable whenever *n* is odd. By Theorem 4.5, $\ell^1(S)$ is not 2-weakly amenable, and hence not *n*-weakly amenable for any even *n*.

We now give a small extension of the above result.

Let $(B, \|\cdot\|_B)$ be a Banach algebra, and let $\varphi \in \Phi_B$. Define $A = B \oplus \mathbb{C}$ (that is the ℓ^1 -direct sum of B and \mathbb{C}) as a Banach space with

the ℓ^1 -norm (that is $||(b, z)|| = ||b||_B + |z|$ $(b, z) \in A, b \in B, z \in \mathbb{C}$), and take the product in A to be specified by

$$(b_1, z_1)(b_2, z_2) = (b_1 b_2, \varphi(b_1) z_2 + \varphi(b_2) z_1 + z_1 z_2) \quad (b_1, b_2 \in B, \ z_1, z_2 \in \mathbb{C}).$$

Then A is a Banach algebra. Set p = (0, 1), an idempotent in A. Then $\mathbb{C}p$ is a one-dimensional ideal in A, and $\mathbb{C}p$ has the trace extension property. We regard φ as an element of Φ_A by setting $\varphi(p) = 1$.

Define $q \in A'$ by setting $\langle p, q \rangle = 1$ and $q \mid B = 0$. Let $n \in \mathbb{N}$. Then we have $A^{(n)} = B^{(n)} \oplus \mathbb{C}p$ as a Banach space with the ℓ^1 -norm for n even, and $A^{(n)} = B^{(n)} \oplus \mathbb{C}q$ as a Banach space with the ℓ^{∞} -norm for n odd. Clearly $b \cdot q = q \cdot b = \varphi(b)q$ ($b \in B$), and so these decompositions are B-module decompositions. Let $n \in \mathbb{N}$, and let $\Lambda \in A^{(n)}$. Then

$$p \cdot \Lambda = \Lambda \cdot p = \begin{cases} \langle p, \Lambda \rangle \varphi & (n \text{ odd}), \\ \langle \Lambda, \varphi \rangle p & (n \text{ even}). \end{cases}$$
(5)

Let $D: A \to A^{(n)}$ be a continuous derivation. Then $p \cdot Dp = Dp \cdot p$, and so Dp = 0 by [3, Theorem 1.8.2]. Thus we may regard D as a continuous derivation $D: B \to A^{(n)}$. Suppose that n is even. Then we may write

$$Db = D_1(b) + d(b)p \quad (b \in B);$$
 (6)

here $D_1 : B \to B^{(n)}$ is a continuous derivation and $d \in B'$ is a continuous point derivation at the character φ . A similar conclusion holds in the case where n is odd, with q replacing p in (6).

Now suppose that the product in B is given by $b_1b_2 = \varphi(b_1)b_2$ $(b_1, b_2 \in B)$. Then

$$\varphi(b_1)d(b_2) + \varphi(b_2)d(b_1) = d(b_1b_2) = \varphi(b_1)d(b_2) \quad (b_1, b_2 \in B),$$

and so d = 0. Thus we may regard D as a continuous derivation $D: B \to B^{(n)}$. It follows that, for each $n \in \mathbb{N}$, the Banach algebra A is *n*-weakly amenable if and only if B is *n*-weakly amenable.

Let S be an infinite right zero semigroup, and let $A = \ell^1(S^\circ)$, $B = \ell^1(S)$, and $p = \delta_o$. Then p is an idempotent in A such that $\mathbb{C}p$ is an ideal in A, and so we are in the above situation, with $\varphi = \varphi_S$. Thus we have the following conclusion.

Theorem 4.7: Let S be an infinite right zero semigroup. Then $\ell^1(S^\circ)$ is n-weakly amenable if and only if n is odd.

It is shown in [4] that the commutative Banach algebra $C^{(1)}(\mathbb{I})$ of all continuously differentiable functions on the unit interval is not *n*-weakly amenable for any $n \in \mathbb{N}$. We now give an example of the form $A \oplus X$ with this property.

We recall that a Banach algebra A is a dual Banach algebra [5, Definition 2.23] if there is a closed submodule X of A' such that X' = A as a Banach space. For example, let $A = \ell^1(S^\circ)$ and $B = \ell^1(S)$, where $S = \mathbb{N}$ and S is a right zero semigroup. Then A is a dual Banach algebra. Indeed, take set X = c, the space of convergent sequences, regarded as a subspace of $\ell^{\infty} \subset \ell^{\infty} + \mathbb{C}q =$ A'. Clearly X' = A as a Banach space. We claim that X is a closed A-submodule of A'. Indeed, take $\lambda \in c$ and $k \in \mathbb{N}$. Then $(\delta_k \cdot \lambda)(n) = \lambda(k)$ and $(\lambda \cdot \delta_k)(n) = \lambda(n)$ for $n \in \mathbb{N}$, and so $\delta_k \cdot \lambda, \lambda \cdot \delta_k \in c$. Also $\delta_o \cdot \lambda = \lambda \cdot \delta_o$ is a constant sequence, and so belongs to X. It follows that X is an A-submodule.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then we set $\mathfrak{A} = A \oplus X$ as a Banach space with the ℓ^{∞} -norm, with the product given by

$$(a, x)(b, y) = (ab, a \cdot y + x \cdot b) \quad (a, b \in A, x, y \in X)$$

Then \mathfrak{A} is a Banach algebra [3, p. 239]. The *n*-weak amenability of these algebras is studied in [14], and four conditions which, taken together, are necessary and sufficient for \mathfrak{A} to be *n*-weakly amenable are given in [14, Theorems 2.1, 2.2].

Theorem 4.8: Let $S = \mathbb{N}$, regarded as an infinite right zero semigroup, let $A = \ell^1(S^\circ)$, and let X = c, regarded as a Banach Amodule. Set $\mathfrak{A} = A \oplus X$. Then, for each $n \in \mathbb{N}$, \mathfrak{A} is not *n*-weakly amenable.

Proof: We have $A^{(k)} = X^{(k+1)}$ as Banach A-bimodules for each $k \in \mathbb{Z}^+$. Let $k \in \mathbb{N}$.

By Theorem 4.7, A is not 2k-weakly amenable, and so there is a continuous derivation $D : A \to X^{(2k+1)}$ which is not inner. Thus $\mathcal{H}^1(A, X^{(2k+1)}) \neq \{0\}$. This shows that clause 2 of [14, Theorem 2.1] fails, and so, by that theorem, \mathfrak{A} is not (2k + 1)-weakly amenable.

To show that \mathfrak{A} is not 2k-weakly amenable, it suffices to show that \mathfrak{A} is not 2-weakly amenable; for this, we shall follow the argument in clause 4 of [14, Theorem 2.2].

We have $\mathfrak{A}'' = A'' \oplus X'' = A'' \oplus A'$. Define

$$D: (a, x) \mapsto (0, x), \quad A \oplus X \to A'' \oplus X''.$$

Then D is a continuous linear operator, and it is immediately checked that D is a derivation. Assume towards a contradiction that there exists $(\Phi_0, \lambda_0) \in A'' \oplus A'$ such that $D = D_{(\Phi_0, \lambda_0)}$. Then

$$(0,x) = (a \cdot \Phi_0, a \cdot \lambda_0 + x \cdot \Phi_0) - (\Phi_0 \cdot a, \lambda \cdot a + \Phi_0 \cdot x) \quad (a \in A, x \in X)$$
(7)

In particular $a \cdot \Phi_0 = \Phi_0 \cdot a$ $(a \in B)$, where $B = \ell^1(S)$. By Lemma 4.4(ii), it follows that $\varphi_S(a)\Phi_0 = \langle \Phi_0, \varphi_S \rangle a$ $(a \in B)$. Take $a \in B$ with $\varphi_S(a) = 1$ and $a \notin \mathbb{C}\Phi_0$ to see that necessarily $\Phi_0 = 0$. Now take a = 0 in (7) to see that x = 0 $(x \in X)$, a contradiction. Thus the derivation D is not inner, and so \mathfrak{A} is not 2-weakly amenable. \Box

Let S be a semigroup. For $s \in S$, we define $L_s(t) = st$,

 $R_s(t) = ts$ $(t \in S)$. Let F be a non-empty subset of S. Then $s^{-1}F = L_s^{-1}(F) = \{t \in S : st \in F\}$ and $Fs^{-1} = R_s^{-1}(F) = \{t \in S : ts \in F\}$. We recall that S is weakly left (respectively, right) cancellative if $s^{-1}F$ (respective, Fs^{-1}) is finite for each $s \in S$ and each finite subset F of S, and S is weakly cancellative if it is both weakly left cancellative and weakly right cancellative. With this definition, we have the following result:

Theorem 4.9: Let S be an infinite weakly cancellative semigroup. Then $l^1(S)$ is (2n-1)-weakly amenable if $l^1(S)''$ is (2n-1)-weakly amenable.

Proof: Since S is weakly cancellative, then $l^1(S)$ is a dual Banach algebra [5, Theorem 4.6], and so, the result follows from Theorem 3.5.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee(s) whose comments improved the original version of this manuscript.

REFERENCES

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 2, 839 - 848, 1951.
- (2) T. D. Blackmore, Weak amenability of discrete semigroup algebras, Semigroup Forum 55, 196 - 205, 1997.
- (3) H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, New Series, 24, The Clarendon Press, Oxford, 2000.
- (4) H. G. Dales, F. Ghahramani, and N. Gronbaek, Derivations into iterated duals of Banach algebras, Studia Math. 128, 19 - 54, 1998.
- (5) H. G. Dales, A. T.-M. Lau, and D. Strauss, *Banach algebras on semigroups and their compactifications*, Memoirs American Math. Soc., **205**, 1 165, 2010.
- (6) J. Duncan and S. A. R. Hosseinium, *The second dual of a Banach algebra*, Proc. Royal Soc. Edinburgh, 84A, 309 - 325, 1978.
- (7) G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, J. Funct. Anal., 161, 364 - 383, 1999.

- (8) J. M. Howie, Fundamentals of semigroup theory, London Math. Soc. Monographs, 12, Clarendon Press, Oxford, 1995.
- (9) B. E. Johnson, Cohomology in Banach algebras, Memoirs American Math. Soc., 127 1972.
- (10) B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc. 23, 281 - 284, 1991.
- (11) B. E. Johnson, Permanent weak amenability of group algebras of free groups, Bull. London Math. Soc., 31, 569 - 573, 1999.
- (12) O.T. Mewomo, On n-weak amenability of Rees semigroup algebras, Proc. Indian Acad. Sci. (Math. Sci.), 118 (4), 1 - 9, 2008.
- (13) Y. Zhang, Weak amenability of a class of Banach algebras, Canadian Math. Bull. 44, 504 - 508, 2001.
- (14) Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc., 4131 - 4151, 2002.

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF AGRICUL-TURE, ABEOKUTA, NIGERIA.

E-mail addresses: mewomootQunaab.edu.ng, tosinmewomoQyahoo.com

DEPARTMENT OF MATHEMATICS, FEDERAL UNIVERSITY OF AGRICUL-TURE, ABEOKUTA, NIGERIA.

E-mail address: jibfem@yahoo.com