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ABSTRACT. In this study, some linear-bivariate polynomials
p(x,y) = a+ bz + cy that generate quasigroups over the ring Z,,
and which forms a group P, (Zy) which is a subgroup of a monoid
Hy(Zy) are studied. Their isotopy structure (isotopism, auto-
topism, isomorphism, automorphism) are also studied. Some
sufficient conditions based on a,b, ¢, for the isomorphism, iso-
topism and equivalence of the generated quasigroups are also
deduced.
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1. INTRODUCTION

Let G be a non-empty set. Define a binary operation (-) on G.
(G, ) is called a groupoid if G is closed under the binary operation
(). A groupoid (G, -) is called a quasigroup if the equations a-z = b
and y - ¢ = d have unique solutions for x and y for all a,b,c,d € G.
A quasigroup (G, +) is called a loop if there exists a unique element
e € (G called the identity element such that z-e =e-x =z for all
SN EN

A function f : S xS — S on a finite set S of size n > 0 is
said to be a Latin square (of order n) if for any value a € S both
functions f(a,-) and f(-,a) are permutations of S. That is, a Latin
square is a square matrix with n? entries of n different elements,
none of them occurring more than once within any row or column
of the matrix.
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Definition 1: A pair of Latin squares fi(+,-) and f(+,-) is said to
be orthogonal if the pairs (fi(z,y), f2(z,y)) are all distinct, as =
and y vary.

For every quasigroup (G,-), there exists five other corresponding
quasigroups.

Definition 2: (Parastrophes) Let (G, ) be a quasigroup. The five

parastrophes of (G,0) are (G,0%), (G,071), (G,710), <G, (9_1)*>

and (G, (*10)*> whose binary operations 6*, 6~ ~16, (§~1)* and
(710)* defined on G satisfy the conditions :

(a): yo'r =z a0y =2V uxyze€G,

(b): 20712 =y & 20y = z Va,y, 2 € G,

(¢): 2 YWy =us 20y =2 Vr,y,z € G;

(d): 2(07 ) =y & 20y = 2 Vz,y,2 € G; and
(e): y((O)z=xsxbly=2Vuzr,yzeq.

A quasigroup which is equivalent to all its parastrophes is called a
totally symmetric quasigroup while its loop is called a Steiner loop.
Definition 3: Let (G, ) be a groupoid or quasigroup. The triple
(A, B,C) where A,B,C : G — G are bijections is called an
autotopism of (G, -) if

zA-yB = (z-y)C for all z,y € G.

The group of all autotopisms of (G, -) is denoted by AUT(G,-).
Definition 4: Let (G,-) be a groupoid or quasigroup. A triple
(A, A A) € AUT(G,-) is called an automorphism of (G,-) and is
written simply as A. The group of all automorphisms of (G, -) is
denoted by AUM (G, -).

Remark 1: Note that AUM(G,-) < AUT(G,-).

Definition 5: Let (G, -) and (H, o) be two groupoids. let a, 8,7 : G
— H be bijections. The triple («, 3, ) is called an isotopism from
(G,-) onto (H,o) if

zaoyf = (x-y)yforall z,y € G.

This will be expressed in the form (G, -) I(C::ﬂ) (H,0). (G,-) and
sotopism

(H, o) are said to be isotopic and are referred to as isotopes of each

other. I

Definition 6: Let (G,-) M)

Isotopism

is called a principal isotopism from (G,-) onto (G,o0). (G,-) and
(G, 0) are called principal isotopes.

(G,0). Then, the triple (a, 8, 1)
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Definition 7: Let (G,-) I(at’a’.a) (H,o). Then, the triple (o, a, «)
sotopism

is called an isomorphism from (G, -) onto (G,o0). (G,-) and (G, o)

are called isomorphes and are said to be isomorphic under o which

will be expressed as (G, -) =~ (G, o).
The basic text books on quasigroups, loops are Pflugfelder [10],
Bruck [1], Chein, Pflugfelder and Smith [2], Dene and Keedwell [3],
Goodaire, Jespers and Milies [4], Sabinin [14], Smith [15], Jaiyéola
[6] and Vasantha Kandasamy [17].
Definition 8: (Bivariate Polynomial) A bivariate polynomial is
a polynomial in two variables, = and y of the form P(z,y) =
ZZ‘,j&ij[L‘iyj.
Definition 9: (Bivariate Polynomial Representing a Latin Square)
A bivariate polynomial P(z,y) over Z,, is said to represent (or gen-
erate) a Latin square if (Z,,, *) is a quasigroup where x : Z, XZ,, —
Z,, is defined by x xy = P(x,y) for all z,y € Z,.
In 2001, Rivest [11] studied permutation polynomials over the ring
(Zy,,+, ) where n is a power of 2: n = 2. This is based on the fact
that modern computers perform computations modulo 2 efficiently
(where w = 2,8,16,32 or 64 is the word size of the machine), and
so it was of interest to study PPs modulo a power of 2. Below are
some important results from his work.
Theorem 1: (Rivest [11]) A bivariate polynomial P(z,y) =
Eivjaijxiyj represents a Latin square modulo n = 2%, where w >
2, if and only if the four univariate polynomials P(z,0), P(x,1),
P(0,y), and P(1,y) are all permutation polynomial modulo n.
Theorem 2: (Rivest [11]) There are no two polynomials P (x,y),
Py(x,y) modulo 2% for w > 1 that form a pair of orthogonal Latin
squares.
In 2009, Vadiraja and Shankar [16] motivated by the work of Rivest
continued the study of permutation polynomials over the ring
(Z,,,+,-) by studying Latin squares represented by linear and
quadratic bivariate polynomials over Z, when n = 2% with the
characterization of some PPs. Some of the main results they got
are stated below.
Theorem 3: (Vadiraja and Shankar [16]) A bivariate linear poly-
nomial a + bx + cy represents a Latin square over Z,, n # 2" if and
only if one of the following equivalent conditions is satisfied:

(i): both b and c are coprime with n.
(ii): a+ bz, a+cy, (a+c)+bx and (a+b) + cy are all permutation
polynomials modulo n.
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(iii): b and c are invertible in (Z, x).

Theorem 4: (Vadiraja and Shankar [16]) If P(z,y) is a bivariate
polynomial having no cross term, then P(x,y) gives a Latin square
if and only if P(x,0) and P(0,y) are permutation polynomials.
Theorem 5: (Vadiraja and Shankar [16]) Let n be even and
P(z,y) = f(z) + g(y) + xy be a bivariate quadratic polynomial,
where f(x) and g(y) are permutation polynomials modulo n. Then
P(z,y) does not give a Latin square.

The authors were able to establish the fact that Rivest’s result for
a bivariate polynomial over Z, when n = 2% is true for a linear-
bivariate polynomial over Z, when n # 2*. Although the result
of Rivest was found not to be true for quadratic-bivariate polyno-
mials over Z, when n # 2% with the help of counter examples,
nevertheless some of such squares can be forced to be Latin squares
by deleting some equal numbers of rows and columns.
Furthermore, Vadiraja and Shanhar [16] were able to find examples
of pairs of orthogonal Latin squares generated by bivariate polyno-
mials over Z, when n # 2% which was found impossible by Rivest
for bivariate polynomials over Z, when n = 2%.

Theorem 6: (Jaiyéold and Ilojide [7]) Let Py(z,y) = P(z,y) =
a + bx + cy represent a quasigroup over Z, such that b and c are
invertible in Z,. Let Pi(x,y), i = 2,3,4,5,6 denote the linear-
bivariate polynomials that represent the parastrophes of (G,60) =
(G7 Pl): (G7 0*) = (Ga P2)7 (G7 071) - (G7 P3)7 (Gvil ‘9) = (Ga P5)7

<G, (9*1)*) — (G, P,) and (G, (*19)*) — (G, Ps). Then,
(1): Py(z,y) = a+ cx + by;

(ii): Py(z,y) = —ac™t — btz + cly;

(iii): Py(z,y) = —ac™t + ¢ o — bety;

(iv): Ps(z,y) = —ab™t + b7 te — cb~ly;

(v): Ps(z,y) = —ab™' —cb 'z + b 1y.

Theorem 7: (Jaiyéolda and Ilojide [7]) Let Pi(z,y) = P(z,y) =
a + bx 4 cy represent a quasigroup over Z, and let

HP(ZR) = {Pf(xvy) = fl(a7 b, C) + fQ(a7 b, C)I + f3(a7 b, C)y |

f17f27f3 : Zn X Zn X Zn _>Zn}

For all Py, P, € Hp(Zy), where Ps(x,y) = fi(a,b,c)+ fa(a,b, c)z+
f3(a,b,c)y and Py(x,y) = g1(a, b, c)+g2(a, b, c)x+gs(a, b, c)y, define
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x on Hp(Zy,) as follows:

Pf * Pg = (Pf)g =0 <f1(&7 ba C)?fQ(aa b> C)>f3(a’ b> C))
+92<f1(aa b,C),fQ(&,b,C),fg(&,b,C)).’ﬂ

+93<f1(a7 b? C)? f2(a7 bv C)v f3(a7 bv C) Y.

Hp(Zy,), *) is a monoid.

Theorem &8: (Jaiyéold and Ilojide [7]) Let Pi(z,y) = P(z,y) =
a + bxr + cy represent a quasigroup over Z, and let Pp(Z,) =

{Py, Py, P3, P, Ps, Ps}. Then, <PP(Zn), *) is a subgroup of

HP(Zn)a *

The objective of the present work is to study the isotopic struc-
ture of elements of the group Pp(Z,) < Hp(Z,). Some linear-
bivariate polynomials P(x,y) = a + bx + cy that generate quasi-
groups over the ring Z, and which forms a group Pp(Z,) which
is a subgroup of a monoid Hp(Z,) are investigated. Their isotopy
structure (isotopism, autotopism, isomorphism, automorphism) are
studied. Some sufficient conditions based on a, b, ¢, for the isomor-
phism, isotopism and equivalence of the generated quasigroups are
also deduced.

2. MAIN RESULTS

Theorem 9: Let P(x,y) = a + bx + cy represent a quasigroup
over Z, such that a is invertible in Z,,. Let Ps(z,y) = fi(a,b,c) +

fala,b,c)x + f3(a,b,¢)y = fi + fox + f3y € Hp(Z,) such that fi, fo
and f3 are invertible. Then

<bea*1f1f;1’chaflflf;l’R:”h)
Isotopism

R:_NIR;l (bef; 1 ,R:fg_ 1 ,I)

(b): (Zmp) = (Zn7pf)<:>(zmpf)

(a): (Zn, P)

> (Zn, Pf)

> (Zn, Pf)

autotopism

RX . RX ,I)
< bry b efg

Isotopism

(c): R*\R} € AUM(Z,,P) <= (Z,.P) s (Z, Py).
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Proof:
Now, P¢(z,y) = fi(a,b,c)+ fa(a,b,c)x + f3(a,b,c)y = fi + far+
fsy = (a+af fox+af fay)a™ fr = [a+ b afy ! for)+
c(ctaf;t fay)]a ™t fu.

This implies, P¢(z,y) = (P(b’lafflfgx, c’lafflfgy))a’lfl =

Pr(ba™" fify ', ca” fifs'y) = [P(a.y)la™ i

x x _ x
= Pf(xRba’lflfg_hyRca’lflfg_l) - P('T’ y)Ra—lh'

The conclusions of the theorem can be deduced from this.
Remark 2: Let P(x,y) = a+ bz + cy represent a quasigroup over
Z.,, such that a is invertible in Z,,. Then

(RYR*_, R} R | ,RXR*_,RI R, ,R*_|R)
a C a a \

(a): (Z,, P) - (Zp, Py).
Isotopism
R R
(b): (Zn,P) = (Zyn,P) <= (R _1,R},_\,1) € AUT(Zy, P) <=
b=c.
R,

(C): (Zn, P) g (ZTU PQ) <~ (R:,l R;C,l, R:,l chl),l, R:,l) 6 AUT(ZT“ PQ)
(BB 0D

Isotopism

(d): R*., R € AUM(Z,, P) <= (Zy, P) (Zn, Py).

(R R*_,R* | RER*_,R* | .R*_,)

(e): R € AUM(Zy, P) <= (Z,, P) s P— >
(Zn, Pg).
Proof: These follow from Theorem 9 with the following substitu-
tions:
Py(z,y) =a+cx+by. So, fi =a, fo=c, f3=0>0.
Remark 3: Let P(x,y) = a+ bz + cy represent a quasigroup over
7., such that a is invertible in Z,,. Then

X

X pX X X X pX X pX x
(Rb RaflR—ac_lR—cbfl’Rc Ra,*lR—ac_ch 7I%afllz—ac_l>\ (Z P )
ny L 3)-

(a): (Zn, P)

Isotopism

X

(b): (Zn, P) =
(©): (Zo.P)

(Zy, P3) <= (R*,, R%,1) € AUT(Z,, Py).
1
(Zn, Ps) & (RY, R 4o, R, 1) € AUT(Z,,, P3).

(R*,,RS.)
——— (Zn, Ps).

Isotopism

17 ok

(d): R*_, € AUM(Z,, P) <= (Z,, P)

(RCT ,R* R* )

—ac’ " _ge—1

(e): R*~' € AUM(Z,,P) < (Zy, P)

> (Zn, Ps).

Isotopism



ON THE ISOTOPY STRUCTURE OF ELEMENTS. .. 323

Proof: These follow from Theorem 9 with the following substitu-
tions:
P3(z,y) = —ac ' —bcta+cly. So, fi = —ac™t, fo = —bc! fy =

c .
Remark 4: Let P(x,y) = a + bz + cy represent a quasigroup over
Z,, such that a is invertible in Z,,. Then

X R* ,R

X pX X X pX pX X x
(RbR R ac_lRC 7RC }%a_l]%—ac_l1%—(36_17 a—1 —ac_l)

o—11

(a): (Zn,P) > (ZR,P4).

Isotopism

X

R_

(b): (Zn, P)

(Zn, Py) <= (R}, R” 5,1, 1) € AUT(Z,, Py).

(Zn, P4) <~ (RX R*

—ab?’ acb—1?
(RyRY, 1)

77

(¢): (Z,,P) R*._\) € AUT(Zy, P,).

(d): BY, \ € AUM(Zy, P) = (Zy, P) ——20 (Z,,, Py).
sotopism
X —1 (Ria‘lﬂRiaCb*l’Riac*l)
(e): R € AUM(Zy, P) <= (Z,, P) p— > (Zmp4).
sotopism

Proof: These follow from Theorem 9 with the following substitu-
tion:
Py(z,y) = —ac™' +clox —bcly. So, f1 = —ac™t, fa=ct f3 =

Remark 5: Let P(x,y) = a + bz + cy represent a quasigroup over
Z,, such that a is invertible in Z,,. Then

X X X pX X x X X
(R R Rb ’Rca_lR—ab_1R7b571’Ra_lR—ab_l)

(a): (Z,, P) =

> (Zn, P5)

Isotopism

R,

| X
o

(b): (Zn, P)
R,

(Zn, Ps) <= (R}, R*,, 1) € AUT(Z,, Ps).

1

(Zy,, P5) <= (R

—ab?

171

(): (Z,, P) R, R*. ) € AUT(Z,, Py).
. (R RX,.0)

() B, € AUM(Z,, P) <= (Z0, P) =2 (Z,, ).
(R* o RER 1)

—ab—1

(e): R*~' € AUM(Z,, P) < (Z,, P) s (Zon, Ps).

Isotopism
Proof: These follow from Theorem 9 with the following substitu-
tions:
Ps(z,y) = —ab™ +b7lx —cb7ly. So, fi = —ab™!, fo=b"1, f3 =
—cb™t.
Remark 6: Let P(x,y) = a + bz + cy represent a quasigroup over
7., such that a is invertible in Z,,. Then
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X X x X X X X X
. (Rba_l R—ab_lR—bc_l 71%(:(1._1}%—1117_1 Rb 7}%a_l]%—ab_l)
(a): (Zn, P)

Isotopism

> (Zn, Pﬁ)

R_,

| X
o

(b): (Zn, P)

(©): (Zu, P)

(Zy,, Ps) < (R

b2¢e— 1>

RX.1) € AUT(Z,, Py).
1

(Z, Ps) & (R* o1, R 4oy R 1) € AUT(Zyy, Py).

—ac)

[P

x (RbXQCfuRchvI)
(d): R*,, € AUM(Z,, P) <= (Z,, P) —2""""5% (Z,, Py).

Isotopism

(Riabc_l 7Riac7Riab_1)

Isotopism

Proof: These follow from Theorem 9 with the following substitu-

tions:

Ps(z,y) = —ab™'—b"tex+by. So, fi = —ab™, fo = —b7lc, f3 =
bt

Corollary 1: Let P(x,y) = a + bz + cy represent a quasigroup

over Z, such that a is invertible in Z,,. Then

(a): (RY.\,R% 1) € AUT(Zy, Py) <= (Zn, P) = (Zy, P) <
Py(bx,cy) = Py(cx,by) <= (b—c)[cx —by] = 0 <= b =
C <— Pl(xuy) - P2($7y)

(b): (R:,l R:cfl, R:,l R:bfl, R:,l) 6 AUT(ZT“ PQ) < aPQ(b(L‘, Cy) -
Py(acx,aby) <= af(a — 1) + (b — ¢)(cx — by)] = 0 <=
aP(x,y) = Py(ax,ay).

(CR))

(€): (Zn, P) ———"— (L, P2).

Isotopism

(be Rj_lR:_l R Rj_lR:_l ,R:_l)

(e): R*~' € AUM(Z,,P) < (Z,, P)

> (Z, Ps).

(d): (Z,, P) po— > (L, Pg) < P(z,y)a =

P(ax,ay) <= a = 1.
Proof: These follow from Remark 2.
(a): This is obtained from (b) of Remark 2.
(b): This is obtained from (c) of Remark 2.
(c): This is obtained from (d) of Remark 2.
(d): This is obtained from (e) of Remark 2.
Corollary 2: Let P(x,y) = a + bx + cy represent a quasigroup
over Z, such that a is invertible in (Z,, x). Then
(a): b=c<= (Zyn, P) = (Zy, P1).
(b): aPi(x,y) = Pa(ax,ay) <= aPy(bx, cy) = Py(acz, aby).
Proof: These are gotten from (a) of Corollary 1.

Corollary 3: Let P(x,y) = a + bx + cy represent a quasigroup
over Z, such that a is invertible in Z,,. Then
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:cP3(a:, y) = P(—cx,—cy).
(b): (RS, R*,.,R* 1) € AUT(Zy, Ps) <= cP3(ax, —acy) =
—aPs(x,y) <= Pl(ax,ay) = aPs(z,y).

(rx.m501)
—_—

(a): (R*., R}, 1) € AUT(Zy, P3) <= P3(—cx,*y) = P3(x,y) <=

(C): (Zn7 P) Tsotopism (Zn, P3) s P3(—Cl’,02y) = P3($,y) <
—P(cx,cy) = cP(—x,—y) <= ¢ = =1 <= (Z,, ) =
(Z,, Ps).
(RZ( 7Riac’Ri 71)
(d): (Z,, P) — 2 (Zy, P3) <= cPs(az, —acy) =
SOotopism

—aP(x,y) <= P(ax,ay) = aP(z,y).
Proof: These follow from Remark 3.

(a): This is obtained from (b) of Remark 3.
(b): This is obtained from (c) of Remark 3.
(c): This is obtained from (d) of Remark 3.
(d): This is obtained from (e) of Remark 3.

Corollary 4: Let P(x,y) = a + bz + cy represent a quasigroup

over Z, such that a is invertible in (Z,, x). Then ¢ = —1 <=

(Zn, P3) = (Zn, Pl)

Proof: This is obtained from (a) of Corollary 3.

Corollary 5: Let P(x,y) = a + bx + cy represent a quasigroup

over Z, such that a is invertible in Z,,. Then

(a): (R, R* 5, -1,1) € AUT(Zy,, Py) <= Py(bcx, —c*y) = Py(z,by)
< —P(cx,cy) = cPy(—x,—y).

(b): (RX,,. R -1, R, 1) € AUT(Zy, P)) <= P(ax,ay) =

aPy(z,y) <= cPy(—abz, acy) = —aPy(z, by).

(RER* 5, 1.0)
_

(C): (Zn7 P) Tsotoni (Zn7 P4) < P4(bCl‘, _CQy) = P(ZL‘, by)
SOotopism
<= —P(cx,cy) = cP(—z,—y) <= c= —1.

@ )
—aP(z,by) <:>pP(ax, ay) = aP(z,y) <= a = 1.

Proof: These follow from Remark 4.

(a): This is obtained from (b) of Remark 4.

(b): This is obtained from (c) of Remark 4.

(c): This is obtained from (d) of Remark 4.

(d): This is obtained from (e) of Remark 4.

Corollary 6: Let P(x,y) = a + bx + cy represent a quasigroup
over Z, such that a is invertible in (Z,, x). Then

> (Zn, Py) < cPy(—abz,acy) =
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(a): if bc =1 and ¢® = —1, then —P(cz, cy) = cPy(—z, —y);

(b): ifbe =1, = —1 and a + ¢ =0, then P(az,ay) = aPy(z,y);

(c): if be =1 and ¢* = —1, then b = —1 and (Z,, P;) = (Z,, P);

(d):if bc =1, * = —1and a+c¢ = 0, then b = ¢ = —1 and
(Zy, Py) = (Zn, P).

Proof: These follow from Corollary 5.

(a): This is obtained from (a) of Corollary 5.
(b): This is obtained from (b) of Corollary 5.
(c): This is obtained from (c) of Corollary 5.
(d): This is obtained from (d) of Corollary 5.

Corollary 7: Let P(x,y) = a + bz + cy represent a quasigroup
over Z, such that a is invertible in Z,,. Then

(a): (Rpe, R%,, 1) € AUT(Zy, Ps) <= —P(bx,by) = bPs(—x, —y).
(b): (R*,, RS, R* , 1) € AUT(Zy, P5) <= P(az,ay) = aPs(z,y).

7ab*1
(R R%,.0)
Isotopism
(R*RER )

Isotopism

(c): (Zn, P) (Zy, Ps) <= —P(bz,by) = bP(—z, —y).

(d): (Z,, P) > (Zy, P5) <= P(ax,ay) = aP(z,y).

Proof: These follow from Remark 5.

(a): This is obtained from (b) of Remark 5.
(b): This is obtained from (c) of Remark 5.
(c): This is obtained from (d) of Remark 5.
(d): This is obtained from (e) of Remark 5.

Corollary 8: Let P(x,y) = a + bx + cy represent a quasigroup
over Z,, such that a is invertible in (Z,, x). Then

(a): if b= —1, then (Z,, P5) = (Z,, P);
(b): if a = 1, then (Z,, P5) = (Z,, P).

Proof: These follow from Corollary 7.

(a): This gotten from (a) of Corollary 7.
(b): This is obtained from (b) of Corollary 7.

Corollary 9: Let P(x,y) = a + bx + cy represent a quasigroup
over Z, such that a is invertible in Z,,. Then

(a): (R, Ry, I) € AUT(Zn, Ps) <= —P(bx,by) = bPs(—x, —y).

(b): (R* 1, R*., R, 1) € AUT(Zy, Ps) <= P(ax,ay) =
&Pg)(l’, y)
(be2cf1vR§va)
(€): (Zyn, P) ————5 (Zy, Ps) <= —P(bx,by) = bP(—z, —y).

Isotopism
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X X X
(R—abc_l 7]%_("C’B:—ab_l)

(d): (Z,, P) — 5 (Zn,Pﬁ) < P(az,ay) =
sotopism

aP(z,y).
Proof: These follow from Remark 6.
(a): This is obtained from (b) of Remark 6.
(b): This is obtained from (c) of Remark 6.

(
(c): This is obtained from (d) of Remark 6.
(d): This is obtained from (e) of Remark 6.

Corollary 10: Let P(x,y) = a + bx + cy represent a quasigroup
over Z, such that a is invertible in Z,,, x. Then

(a): if b= —1, then (Z,, Ps) = (Z,, P);

(b): if a =1, then (Z,, Ps) = (Z,, P).

Proof: These follow from Corollary 9.

(a): This is obtained from (a) of Corollary 9.
(b): This is obtained from (b) of Corollary 9.

Remark 7: Let P(x,y) = a+ bz + cy represent a quasigroup over
Z,, such that a is invertible in (Z,, x). Then
R* | ,R*,,R* )

(a): (Z,, Py) ———" = (Z,, Py).

Isotopism

(R*,LR* )
(b) (ZT“ P2) Isotopisr;l (ZT“ P4)

( i(:’RXf 7RX — )
(c): (Z,,P,) e (Zn, Ps).

Isotopism

(ILRX,,R*,_})

(d): (Zn, P) W (Z,,, Ps).
(R}, R*, _1.I)

(e): (Zn, Pg) m) (Zn, P4)
RX,,R* _.R*_.)

(£): (Z, Py) ———" " (7, Ps).

Isotopism

X X
LR )

(Rbc_ 1
(8): (Zn, P3) —————
Isotopism

(Z,, Ps).

LR )
(h) (Zn,P4) _— (ZR,P5)

Isotopism
(R R R )
(): (Zn, ) ————"""5 (Z,, Ps).
Isotopism
(R* _1,RX..D)

(J) (Zm P5) B (Zn, PG).

Isotopism
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Proof: These follow from Remark 2, Remark 3, Remark 4, Re-
mark 5 and Remark 6 by multiplying the isotopisms appropriately.

3. CONCLUSION

Some results in Ilojide et. al. [5] on the characterization of groupoids
and quasigroups generated by linear-bivariate polynomials P(z,y) =
a+bx+cy over Z, in conjunction with the isotopic characterization
of P(z,y) and some other elements group Pp(Z,) in this present
work are applicable to cryptography. This will be of double advan-
tage since the theory of numbers and quasigroups have been found
useful for cryptography.

n-T-quasigroups have been found applicable in coding theory ac-
cording to Mullen and Scherbakov [9]. Hence some of the results
of this work will be found useful for the determination of error de-
tection capabilities of the quasigroups generated by linear bivariate
polynomials.
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