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ABSTRACT. Suppose customers (products) arrive at a service
facility (machine) at times t1, t2, t3, · · · , where tn is the arrival
time of the nth customer and wn+tn is the departure time where
wn = waiting time which includes service time and queueing
time. Suppose there is a network of machines with customers
(products) experiencing blocking due to machine breakdowns.
Let P (t) be the matrix of transition probabilities among states
(machines) of the Markov chain {X(t), t ≥ 0} where X(t) is
continuous time stationary and irreducible. Assuming that the
Markov chain is strongly mixing, we prove that the times that
demand is not met is asymptotically normally distributed.
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1. INTRODUCTION

Consider a manufacturing system with n states (machines) with
blocking and customers (products) arriving at the machines. Let
the arrival of the nth customer at the first machine be tn, so that
the departure time is wn + tn, where wn is the waiting time, and
includes both the service time and queueing time. Several authors
have considered machine groups each with its own transition ma-
trix, the steady-state queueing times performance analysis criteria
and simulation techniques. The performance of a manufacturing
system can be judged by the FRACTION of the time it is avail-
able to customers. Sometimes as with an Automatic Teller Machine
(ATM), it is not a matter of life or death if it fails frequently, as
long as the system can RECOVER quickly, in such a manner that
the TOTAL DOWNTIME is not large.
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This paper deals with a theoretical, mathematical analysis of a
network of machines with blocking. Section II contains a brief lit-
erature review, and some definitions. Section III presents the Main
Result. Section IV is the Conclusion.

II. Literature Review
In [1], the authors state that, because scheduling is done by hu-

man operators (i.e. workers) who operate regardless of the general
rules, there is a hint that there are some HIDDEN variables, called
SOFT VARIABLES which are extremely difficult to model and for
which input data describing them cannot be easily got. According
to [1], the MAJOR stochastic inputs are MACHINE breakdowns
and VARYING demand patterns.
In [2], estimates of state probabilities and moments of different

variables such as the queue length have been found. On the other
hand, Lavenberg [3] discussing his Numerical Results, noted that
the mean queueing time increases and the coefficient of variation of
the queueing time decreases as the mean service time increases. He
further noted that the mth moment about the origin of the steady-
state queueing time for the M/G/1 finite capacity queue does not
depend on the service time distribution only through its first (m+1)
moments. Finally, he noted that the mean queueing time does not
necessarily increase as the variance of the service time increases.
The times that demand is not met, is of interest (see [4]) and

considering the asymptotic distribution of the times that demand
for service is not met, is useful. According to [5], an approxima-
tion of the service time distribution F by stochastically smaller
distributions, say Fn, leads to an approximation of the stationary
distribution π of the original M/G/c queue by the stationary distri-
butions πn of the M/G/c queue with service time distributions Fn.
It is stated that all the approximations are in weak convergence.
This result is applicable here since convergence in distribution is
even weaker than convergence in probability (usually considered as
weak convergence).
Moreover, in [6], sufficient conditions are given, under which a

time-non-homogeneous countable Markov chain with the transition
intensity matrix Λ(t) shares the limiting distribution with a time-
homogeneous ergodic Markov chain, with the transition intensity
matrix Λ.
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Definition 1: A stochastic matrix P (equivalently the correspond-
ing Markov chain {Xn}) is called ERGODIC if

lim
n→∞

P
(n)
ij = πj

∀ states i and j where the limiting vector π = (π0, π1 · · · ) is called
the STATIONARY vector of P and has the properties that πP =
π, πj ≥ 0 ∀ j, and

∞∑
j=0

πj = 1.

A Markov chain for which P
(n)
ij converges to πj at a geometric rate

introduced in [8], is defined as follows:

Definition 2: An irreducible Markov chain for which
∣∣∣P (n)

ij − πj

∣∣∣ ≤
Cijβ

n
ij where βij < 1 is called a geometrically ergodic Markov chain.

Vere-Jones [7] proved that β < 1 could replace βij in Definition 2
above, independent of i and j. Moreover, Nummelin and Tweedie
[8] showed that for geometrically ergodic Markov chains, there exist

β < 1 and Ci depending on i s.t.
∣∣∣P (n)

ij − πj

∣∣∣ < Ciβ
n. When the

coefficient C can be chosen independently of i, Cohen [9] calls the
Markov chain uniformly geometrically ergodic.
Note: Strictly stationary or strongly ergodic Markov chains are
uniformly geometrically ergodic (See [10, Lemma 1] ).
Since the same collection of products are fed into machines at

intervals in order to produce parts, the demand function for service
f(t), has period τ . Then f(t + τ) = f(t) where τ depends on the
type of products, machine efficiency and the finished goods.

Definition 3: (see [11])
The strictly stationary sequence {Uj} is said to be uniformly mix-

ing if, for all D ∈ m∞
k+n, |P{D|mk

−∞} − P (D)| ≤ φ(n) ↓ 0 as
n → ∞, where the σ-algebra m∞

k+n describes the future of the se-
quence {Uj} and so is generated by {Uk+n, Uk+n+1, · · · } while the
σ-algebra mk

−∞ is generated by {U1, U2, · · · , Uk}, and φ(n) is said
to be the mixing coefficient.

Definition 4: The stationary sequence is said to be strongly mix-
ing if, in addition to the conditions in Definition 3 above,

∞∑
n=1

φ(n) < ∞.
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III. The Main Results
Let P (t) be the matrix of transition probabilities of the Markov

chain {X(t), t ≥ 0}, where {X(t)} is continuous time stationary
and irreducible. Note that the restriction on the general service
time distribution that it is not degenerate at zero ensures that the
imbedded Markov chain is irreducible and aperiodic. Let Q be the
matrix of the rate (in time) with which transitions occur.

Then P (t) = eQt, P (0) = In (1)

where equation (1) is the solution of the Kolmogorov systems

Ṗ (t) = QP (t) ... backward equation

or Ṗ (t) = P (t)Q ... forward equation

with initial condition, P (0) = In.
From either of these systems, P (0) = Q.

Let Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · · ...

0 0 0 · · · λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where λi, i = 1, 2, · · · , n are the eigen values of Q and ∨ is
the matrix of eigenvectors corresponding to λi. Then Q = ∨Λ∨−1

where ∨ is called the matrix of the right eigenvectors of Q and ∨−1

is called the left eigenvectors of Q. For ease of notation, let ∨ = B
and ∨−1 = C̃. Then Q = BΛC̃.

Note: Since the eigenvalues of P lie in the interval |λ| ≤ 1 and
since the eigenvalues of Q are those that correspond to those of P
in the interval 0 ≤ λ ≤ 1, it implies that the eigenvalues of Q all
have negative real parts, with 1 as one of the eigenvalues.

Let eΛ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ1 0 · · · 0

0 eλ2 · · · 0

...
... · · · ...

0 0 · · · eλn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Then P (t) = eQt = BeΛtC̃ (2)

where

Pij(t) =
n∑

k=1

bikeλktC̃kj

are the elements of equation (2).
Let Ii(X(t)) be the indicator function of state i and let G(X(t), t)
be defined as

G(X(t), t) =
n∑

i=1

Ii(X(t))gi(t) (3)

where Ii(X(t)) =

⎧⎨
⎩

1, if X(t) = i

0, if X(t) �= i
(4)

From equation (4), the rhs of equation (3) is the number of occur-
rences (equivalent to the occupation time) of state i in the first n
steps. On the time interval (0, mτ) let this number of occurrences
be given by

Ui =

∫ mτ

0

n∑
i=1

Ii(X(t))gi(t)dt,

which is the occupation time in state i. Let∫ mτ

0

= m

∫ τ

0

=

∫ h

0

+

∫ 2h

h

+ · · ·+
∫ mh

(m−1)h

where τ = kh− (k − 1)h or τ = h, k = 1, 2, · · · , m.
Then,

Sm =

m∑
k=1

∫ τ

0

n∑
i=1

Ii(X(t+ (k − 1))τ)gi(t+ (k − 1)τ)dt

where Sm is the amount of time that the demand for service is not
being met within (0, mτ).

Since gi(t) =

⎧⎨
⎩

f(t)− Ci, Ci < f(t)

0, Ci ≥ f(t)

⇒ gi(t + (k − 1)τ) = f(t + (k − 1)τ) − Ci, for Ci < f(t) for
k = 1, 2, · · · , m and since f is τ -periodic,
⇒ f(t+ (k − 1)τ)− Ci = f(t)− Ci

∴ gi(t+ (k − 1)τ) = f(t)− Ci = gi(t) (5)
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Let

Sm =
m∑
k=1

∫ τ

0

G(X(t+ (k − 1)τ, t)dt =
m∑

k=1

Yk (6)

where Yk =
∫ τ

0
G(X(t+ (k − 1))τ, t)dt.

Since the Markov chain {X(t)} is stationary, the sequence {Yk}
is also stationary. Hence,

E(Yk) =
[∫ τ

0
G(X(t+ (k − 1))τ, t)dt

]
=

∫ τ

0
E[G(X(t)), t]dt,

by (5),

= E
[∫ τ

0
G(X(t), t)dt

]
= E[Y1].

If Zk = Yk − E[Yk], then

Zk = Yk − E[Y1] (7)

∴
m∑
k=1

Zk =

m∑
k=1

Yk −mE[Y1] and hence,

m∑
k=1

Zk = Sm −mE[Y1] (8)

We use the Central Limit Theorem for strongly mixing sequences
of bounded random variables to establish the asymptotic normality
of the sequence in (8).

Theorem: If the random variables Zk are bounded and if {Zk}mk=1

is stationary and strongly mixing with
∑∞

m=1 φ(m) < ∞ (see Defi-
nition (4) above), then

lim
m→∞

1

m
varSm = σ2 = E[Z2

1 ] + 2
∞∑
l=1

E[ZiZ1+l] (9)

where Sm converges absolutely.
If σ > 0 then

lim
m→∞

Sm −mE[Y1]

σ
√
m

∼ N(E[Y1], σ
2)

We need to establish equation (9).
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Proof of (9):

Sm = mE[Y1] +

m∑
k=1

Zk, by (8)

Since {Yk} is stationary, so is {Zk}, by (7).

Lemma: Given a function f , the standard estimator of f(Z) is
1
n

∑n
i=1 f(Zi) where Zi are n random variables from the distribu-

tion of Z.

∴ E

[
m∑
k=1

Zk

]
= mE[Zm] = mE[Zi]

since stationary random variables {Zk} all have the same distribu-
tion and therefore the same expected value.

∴ E[Sm] = mE[Y1] +mE[Z1]

But E[Z1] = 0, by (7).

∴ E[Sm] = mE[Y1]

⇒ (E[Sm])
2 = m2(e[Y1])

2
(10)

Similarly,

S2
m = m2(E[Y1])

2 + 2mE[Y1]

m∑
k=1

Zk +

(
m∑
k=1

Zk

)2

∴ E[S2
m] = m2(E[Y1])

2 + 2mE[Y1] . mE[Z1] + E (
∑m

k=1Zk)
2

= m2(E[Y1])
2 + E (

∑m
k=1Zk)

2
, since E[Z1] = 0

∴ var(Sm) = E[S2
m]− (E[Sm])

2

= E (
∑m

k=1Zk)
2
, by (10)

= E (
∑m

k=1Z
2
k) + 2E

[∑m
i,j=1, i �=j ZiZj

]
= mE[Z2

1 ] + 2m
∑m

j=1E[Z1Zj+1]

∴ lim
m→∞

1

m
V ar(Sm) = E[Z2

1 ] + 2
∞∑
j=1

E[Z1Zj+1] (11)

and by (6) above,

lim
m→∞

1

m
V ar(Sm) = σ2.
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Again, let the sequence {Zk} be strongly mixing. Define events
A,B as

A = {X(kτ)|mkτ
−∞}

B = {(X(k +m− 1)τ)|m∞
kτ}.

Then

|P (A ∩ B)− P (A) P (B)| ≤
n∑

i,j=1

πi |Pij((m− 1)τ)− πj | = γm

where
lim

m→∞
γm = 0,

where πj are the equilibrium or stationary probabilities of state j,
defined by

πj =

n∑
i=1

πiPij(t), such that

n∑
j=1

πj = 1.

Clearly, limm→∞ Pij((m− 1)τ) = πj ,
since the Markov chain {X(t)} is continuous time stationary.
We now need to calculate the mean and variance of the times that
demand for service is not met within (0, mτ). First,

E[Sm] = E

[
m∑
k=1

Yk

]
= mE[Y1],

since {Yk} is stationary.

E[Y1] = E
∫ τ

0

∑n
i=1 Ii(X(t))gi(t)dt

= E
∫ τ

0

∑n
i=1E[gi(t)Ii(X(t))]dt.

(since E|Yi| < ∞)

=
∫ τ

0

∑n
i=1 gi(t)E[Ii(X(t))]dt

=
∫ τ

0

∑n
i=1 gi(t)P{X(t) = i}dt,

since E[IA( . )] = P (A)

=
∫ τ

0

∑n
i=1 πigi(t)dt

=
∑n

i=1 πi

∫ τ

0
gi(t)dt, by Fubini’s theorem.



THE ANALYSIS OF NETWORKS IN MANUFACTURING SYSTEMS. . . 339

∴ E[Sm] = m
∑n

i=1 πi

∫ τ

0
gi(t)dt,

⇒ limm→∞ 1
m

E[Sm] = E[Y1]

Since Z1 = Y1 − E[Y1] by (7),

E[Z2
1 ] = E[(Y1 −E[Y1])

2] = E[Y 2
1 ]− (E[Y1])

2

and using gi = gi(r), gj = gj(s), since

Y1 =

∫ τ

0

n∑
i=1

Ii(X(t))gi(t)dt,

it follows that

Y 2
1 =

∫ τ

0

∑n
i=1(Iigi)

2dr + 2
∫ τ

0

∑n
i,j=1, i �=j gigjIiIj drds,

⇒ E[Y 2
1 ] =

∫ τ

0

∑n
i=1 πig

2
i dr + 2

∫ τ

0

∑n
i,j=1, i �=j gigjπiPij(t) drds,

since E[I2A] = E[IA] = P (A) since I2 = I = 0 or 1 and P (Ii) = πi.
Also,

(E[Y1])
2 =

(∫ τ

0

∑n
i=1 giπidt

)2
=

∫ τ

0

∑n
i=1(πigi)

2dr + 2
∫ τ

0

∫ τ

0

∑n
i,j=1, i �=j πiπjgigj drds,

and since πiP = πi for stationary probabilities πi,

=

∫ τ

0

n∑
i=1

πig
2
i dr + 2

∫ τ

0

∫ τ

0

n∑
i,j=1, i �=j

πiπjgigj drds.

Therefore

E[Z2
1 ] = 2

∫ τ

0

∫ v

0

n∑
i,j=1

Pij(s− r)gigjdr ds− 2

∫ τ

0

∫ τ

0

πiπjgigj drds.

From (2), when k = 1, λ1 = 0 and v = τ with bi1 = 1, C̃ij = πj.

∴ E[Z2
1 ] = 2

∫ τ

0

∫ v

0

n∑
i,j=1

πi

n∑
k=2

exp[(s− r)λkbikC̃kgigj drds].

Also,

E[Z1Z1+l] = E [Y1Y1+l − Y1+lE[Y1]]

= E[Y1Y1+l]− E[Y1]E[Y1+l]
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Using a similar argument to the one above,

E[Z1Z1+l] =

∫ τ

0

∫ τ

0

n∑
i,j=1

πi

n∑
k=2

eλklτbikC̃kje
(s−r)λkgigj drds

Since ∑∞
i=1 e

λklτ = eλkτ + e2λkτ + · · ·

= eλkτ

1−eλkτ = −1
1−e−λkτ

we have by equation (11) above,

σ2 = 2
n∑

i,j=1, i �=j

πi

n∑
k=2

bikC̃kj

[∫ τ

0

∫ v

0

gigje
λk(s−r) drds

× −1

1− e−λkτ

∫ τ

0

gie
−λkτdr .

∫ τ

0

gje
−λksds

]
By equation (6) above we have

V ar(Sm) = mσ2 or
1

m
V ar(Sm) = σ2

⇒ limm→∞ 1
m
V ar Sm = σ2, where σ2 = V ar(Y1) > 0.

IV. Conclusion
We have found that the variance of the random variables which

are asymptotically normally distributed, is V ar(Y1) and the mean
is E(Y1).
∴ the average time the demand is not met in (0, mτ) is

lim
m→∞

1

m
E(Sm) = τ,

i.e.
n∑

i=1

π

∫ τ

0

gi(t)dt = τ.

The analysis of manufacturing systems is a broad topic which should
generate more results especially in the non-simulation area of study.
However, as has been noted by several authors, it requires a lot of
time.
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