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ABSTRACT. An age-structured vaccination model for the
transmission dynamics of measles in a population is designed
and rigorously analysed. In the absence of vaccination, the
model exhibits the phenomenon of backward bifurcation (where
an asymptotically-stable disease-free equilibrium (DFE) co-
exists with an asymptotically-stable endemic equilibrium when-
ever the associated reproduction number is less than unity).
This phenomenon is shown to arise due to the imperfect na-
ture of children’s natural immunity against infection or measles-
induced mortality. For the case when the measles-induced
mortality is negligible, it is shown, using a linear Lyapunov
function, that the DFE of the model without vaccination is
globally-asymptotically stable whenever the associated repro-
duction number is less than unity. Furthermore, the vaccination-
free model has a unique endemic equilibrium whenever the re-
production threshold exceeds unity. This equilibrium is shown,
using a non-linear Lyapunov function of Goh-Volterra type, to
be globally-asymptotically stable for a special case. Numerical
simulations of the vaccination model show that the use of an
imperfect anti-measles vaccine can result in the effective control
of measles in the community provided the vaccine efficacy and
coverage rate are high enough.
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1. INTRODUCTION

Measles is a highly contagious respiratory childhood disease caused
by a virus of the genus Morbillivirus. The virus, which is typically
transmitted by coughing and sneezing, causes dangerous (and fa-
tal) complications, such as pneumonia, diarrhea, encephalitis, ear
infections and permanent brain damage [25]. It accounts for about
30-40 million infections in children each year, and remains a major
killer of children around the world [25]. Over 200 million people
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have died of measles over the last 150 years [25]. In 2011, for exam-
ple, about 158,000 people died of measles (mostly children under
the age of five) [30]. The classical signs and symptoms of measles
include fever, cough, cold, red eyes and rashes (which begin several
days after the onset of fever) [11].
The control of measles is largely based on the use of MMR (measl-

es, mumps and rubella) and MMRV (measles, mumps, rubella and
varicella) vaccines [11]. The vaccines are typically administered to
children between the ages of 12 to 18 months, with a follow-up
booster between the ages of 4 and 6 years [11]. The vaccines are
known to be about 95% effective [11, 20, 31], and their coverage rate
varies from country-to-country [27]. Although the global measles
vaccine coverage reaches 82% in 2009 [27, 29], numerous countries
continue to face challenges achieving such high coverage rates [27].
Mathematical models have been used to gain insight into the

transmission dynamics of measles in populations (see for instance
[1, 2, 5, 6, 7, 8, 11, 17, 20, 22, 23, 25, 27, 32]). These studies are
typically based on the use of SEIR (susceptible-exposed-infectious-
recovered) compartmental models for assessing the impact of vac-
cination programs against measles. The SEIR class of models has
also been applied in some policy-specific settings, such as in New
Zealand where an age-structured measles model was used by the
Ministry of Health to predict an epidemic of measles and to design
optimal vaccination schedules for the country [23].
The purpose of the current study is to qualitatively assess the

role of age-structure and the population-level impact of the wide-
spread use of measles vaccine (i.e., routine anti-measles vaccination
program) on the transmission dynamics of measles in a commu-
nity. The paper is organized as follows. The new age-structured
model for measles transmission dynamics (in the presence of an
anti-measles vaccine) is formulated in Section 2. The model, in the
absence of vaccination, is rigorously analysed in Section 3. The
vaccination model is analysed in Section 4. Numerical simulation
results are reported.

2. MODEL FORMULATION

The age-structured model to be designed is based on the transmis-
sion dynamics of measles in a population, subject to the use of the
aforementioned anti-measles vaccine. In this study, ”infants” are
children under 18 months of age, while ”children” are considered to
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be those between 18 months to 12 years of age. The total popula-
tion at time t, denoted by N(t), is sub-divided into twelve mutually-
exclusive compartments of unvaccinated susceptible infants (SI(t)),
unvaccinated susceptible children (SC(t)), vaccinated susceptible
infants (those who received the first MMR dose) (VI(t)), vacci-
nated susceptible children (those who typically receive the second
dose) (VC(t)), exposed infants (infants who have been infected but
have not yet shown clinical symptoms of the disease) (EI(t)), ex-
posed children (EC(t)), symptomatic infants (II(t)), symptomatic
children (IC(t)), hospitalized infants (HI(t)), hospitalized children
(HC(t)), recovered infants (RI(t)) and recovered children (RC(t)),
so that

N(t) = SI(t) + SC(t) + VI(t) + VC(t) + EI(t) + EC(t) + II(t)

+ IC(t) +HI(t) +HC(t)RI(t) +RC(t).

The age-structured vaccination model for measles transmission dy-
namics is given by the following deterministic system of non-linear
differential equations (a flow diagram of the model is depicted in
Figure 1; and the associated variables and parameters are described
in Tables 1 and 2, respectively):

dSI
dt

= Π(1− f)− (λI + θCλC)SI − αSI − μSI ,

dSC
dt

= αSI + ωCVC − ξCSC − ψ(θIλI + λC)SC − μSC ,

dVI
dt

= Πf − (λI + θCλC)(1− εI)VI − αVI − μVI ,

dVC
dt

= αVI + ξCSC − ωCVC − ψ(θIλI + λC)(1− εC)VC − μVC,

dEI
dt

= (λI + θCλC)[SI + VI(1− εI)]− αEI − σIEI − μEI ,

dEC
dt

= αEI + ψ(θIλI + λC)[SC + VC(1− εC)]− σCEC − μEC ,

dII
dt

= σIEI − αII − σ2II − γ2II − μII − δIII ,

dIC
dt

= αII + σCEC − σ3IC − γ3IC − μIC − δCIC ,

(1)
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dHI

dt
= σ2II − αHI − γIHI − μHI − δ2HI ,

dHC

dt
= σ3IC + αHI − γCHC − μHC − δ3HC ,

dRI

dt
= γ2II + γIHI − αRI − μRI ,

dRC

dt
= αRI + γ3IC + γCHC − μRC .

In (1), Π represents the birth rate of infants and 0 ≤ f ≤ 1 is the
fraction of infants who received the first vaccine dose. Susceptible
infants acquire measles infection from infected infants (at a rate
λI), given by

λI =
βI
N

(ηIEI + II), (2)

where, βI is the infection rate of infants and the modification pa-
rameter 0 ≤ ηI ≤ 1 accounts for the assumption that exposed
infants transmit at a rate lower than symptomatic infants. Fur-
thermore, susceptible infants acquire infection following effective
contacts with infected children (at a rate θCλC), where 0 ≤ θC ≤ 1
accounts for the assumed reduced likelihood of infants acquiring
infection from older children and

λC =
βC
N

(ηCEC + IC), (3)

with βC and ηC similarly defined as βI and ηI above. Natural
death occurs in each compartment at a rate μ, and infants mature
(to become children) at a rate α.
Children are vaccinated at a rate ξC , and the vaccine is assumed

to wane at a rate ωC . Susceptible children acquire measles infec-
tion at a reduced rate ψ(θIλI + λC), where 0 ≤ ψ ≤ 1 models the
natural immunity of susceptible children against measles infection
[20, 21] (that is, ψ = 0 represents perfect natural immunity against
acquisition of infection; and ψ = 1 means children do not acquire
any immunity against measles infection) and 0 ≤ θI ≤ 1 accounts
for the assumed reduced likelihood of susceptible children acquiring
measles infection from infected infants (because of less likelihood of
mixing). The parameters 0 < εI , εC < 1 account for the vaccine effi-
cacy in infants and children, respectively, while σI and σC represent
the progression rates of exposed infants and children into the cor-
responding symptomatic classes, respectively. The parameters σ2
and σ3 are hospitalization rates of infants and children, respectively.
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Further, γ2 and γ3 are recovery rates of symptomatic infants and
children, respectively (similarly, γI and γC are the recovery rates of
hospitalized infants and children, respectively). Symptomatic and
hospitalized infants and children die due to measles at the respec-
tive rates δI , δC , δ2 and δ3. The model (1) assumes that recovery in-
duces permanent immunity against re-infection [20]. Furthermore,
it is assumed that exposed individuals can transmit infection [2]. It
extends numerous measles transmission models (that incorporate a
vaccine) in the literature, such as those in [1, 2, 11, 20, 27] by (
inter alia):

(i): Accounting for age-structure. This is not considered in [2, 27].
(ii): Allowing for the dynamics of exposed infants (EI) and children

(EC). Exposed classes are not considered in [11].
(iii): Allowing for measles transmission by exposed infants (ηI �= 0)

and children (ηC �= 0). This is not considered in [1, 11, 20,
27].

The model (1) will now be rigorously analysed to gain insight into
its dynamical features. Before doing so, it is instructive to consider
the model in the absence of vaccination, as below.

3. ANALYSIS OF MODEL WITHOUT VACCINATION

Consider the model (1) in the absence of routine anti-measles vac-
cination (i.e., f = VI = VC = εI = εC = ωC = ξC = 0), given by
(denoted as ”vaccination-free model”):

dSI
dt

= Π− (λI + θCλC)SI − αSI − μSI ,

dSC
dt

= αSI − ψ(θIλI + λC)SC − μSC ,

dEI
dt

= (λI + θCλC)SI − αEI − σIEI − μEI ,

dEC
dt

= αEI + ψ(θIλI + λC)SC − σCEC − μEC ,

dII
dt

= σIEI − αII − σ2II − γ2II − μII − δIII ,

dIC
dt

= αII + σCEC − σ3IC − γ3IC − μIC − δCIC ,

dHI

dt
= σ2II − αHI − γIHI − μHI − δ2HI ,

(4)
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dHC

dt
= σ3IC + αHI − γCHC − μHC − δ3HC ,

dRI

dt
= γ2II + γIHI − αRI − μRI ,

dRC

dt
= αRI + γ3IC + γCHC − μRC .

For mathematical convenience, the modification parameters θI and
θC are, from now on, set to unity.

3.1. Invariant Region.

Lemma 1. The following biologically-feasible region of the vaccinat-
ion-free model (4)

Ω =

{
(SI , SC , EI , EC , II , IC , HI , HC , RI , RC) ∈ R

10
+ :

SI + SC + EI + EC + II + IC +HI +HC +RI +RC ≤ Π

μ

}

is positively-invariant and attracting.

Proof. Adding the equations in the model system (4) gives

dN(t)

dt
= Π− μN(t)− (δIII(t) + δCIC(t) + δ2HI(t) + δ3HC(t)), (5)

so that,

dN(t)

dt
≤ Π− μN(t). (6)

It follows from (6), and the Gronwall inequality, that

N(t) ≤ N(0)e−μ(t) +
Π

μ
[1− e−μ(t)].

In particular, N(t) ≤ Π/μ if N(0) ≤ Π/μ. Thus, Ω is positively-
invariant. Hence, it is sufficient to consider the dynamics of the
model (4) in Ω. In this region, the model can be considered as been
epidemiologically and mathematically well-posed [18]. �

3.2. Positivity of Solutions.

Theorem 3.1. Let the initial data SI(0) > 0, SC(0) > 0, EI(0) >
0, EC(0) > 0, II(0) > 0, IC(0) > 0, HI(0) > 0, HC(0) > 0, RI(0) >
0, RC(0) > 0, then the solutions SI(t), SC(t), EI(t), EC(t), II(t),
IC(t), HI(t), HC(t), RI(t), RC(t) of the vaccination-free model (4)
are positive for all t ≥ 0.
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Proof. It is clear from the first equation of (4) that

dSI
dt

≥ −(λI + λC + α + μ)SI ,

so that,

SI(t) ≥ SI(0) exp

[
−
∫ t

0

(λI + λC + α+ μ)du

]
> 0, for all t > 0.

It can be shown, using similar approach, that SC(t) > 0, EI(t) >
0, EC(t) > 0, II(t) > 0, IC(t) > 0, HI(t) > 0, HC(t) > 0 and
RI(t) > 0, RC(t) > 0 for all t ≥ 0. �

3.3. Stability of Disease-Free Equilibria (DFE).

3.3.1. Local stability. The DFE of the vaccination-free model (4) is
given by

E0 = (S∗
I , S

∗
C, E

∗
I , E

∗
C , I

∗
I , I

∗
C , H

∗
I , H

∗
C , R

∗
I , R

∗
C)

=

(
Π

α + μ
,
α

μ
S∗
I , 0, 0, 0, 0, 0, 0, 0, 0

)
.

(7)

Since the population of recovered children (RC) does not feature
in any of the other equations of the vaccination-free model (4), the
equation for dRC/dt is temporarily removed from the analysis.
The linear stability of E0 can be established using the next gener-

ation operator method on the system (4) [28]. The matrices F (for
the new infection terms) and V (of the transition terms) are given,
respectively, by

F =
1

K1

⎡
⎢⎢⎢⎢⎢⎣

β1η1μ β2η2μ β1μ β2μ 0 0
ψβ1η1α ψβ2η2α ψβ1α ψβ2α 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎢⎢⎢⎣

K2 0 0 0 0 0
−α K3 0 0 0 0
−σI 0 K4 0 0 0
0 −σC −α K5 0 0
0 0 −σ2 0 K6 0
0 0 0 −σ3 −α K7

⎤
⎥⎥⎥⎥⎥⎦ ,

where, K1 = α + μ, K2 = α + σI + μ, K3 = σC + μ, K4 = α +
σ2 + γ2 + μ + δI , K5 = σ3 + γ3 + μ + δC , K6 = α + γI + μ + δI
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and K7 = γC + μ + δC . It follows then that the basic reproduction
number of the model (4), denoted by R0, is given by

R0 =
ψαβC(ηCK5 + σC)

K1K3K5
+
μβI(ηIK4 + σI)

K1K2K4

+
βCμα[K4(ηCK5 + σC) + σIK3]

5∏
i=1

Ki

.

Hence, using Theorem 2 of [28], the following result is established.

Lemma 2. The DFE, E0, of the measles model (4) is locally-
asymptotically stable (LAS) in Ω if R0 < 1, and unstable if R0 > 1.

The threshold quantity, R0, represents the average number of sec-
ondary cases that one infected case can generate if introduced into
a completely-susceptible population [3, 4, 18]. The epidemiological
implication of Lemma 2 is that the spread of measles can be effec-
tively controlled in the population (when R0 < 1 if the initial sizes
of the state variables of the model are in the basin of attraction of
the DFE (E0).

3.4. Endemic Equilibrium and Backward Bifurcation. Let
E1 = (S∗∗

I , S
∗∗
C , E

∗∗
I , E

∗∗
C , I

∗∗
I , I

∗∗
C , H

∗∗
I , H

∗∗
C , R

∗∗
I ) represents any arbi-

trary endemic equilibrium of the model (4). Furthermore, let

λ∗∗ = λ∗∗I + λ∗∗C =
βI
N∗∗ (ηIE

∗∗
I + I∗∗I ) +

βC
N∗∗ (ηCE

∗∗
C + I∗∗C ) (8)

be the force of infection at steady-state. Solving the equations in
(4) at steady-state gives
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S∗∗
I =

Π

λ∗∗ +K1
, S∗∗

C =
αΠ

(ψλ∗∗ + μ)(λ∗∗ +K1)
,

E∗∗
I =

Πλ∗∗

K2(λ∗∗ +K1)
, E∗∗

C =
αΠλ∗∗[ψ(λ∗∗ +K2) + μ]

K2K3(ψλ∗∗ + μ)(λ∗∗ +K1)
,

I∗∗I =
σIΠλ

∗∗

K2K4(λ∗∗ +K1)
,

I∗∗C =
αΠλ∗∗[ψσ2K4(λ

∗∗ +K2) + σIK3(ψλ
∗∗ + μ) +K4σ2μ]

(ψλ∗∗ + μ)(λ∗∗ +K1)

5∏
i=2

Ki

,

R∗∗
I =

σIΠλ
∗∗(γIσ3 + γ3K6)

K1K2K4K6(λ∗∗ +K1)
, H∗∗

I =
σIσ2Πλ

∗∗

K2K4K6(λ∗∗ +K1)
,

(9)

H∗∗
C =

αΠλ∗∗[σCσ2K4K6[ψ(λ∗∗ +K2) + μ] + σIK3(σIK5 + σ2K6)(ψλ∗∗ + μ)]

(ψλ∗∗ + μ)(λ∗∗ +K1)
7∏

i=2

Ki

.

It can be shown, by substituting (9) into (8), that the non-zero
equilibria of the vaccination-free model (4) satisfy the following
quadratic (in terms of λ∗∗)

a1(λ
∗∗)2 + b1λ

∗∗ + c1 = 0, (10)

where,

a1 = ψ(K1{K3K5K6K7(σI +K4) + ασIK3[K6(K7 + σ2) + σIK5]
+αK4K6[K7(K5 + σC) + σCσ3]}+ σIK3K5K7(σ2K1 + γ2K6)),

b1 = K3K7{μσIK5(γ2K6 + γIσ3) +K1[K5K6(μK4 + ψK2K4 + μσI )
+μσI (αK6 + σ3K5)]}+ αK1{μσIK3(σ2K4 + σIK5)
+K4K6K7[μσC + μK5 + ψK2(σC +K5)] + σCσ2K4K6(μ + ψK2)}
−ψK1K6K7[β2ασIK3 + β1K3K5(η1K4 + σI ) + β2αK4(η2K5 + σ2)],

c1 = K1(1−R0)
7∏

i=1

Ki.

Thus, the positive endemic equilibria of the vaccination-free model
(4) can be obtained by solving for λ∗∗ from (10) and substituting
the results (positive values of λ∗∗) into the expressions in (9). Once
the components for I∗∗C , H

∗∗
C , R

∗∗
I are obtained, they can then be

substituted into the equation for dRC/dt in (4) to obtain R∗∗
C . It

should be mentioned that the coefficient a1, of (10), is always pos-
itive, and c1 is positive (negative) if R0 is less than (greater than)
unity, respectively. Thus, the following result is established.

Theorem 3.2. The vaccination-free model (4) has:
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(i): a unique endemic equilibrium if c1 < 0 ⇔ R0 > 1;
(ii): a unique endemic equilibrium if b1 < 0, and c1 = 0 or b21 −

4a1c1 = 0;
(iii): two endemic equilibria if c1 > 0, b1 < 0 and b21 − 4a1c1 > 0;
(iv): no endemic equilibrium otherwise.

It is clear from Theorem 2 (Case (i)) that the model has a unique
endemic equilibrium whenever R0 > 1. Furthermore, Case (iii)
indicates the possibility of backward bifurcation (where the stable
DFE co-exists with a stable endemic equilibrium when R0 < 1; see,
for instance, [13, 15, 16]). It is instructive, therefore, to explore the
possibility of backward bifurcation in the model (4).

Theorem 3.3. The vaccination-free model (4) undergoes backward
bifurcation at R0 = 1 whenever the bifurcation coefficient a, given
by (A.4) (in Appendix A), is positive.

The proof of Theorem 3.3, based on using the centre manifold the-
ory [9, 10, 28], is given in Appendix A. The epidemiological sig-
nificance of the phenomenon of backward bifurcation is that the
classical requirement of R0 < 1 is, although necessary, no longer
sufficient for the effective control or elimination of measles in the
community. That is, the presence of backward bifurcation in the
vaccination-free model (4) suggests that the feasibility of control-
ling measles when R0 < 1 would be dependent on the initial sizes of
the sub-population of the model (4). Hence, backward bifurcation
makes the ability to effectively control the spread of the disease
difficult. To the authors’ knowledge, this is the first time such a
phenomenon has been established in the transmission dynamics of
measles. The phenomenon of backward bifurcation is illustrated in
Figure 2. The possible causes of this phenomenon are now explored.

Non-existence of Backward Bifurcation

Case I: Effect of natural infection-acquired immunity

It is convenient to define

R∗
0 = R0|ψ=0 =

μβI(ηIK4 + σI)

K1K2K4
+
βCμα[K4(ηCK5 + σC) + σIK3]

5∏
i=1

Ki

.

We claim the following result:
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Theorem 3.4. The vaccination-free model (4) with ψ = 0 has
no endemic equilibrium when R∗

0 ≤ 1, and has a unique endemic
equilibrium if R∗

0 > 1.

Proof. Setting ψ = 0 (that is, children have acquired perfect nat-
ural immunity against measles infection) in equation (10) reduces
the quadratic to the following linear equation:

b2λ
∗∗ + c2 = 0, (11)

with,

b2 = K3K7{μσIK5(γ2K6 + γIσ3) +K1[K5K6(μK4 + ψK2K4

+μσI) + μσI(αK6 + σ3K5)]}+ αK1{μσIK3(σ2K4 + σIK5)
+K4K6K7[μσC + μK5 + ψK2(σC +K5)] + σCσ2K4K6(μ
+ψK2)},

c2 = K1(1−R∗
0)

7∏
i=1

Ki.

Clearly, b2 > 0 and c2 ≥ 0 whenever R∗
0 ≤ 1 (so that λ∗∗ = −c2

b2
≤

0). Therefore, the vaccination-free model (4), with ψ = 0, has no
positive (endemic) equilibrium whenever R∗

0 ≤ 1. Furthermore,
λ∗∗ = −c2

b2
> 0 (i.e., the model (4) has a unique endemic equilib-

rium) if R∗
0 > 1.

�

The above result suggests the impossibility of backward bifurcation
in the vaccination-free model (4) when ψ = 0 (since no endemic
equilibrium exists when R∗

0 ≤ 1; and the phenomenon of backward
bifurcation requires the presence of at least two endemic equilibria
when R∗

0 ≤ 1). Setting ψ = 0 in the expression for the backward
bifurcation coefficients, a and b in equation (A.4) of Appendix A,
gives, respectively,

a =
2μ

ΠK1

[β∗
I (w3ηI + w5) + βC(w4ηC + w6)][(w1α− μw2)v3

− μv3(w3 + w4 + w5 + w6 + w7 + w8 + w9)],

= − μ

4C1σIK1K5K7

(
K1K7C0 + 2σIK5[K1ασ2

+ 2K7(σ2γI + γ3)]

)
,

(12)
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and,

b =
K2

5 (η1K4 + σI)

2C1βCσCσIμ
,

where,

C0 = {2K5(K4 + σIσC) + σI [σCC1 + 2α + C1K5

+ σ3(σCC1 + 2α)]},

C1 =
σIK

2
5(K1K4 + μβ∗

I ) + μαβCK1K5(K4 +K5)

βCσCσIK4
,

with β∗
I > 0 as defined in Appendix A.

Since C0 > 0 and C1 > 0, it follows that the bifurcation coef-
ficient, a, is automatically negative (see Appendix A, where it is
evident that w1α − μw2 = 0 for ψ = 0). Furthermore, since the
bifurcation coefficient b is positive, it follows from Theorem 4.1 of
[10] that the vaccination-free model (4) with ψ = 0 will not undergo
backward bifurcation at R0 = 1 (it should be noted that the model
(4) has a varying total population size). These analyses show that
the assumed natural immunity of children against measles infec-
tion (ψ �= 0) can induce the phenomenon of backward bifurcation
in measles transmission dynamics.

3.4.1. Case II: Effect of disease-induced mortality. It is convenient
to define δI = δC = δ2 = δ3 = δ. Consider the vaccination-free
model (4) with the associated disease-induced mortality (δ) set to
zero. Thus,

dN(t)

dt
= Π− μN(t),

so that, N(t) → Π/μ as t → ∞. In other words, this special
case considers the model (4) with constant total population size,
N(t) = Π

μ
(unlike in Case I above). Using N = Π

μ
in (2) and (3)

show, respectively, that

λI =
μβI
Π

(ηIEI + II) and λC =
μβC
Π

(ηCEC + IC). (13)

Let,

λ∗∗m =
μ

Π
[βI(ηIE

∗∗
I + I∗∗I ) + βC(ηCE

∗∗
C + I∗∗C )]. (14)

Consequently, the resulting (mass action) vaccination-free model,
obtained by using (13) in (4), has the same DFE, given by (7), as



MATHEMATICAL ANALYSIS OF AN AGE-STRUCTURED . . . 53

the model (4). Furthermore, the associated reproduction number
of the mass action vaccination-free model, denoted by Rm

0 , is given
by:

Rm
0 =

ψαβC(ηCK5 + σC)

K1K3K̃5

+
μβI(ηIK̃4 + σI)

K1K2K̃4

+
βCμα[K̃4(ηCK̃5 + σC) + σIK3]

K1K2K3K̃4K̃5

,

where, K̃4 = α + σ2 + γ2 + μ, K̃5 = σ3 + γ3 + μ, K̃6 = α + γI + μ
and K̃7 = γC + μ. It can be shown that the non-zero equilibria of
the mass action model satisfy the following quadratic (in terms of
λ∗∗m )

a3(λ
∗∗
m )2 + b3λ

∗∗
m + c3 = 0, (15)

where,

a3 = ψ, b3 =
ψαβC(ηCK̃5 + σC)

K3K̃5

+ μψK1(1−Rm
0 ),

c3 = μK1(1−Rm
0 ).

It is clear from (15) that a3 > 0, b3 > 0 and c3 > 0 whenever
Rm

0 < 1. Thus, by the Routh-Hurwith criterion, the quadratic (15)
has no positive root in this case. Hence, the mass action model
has no endemic equilibrium when Rm

0 < 1. Furthermore, the case
when Rm

0 = 1 makes c3 = 0. Thus, the quadratic in (15) reduces to
λ∗∗m (a3λ

∗∗
m + b3), with solutions λ∗∗m = 0 (corresponding to the DFE,

E0), and the linear equation a3λ
∗∗
m + b3 (so that λ∗∗m = −b3/a3 < 0).

Thus, no endemic equilibrium exists whenever Rm
0 ≤ 1. The above

result shows that measles-induced mortality causes backward bifur-
cation in measles transmission dynamics.

It is worth mentioning that, for this case (with δ = 0), the global
asymptotic stability property of the DFE (E0) can be established,
as below. Define, first of all, the invariant region

Ω̃ = {(SI , SC , EI , EC , II , IC , HI , HC, RI) ∈ Ω : SI ≤ S∗
I , SC ≤ S∗

C}.
Theorem 3.5. The DFE, E0, of the vaccination-free model (4) with

δ = 0, is globally-asymptotically stable (GAS) in Ω̃ if Rm
0 ≤ 1.
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Proof. Consider the model (4) with δ = 0 and Rm
0 ≤ 1. Further-

more, consider the linear Lyapunov function F = d1EI + d2EC +
d3II + d4IC , where

d1 =
μβ1(η1K̃4 + σI)

K1K2K̃4

+
μβ2α[K̃4(η2K̃5 + σ2) + σIK3]

K1K2K3K̃4K̃5

,

d2 =
μβ2(η2K̃5 + σ2)

K1K3K̃5

, d3 =
μ(β1K̃5 + β2α)

K1K̃4K̃5

, d4 =
μβ2

K1K̃5

,

with Lyapunov derivative given by (where a dot represents differ-
entiation with respect to time t)

Ḟ = d1ĖI + d2ĖC + d3İI + d4İC ,

= d1

{[
μβI
Π

(ηIEI + II) +
μβC
Π

(ηCEC + IC)

]
SI −K2EI

}

+ d2

{
αEI + ψ

[
μβI
Π

(ηIEI + II) +
μβC
Π

(ηCEC + IC)

]
SC

−K3EC}
+ d3(σIEI − K̃4II) + d4(αII + σCEC − K̃5IC),

=

[
μβIηI
Π

(d1SI + d2ψSC)− d1K2 + d2α + d3σI

]
EI

+

[
μβCηC

Π
(d1SI + d2ψSC)− d2K3 + d4σ2

]
EC

+

[
μβI
Π

(d1SI + d2ψSC)− d3K̃4 + d4α

]
II

+

[
μβC
Π

(d1SI + d2ψSC)− d4K̃5

]
IC ,

≤
[
βIηIμ

K1
(Rm

0 − 1)

]
EI +

[
βCηCμ

K1
(Rm

0 − 1)

]
EC +

[
βIμ

K1
(Rm

0 − 1)

]
II

+

[
βCμ

K1

(Rm
0 − 1)

]
IC , since SI ≤ S∗

I and SC ≤ S∗
C in Ω̃,

=
μ

K1
[βI(ηIEI + II) + βC(ηCEC + IC)](Rm

0 − 1).



MATHEMATICAL ANALYSIS OF AN AGE-STRUCTURED . . . 55

Since all the parameters and variables of the model (4), with (13),

are non-negative (Theorem 1), it follows that Ḟ ≤ 0 for Rm
0 ≤ 1

with Ḟ = 0 if and only if EI = EC = II = IC = 0. Hence, Ḟ is a
Lyapunov function on Ω̃. Thus, it follows, by LaSalle’s Invariance
Principle [19], that

(EI(t), EC(t), II(t), IC(t)) → (0, 0, 0, 0) as t → ∞. (16)

Since lim
t→∞

supEI(t) = 0, lim
t→∞

supEC(t) = 0, lim
t→∞

sup II(t) = 0 and

lim
t→∞

sup IC(t) = 0 (from (2)), it follows that, for sufficiently small

τ ∗ > 0, there exist constants N1 > 0, N2 > 0, N3 > 0, N4 > 0, such
that, lim

t→∞
supEI(t) ≤ τ ∗ for all t > N1, lim

t→∞
supEC(t) ≤ τ ∗ for all

t > N2, lim
t→∞

sup II(t) ≤ τ ∗ for all t > N3, and lim
t→∞

sup IC(t) ≤ τ ∗

for all t > N4. Hence, it follows from the seventh equation of the
vaccination-free model (4) that, for t > max{N1, N2, N3, N4}, ḢI =
σ2τ

∗ −K6HI . Thus, by comparison theorem [26],

H∞
I = lim

t→∞
supHI(t) ≤ σ2τ

∗

K6

, (17)

so that, by letting, τ ∗ → 0

H∞
I = lim

t→∞
supHI(t) ≤ 0. (18)

Similarly, it can be shown that

HI∞ = lim
t→∞

infHI(t) ≥ 0. (19)

Thus, it follows from (18) and (19) that

HI∞ ≥ 0 ≥ HI
∞. (20)

Hence,

lim
t→∞

HI(t) = 0. (21)

Similarly, it can be shown that

lim
t→∞

SI(t) = SI
∗, lim

t→∞
SC(t) = SC

∗, lim
t→∞

HC(t) = HC
∗ (22)

and lim
t→∞

RI(t) = RI
∗.

Substituting (RI(t), IC(t), HC(t)) = (0, 0, 0) in the equation for
dRC

dt
in (4) shows that lim

t→∞
RC(t) = 0. Thus, by combining (16),

(21) and (22) and noting that lim
t→∞

RC(t) = 0, it follows that every

solution of the equations of the model (4), with (13) and initial
conditions in Ω̃, approaches E0 as t→ ∞ (whenever Rm

0 ≤ 1). �



56 S. M. GARBA, A.B. GUMEL AND N. HUSSAINI

The epidemiological implication of Theorem 3.5 is that measles
will be effectively-controlled or eliminated from the community if
Rm

0 ≤ 1 (regardless of the initial sizes of the sub-populations of
the vaccination-free model (4) with (13)). Figure 3A depicts the
simulation results of the model (4), with (13), for the case when
Rm

0 < 1 (showing convergence of the solutions to the DFE, E0 (in
line with Theorem 3.5)).

3.5. Global Stability of Endemic Equilibrium: Special Case.
In this section, the global asymptotic stability of the unique en-
demic equilibrium of model (4) is given for the special case where
the associated disease-induced mortality is negligible (i.e., δ = 0)
and children do not acquire natural immunity against infection (i.e.,
ψ = 1). For this scenario, the following change of variables can be
made: S = SI+SC , E = EI+EC , I = II+IC , H = HI+HC , R =
RI + RC . Using these transformations in (4) gives the following
reduced vaccination-free model (without age-structure).

dS

dt
= Π− λS − μS,

dE

dt
= λS − σIE − μE,

dI

dt
= σIE − σ2I − γ2I − μI,

dH

dt
= σ2I − γIH − μH,

dR

dt
= γ2I + γIH − μR,

(23)

where, now, λ =
μβ

Π
(ηE + I). It can be shown that the associated

reproduction number of the reduced model (23) is given by

Rm
0s =

β̃(ηP1 + σI)

P1P2
, (24)

where, β̃ =
μβ

Π
, P1 = σI + μ, P2 = σ2 + γ2 + μ and P3 = γI + μ.

Furthermore, the following result can be shown, using the technique
in Section 3.4.

Lemma 3. The reduced model, (23), has a unique positive endemic
equilibrium, of the form E2 = (S∗∗∗, E∗∗∗, I∗∗∗, H∗∗∗, R∗∗∗), whenever
Rm

0s > 1.
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Define the invariant region

Ωr =

{
(S,E, I,H,R) ∈ R

5
+ : S + E + I +H +R ≤ Π

μ

}

and (the stable manifold of the DFE of the reduced model (23))

Ω1 = {(S,E, I,H,R) ∈ Ωr : E = I = H = R = 0}.

Theorem 3.6. The unique endemic equilibrium of the reduced model
(23), given by E2, is GAS in Ωr\Ω1 if Rm

0s > 1.

Proof. Consider the reduced model (23). Let Rm
0s > 1, so that the

associated unique endemic equilibrium of the reduced model (23)
exists (Lemma 3). Furthermore, consider the following non-linear
Lyapunov function (of Goh-Volterra type) for the sub-system of the
reduced model (23) involving the state variables S,E and I:

F = S − S∗∗∗ − S∗∗∗ ln
(

S

S∗∗∗

)
+ E −E∗∗∗ − E∗∗∗ ln

(
E

E∗∗∗

)

+
P1

σI

[
I − I∗∗∗ − I∗∗∗ ln

(
I

I∗∗∗

)]
,

with Lyapunov derivative,

Ḟ = Ṡ − S∗∗∗

S
Ṡ + Ė − E∗∗∗

E
Ė +

P1

σI

(
İ − I∗∗∗

I
İ

)
,

= Π− β̃(ηE + I)S − μS − S∗∗∗

S

[
Π− β̃(ηE + I)S − μS

]
+ β̃(ηE + I)S − P1E − E∗∗∗

E

[
β̃(ηE + I)S − P1E

]
+
P1

σI

[
σIE − P2I − I∗∗∗

I
(σIE − P2I)

]
.

(25)

It can be shown, from (23), that the following relations hold at the
endemic steady-state E2:

Π = β̃(ηE∗∗∗ + I∗∗∗)S∗∗∗ + μS∗∗∗, β̃(ηE∗∗∗ + I∗∗∗)S∗∗∗

= P1E
∗∗∗,

σIE
∗∗∗ = P2I

∗∗∗, σ2I∗∗∗ = P3H
∗∗∗, γ2I∗∗∗ + γIH

∗∗∗ = μR∗∗∗.

(26)
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Using the first three relations of (26) in (25), and simplifying, gives

Ḟ = β̃(ηE∗∗∗ + I∗∗∗)S∗∗∗ + μS∗∗∗ − μS

− S∗∗∗

S

[
β̃(ηE∗∗∗ + I∗∗∗)S∗∗∗ − β̃(ηE + I)S + μS∗∗∗ − μS

]
− E∗∗∗

E
β̃(ηE + I)S + P1E

∗∗∗ − P1P2I

σI
− P1E

I∗∗∗

I
+
P1P2I

∗∗∗

σI
,

= μS∗∗∗
(
2− S∗∗∗

S
− S

S∗∗∗

)

+ β̃ηE∗∗∗S∗∗∗
(
3− S

S∗∗∗ − S∗∗∗

S
− I

I∗∗∗
− I∗∗∗E
IE∗∗∗

)

+ β̃I∗∗∗S∗∗∗
(
3− S∗∗∗

S
− I

I∗∗∗
− I∗∗∗E
IE∗∗∗ − E∗∗∗IS

EI∗∗∗S∗∗∗

)
.

Finally, since the arithmetic mean exceeds the geometric mean, it
follows then that

μS∗∗∗
(
2− S∗∗∗

S
− S

S∗∗∗

)
≤ 0,

β̃ηE∗∗∗S∗∗∗
(
3− S

S∗∗∗ − S∗∗∗

S
− I

I∗∗∗
− I∗∗∗E
IE∗∗∗

)
≤ 0,

and β̃I∗∗∗S∗∗∗
(
3− S∗∗∗

S
− I

I∗∗∗
− I∗∗∗E
IE∗∗∗ − E∗∗∗IS

EI∗∗∗S∗∗∗

)
≤ 0.

Furthermore, since all the model parameters are non-negative, it
follows that Ḟ ≤ 0 for Rm

0s > 1. Thus, Ḟ is a Lyapunov function for
the sub-system of the model (23) on Ωr\Ω1. Therefore, it follows,
by LaSalle’s Invariance Principle [19], that

lim
t→∞

S(t) = S∗∗∗, lim
t→∞

E(t) = E∗∗∗, lim
t→∞

I(t) = I∗∗∗.

Since I(t) → I∗∗∗ as t → ∞, it follows from the equation for

dH/dt in (23) that, H(t) → σ2I
∗∗∗

P3
= H∗∗∗ as t → ∞. Similarly,

R(t) →
(
γ2
μ

+
γIσ2
μP3

)
I∗∗∗ = R∗∗∗ as t → ∞. The proof is con-

cluded using similar arguments as in the proof of Theorem 3.5. �

The epidemiological implication of Theorem 3.6 is that measles will
establish itself (be endemic) in the community whenever Rm

0s > 1
and the disease-induced mortality (δ) is negligible and children do
not acquire natural immunity against infection (ψ = 1). Figure 3B
depicts the numerical results obtained by simulating the reduced
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model (23) with δ = 0 and ψ = 1, using various initial conditions,
for the case when Rm

0s > 1 (showing convergence of the solutions to
an endemic equilibrium in line with Theorem 3.6).

4. Analysis of the Vaccination Model

It can be shown, using the approach in Section 3, that the following
biologically-feasible region

Γ = (SI , SC , VI , VC , EI , EC , II , IC , HI , HC, RI , RC) ∈ R
12
+ :

SI + SC + VI + VC + EI + EC + II + IC +HI +HC +RI

+ RC ≤ Π

μ

is positively-invariant and attracting for the vaccination model (1).

4.1. Local Stability of DFE. The DFE of the vaccination model
(1) is given by

Ev = (S∗
I , S

∗
C , V

∗
I , V

∗
C , E

∗
I , E

∗
C , I

∗
I , I

∗
C , H

∗
I , H

∗
C, R

∗
I , , R

∗
C)

=

(
S∗
I , S

∗
C , V

∗
I , V

∗
C , 0, 0, 0, 0, 0, 0, 0, 0

)
,

(27)

where,

S∗
I =

(1− f)Π

K1
, S∗

C =
αΠ[K9(1− f) + fw]

μK1(K8 + ωC)
, V ∗

I =
fΠ

K1
,

V ∗
C =

αΠ[ξ(1− f) + fK8]

μK1(K8 + ωC)
,

with K8 = ξC + μ and K9 = ωC + μ. The associated vaccination
reproduction number, denoted by Rv, of the model is given by

Rv =
q2ψαβC(ηCK5 + σC)

K1K3K5
+
q1μβI(ηIK4 + σI)

K1K2K4

+
q1βCμα[K4(ηCK5 + σC) + σIK3]

5∏
i=1

Ki

,

where,

q1 =
K1

μN∗ [S
∗
I + V ∗

I (1− εI)] = 1− fεI ,
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and,

q2 =
K1

αN∗ [S
∗
C + V ∗

C(1− εC)] = 1− [(1− f)ξ + fK8]εC
K8 + ωC

.

The following result can be established for the model (1), using the
approach in Section 3.

Lemma 4. The DFE, Ev, of the model (1) is LAS if Rv < 1, and
unstable if Rv > 1.

It should be mentioned that, like for the case of the vaccination-
free model (4), the vaccination model (1) also undergoes backward
bifurcation. This phenomenon occurs even if the natural immunity
acquired by children is permanent (ψ = 0), provided the vaccine
efficacy (εI = εC = ε) is not perfect (i.e., 0 < ε < 1). Thus, the
models (1) and (4) have essentially the same qualitative dynamics
with respect to the local stability of the DFE and the backward
bifurcation property observed in measles transmission dynamics.

4.2. Global Asymptotic Stability of DFE. In this section, the
global asymptotic stability property of the DFE of the vaccination
model (1) is explored for the special case where the vaccine efficacy
is perfect (εI = εC = ε = 1) and the disease-induced mortality is
negligible (δ = 0). Let

Γ̃ = {(SI , SC , VI , VC, EI , EC , II , IC , HI , HC , RI , RC) ∈ Γ : SI ≤ S∗
I ,

SC ≤ S∗
C , VI ≤ VI

∗, VC ≤ VC
∗}.

It can be shown that the associated reproduction number of the
model (1), with δ = 0 and ε = 1, is given by

Rm
v = Rv|δ=0, ε=1 =

{
1− [(1− f)ξ + fK8]

K8 + ωC

}
ψαβC (ηCK̃5 + σC)

K1K3K̃5

+ μβI
(1− f)(ηIK̃4 + σI)

K1K2K̃4

+
βCμα(1 − f)[K̃4(ηCK̃5 + σC) + σIK3]

K1K2K3K̃4K̃5

.

Theorem 4.1. The DFE, Ev, of the vaccination model (1) with

δ = 0 and ε = 1, is GAS in Γ̃ if Rm
v ≤ 1.

Proof. Consider the model (1) with δ = 0 and ε = 1. Further, let
Rm
v ≤ 1. Consider the following Lyapunov function F = g1EI +

g2EC + g3II + g4IC , where,



MATHEMATICAL ANALYSIS OF AN AGE-STRUCTURED . . . 61

g1 =
μ(1− f)

K1K2K̃4

{
β1(η1K̃4 + σI) +

β2α[K̃4(η2K̃5 + σ2) + σIK3]

K3K̃5

}
,

g2 =
μβ2(1− f)(η2K̃5 + σ2)

K1K3K̃5

, g3 =
μ(1− f)(β1K̃5 + β2α)

K1K̃4K̃5

,

g4 =
μβ2(1− f)

K1K̃5

,

with Lyapunov derivative given by

Ḟ = g1ĖI + g2ĖC + g3İI + g4İC ,

= g1

{[
μβI (1− f)

Π
(ηIEI + II) +

μβC(1− f)

Π
(ηCEC + IC)

]
SI −K2EI

}

+ g2

{
αEI + ψ

[
μβI(1− f)

Π
(ηIEI + II) +

μβC(1 − f)

Π
(ηCEC + IC)

]
SC

−K3EC

}
+ g3(σIEI − K̃4II) + g4(αII + σCEC − K̃5IC),

=

[
(1− f)μβIηI

Π
(g1SI + g2ψSC) − g1K2 + g2α+ g3σI

]
EI

+

[
(1− f)μβCηC

Π
(g1SI + g2ψSC)− g2K3 + g4σ2

]
EC

+

[
(1− f)μβI

Π
(g1SI + g2ψSC)− g3K̃4 + g4α

]
II

+

[
(1− f)μβC

Π
(g1SI + g2ψSC)− g4K̃5

]
IC ,

≤
[
(1− f)βIηIμ

K1
(Rm

v − 1)

]
EI +

[
(1− f)βCηCμ

K1
(Rm

v − 1)

]
EC

+

[
(1− f)βIμ

K1
(Rm

v − 1)

]
II +

[
(1 − f)βCμ

K1
(Rm

v − 1)

]
IC ,

since SI ≤ S∗I and SC ≤ S∗C in Γ̃,

=
(1 − f)μ

K1
[βI(ηIEI + II) + βC(ηCEC + IC)](Rm

v − 1) ≤ 0 for Rm
v ≤ 1.

The proof is concluded using the same approach as in the proof of
Theorem 3.5. �

Theorem 4.1 shows that, for the case of the model (1) with δ = 0
and ε = 1, the use of an anti-measles vaccine could lead to the effec-
tive control of the disease in the community whenever the vaccine
could reduce (and maintain) the associated reproduction threshold
(Rm

v ) to a value less than unity. Figure 4 depicts the solutions pro-
files of the model (1) for the case when δ = 0, ε = 1 and Rm

v < 1
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(showing convergence of the solutions to the DFE, E0, in line with
Theorem 4.1).

4.3. Threshold Analysis and Vaccine Impact. The population-
level impact of the widespread use of the anti-measles vaccines will
be assessed by re-writing the vaccination reproduction threshold,
Rv, as follows:

Rv = R0

[
1− V ∗

I + V ∗
C

N∗

(
1− R0v

R0

)]
, (28)

where,

R0v =
ψαβC(1− εC)(ηCK5 + σC)

K1K3K5

+ μ(1− εI)Q1,

= R0 −
[
εCψαβC(ηCK5 + σC)

K1K3K5

+ εIμQ1

]
,

(29)

where, Q1 =
βI(ηIK4 + σI)

K1K2K4
+
βCα[K4(ηCK5 + σC) + σIK3]

5∏
i=1

Ki

.

The quantity, R0v, is the reproduction number of the vaccination
model (1) for the case when every individual in the community is
vaccinated [13, 24]. Following [12, 13], define the vaccine impact
(Λ) by:

Λ =
V ∗
I + V ∗

C

N∗

(
1− R0v

R0

)
. (30)

We claim the following result.

Theorem 4.2. (i): positive impact in the community if Λ > 0
(R0v < R0),

(ii): no impact in the community if Λ = 0
(R0v = R0),

(iii): negative (detrimental) impact in the community if Λ < 0
(R0v > R0).

Proof. Substituting (30) into (28) gives Rv = R0(1 − Λ). Thus,
1− Λ = Rv

R0
. Hence, 1− Λ < 1 whenever Rv < R0 (so that, Λ > 0,

and the vaccine has positive impact). Similarly, 1 − Λ > 1 when-
ever Rv > R0 (so that, Λ < 0, and, in this case, the vaccine has
negative population-level impact). Finally, 1− Λ = 1 for Rv = R0

(so that, Λ = 0, and the vaccine has no population-level impact). �
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It is worth noting from Equation (29) that the quantity R0 is al-
ways greater or equal to R0v. Thus, the vaccine will never have
a detrimental impact (as suggested by Case (iii) of Theorem 4.2).
The above result (Theorem 4.2) is numerically illustrated in Figure
5. Furthermore, it is worth noting from (28) that

∂Rv

∂f
= −

[
μαβCεCψ(ηCK5 + σC)

(K8 + ωC)K1K3K5
+ μεIQ1

]
< 0,

and,

∂Rv

∂ξC
= −ψαβC(ηCK5 + σC)[ω + μ(1− f)]

(K8 + ωC)K1K3K5
< 0.

Thus, the vaccination reproduction number (Rv) decreases with
increasing fraction of infants (f) or children (ξC) vaccinated. A
decrease in Rv implies a decrease in disease burden (as measured
in terms of new cases of measles and measles-induced mortality).
Thus, these analyses show that the use of the anti-measles vaccine
will always have positive population-level impact.
A contour plot of the reproduction threshold (Rv), as a function

of vaccine efficacy (ε = εI = εC) and the fraction of individuals vac-

cinated at steady-state (p =
V ∗
I +V ∗

C

N∗ ), is depicted in Figure 6. For
the set of parameter values used in these simulations, the contours
show a decrease in vaccination reproduction number (Rv) with in-
creasing vaccine efficacy (ε) and the fraction of susceptible infants
and children vaccinated (p) at steady-state. It is clear from this
plot that significantly high vaccine coverage would be needed to ef-
fectively control or eliminate the disease from the community (i.e.,
achieve Rv < 1). In particular, with the assumed 95% vaccine ef-
ficacy [11, 20], about 90% of susceptible infants and children need
to be vaccinated (at steady-state) to have a realistic chance for the
effective control (or elimination) of measles in the community.

5. CONCLUDING REMARKS

A new age-structured deterministic model for the transmission dy-
namics of measles in a community is designed and rigorously ana-
lyzed. Some of the main findings of the study are:

(i): In the absence of vaccination, the resulting vaccination-free
model undergoes the phenomenon of backward bifurcation.
Two causes of this phenomenon (namely, children’s natu-
ral immunity against measles infection and measles-induced



64 S. M. GARBA, A.B. GUMEL AND N. HUSSAINI

mortality) have been identified. In the absence of disease-
induced mortality, the disease-free equilibrium of the vaccina-
tion-free model is shown to be globally-asymptotically stable
when the associated reproduction number of the vaccination-
free model is less than unity.

(ii): The model without vaccination has a unique endemic equi-
librium when its reproduction number exceeds unity. This
equilibrium is shown to be globally-asymptotically stable for
the special case where the disease-induced mortality is neg-
ligible (δ = 0) and children do not acquire natural immunity
against measles infection (ψ = 1).

(iii): The vaccination model also undergoes backward bifurcation,
and, unlike in the vaccination-free model, this phenome-
non persists even when children acquire permanent immu-
nity against measles infection (ψ = 0). It is shown that
this model does not undergo backward bifurcation if the
vaccine efficacy is perfect (i.e., ε = 1) and the measles-
induced mortality is negligible (δ = 0). For this case (with
ε = 1 and δ = 0), the DFE of the model is shown to be
globally-asymptotically stable when the associated repro-
duction threshold is less than unity.

(iv): The widespread use of the anti-measles vaccine always induces
positive community-wide impact.

(v): With the assumed 95% efficacy of the currently-available anti-
measles vaccines, at least 90% of the susceptible infants and
children need to be vaccinated to have a realistic chance
for the effective control or elimination of the disease in the
community.
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NOMENCLATURE

Table 1: Description of parameters of the models (1) and (4)

Parameter Interpretation

Π Birth rate of infants
μ Natural death rate
f Fraction of infants vaccinated
βI Effective contact rate for infants
βC Effective contact rate for children
ξC Continuous vaccination rate for children
ωC Vaccine waning rate
α Maturation rate of infants
ψ Modification parameter for the infection rate

of children due to natural immunity
θC Modification parameter for the reduced likelihood

of infant acquiring infection from older child
θI Modification parameter for the reduction of

transmission rate of infants to children
η
I
, η

C
Modification parameters for the reduction in
infectiousness of exposed infants and children in
comparison to symptomatic infant and children

σ
I
, σ

C
Rate of development of clinical symptoms of measles
for exposed infants and children

σ2 , σ3 Hospitalization rate for infected infants and children
δ
I
, δ2 Disease-induced death rate for infants

δ
C
, δ3 Disease-induced death rate for children

εI , εC Vaccine efficacy for infants and children
γ
I
, γ

C
, γ2 , γ3 Recovery rate for infants and children

Appendix A: Proof of Theorem 3.3

Proof. The proof is based on using centre manifold theory [9,
10]. Consider the vaccination-free model (4). Let SI = x1, SC =
x2, EI = x3, EC = x4, II = x5, IC = x6, HI = x7, HC =

x8 and RI = x9. Thus, N =

9∑
i=1

xi. Further, by using the vector

notation X = (x1, x2, x3, x4, x5, x6, x7, x8, x9)
T , the age-structured

model (4) can be written in the form dX
dt

= (f1, f2, f3, f4, f5, f6, f7, f8,

f9)
T as follows (where Ki, i = 1, ..., 7 are as defined in Section 3).
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dx1
dt

= Π− (λI + θCλC)x1 −K1x1,

dx2
dt

= αx1 − ψ(θIλI + λC)x2 − μx2,

dx3
dt

= (λI + θCλC)x1 −K2x3,

dx4
dt

= αx3 + ψ(θIλI + λC)x2 −K3x4,

dx5
dt

= σIx3 −K4x5,

dx6
dt

= αx5 + σCx4 −K5x6,

dx7
dt

= σ2x5 −K6x7,

dx8
dt

= σ3x6 + αx7 −K7x8,

dx9
dt

= γ2x5 + γIx7 −K1x9,

(A.1)

with the associated forces of infection given by

λI =
βI(ηIx3 + x5)

9∑
i=1

xi

and λC =
βC(ηCx4 + x6)

9∑
i=1

xi

.

Consider the case with R0 = 1. Suppose, further, that βI = β∗
I is

chosen as a bifurcation parameter. Solving for βI = β∗
I fromR0 = 1

gives

βI = β∗
I =

K1K2K4

μ(ηIK4 + σI)
×⎛

⎜⎜⎜⎜⎝1− αβC

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ψ(ηCK5 + σC)

K1K3K5

+
μ[K4(ηCK5 + σC) + σIK3]

5∏
i=1

Ki

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠ .
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The Jacobian of the system (A.1), evaluated at the DFE (E0) with
βI = β∗

I (denoted by J∗), is given by

J∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−K1 0 −P1 −P2 −β
∗
Iμ

K1
−βCμ
K1

0 0 0

α −μ −P3 −P4 −αψβ
∗
I

K1
−αψβC

K1
0 0 0

0 0 P1 −K2 P2
β∗
Iμ

K1

βCμ

K1
0 0 0

0 0 P3 + α P4 −K3
αψβ∗

I

K1

αψβC

K1
0 0 0

0 0 σI 0 −K4 0 0 0 0
0 0 0 σC α −K5 0 0 0
0 0 0 0 σI 0 −K6 0 0
0 0 0 0 0 σ2 α −K7 0
0 0 0 0 γ3 0 γI 0 −K1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where P1 =
β∗
I ηIμ

K1
, P2 =

βCηCμ

K1
, P3 =

αψβ∗
IηI

K1
and P4 =

αψβCηC
K1

.

The Jacobian (J∗) of the linearized system has a simple zero eigen-
value (with all other eigenvalues having negative real part). Hence,
the centre manifold theory [9, 10, 28] can be used to analyse the
dynamics of the system (A.1) around βI = β∗

I .

Eigenvectors of J∗
∣∣∣∣
βI=β

∗
I

For the case when R0 = 1, it can be shown that the J∗ has a
right eigenvector (corresponding to the zero eigenvalue), given by
w = [w1, w2, w3, w4, w5, w6, w7, w8, w9]

T , where,

w1 =
−μ
K2

1

[β∗
I (ηIw3 + w5) + βC(ηCw4 + w6)], w2 =

α

μ

(
1 +

ψK1

μ

)
w1,

w3 =
K4

σI
w5, w4 = w4, w5 = w5, w6 =

σCw4 + αw5

K5
, w7 =

σ2w5

K6
,

w8 =
αw7 + σ3w6

K7
, w9 =

γIw7 + γ3w5

K1
.

(A.2)
Similarly, the components of the left eigenvector of J∗ (correspond-
ing to the zero eigenvalue), denoted by v = [v1, v2, v3, v4, v5, v6, v7, v8, v9],
are given by,

v3 = v3, v4 = v4, v5 =
1

K1K4

(
β∗
I +

αβC
K5

)
(μv3 + v4αψ) ,

v6 =
βC

K1K5
(μv3 + v4αψ), v1 = v2 = v7 = v8 = v9 = 0.

(A.3)
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It is worth mentioning that the free eigenvectors w4, w5, v3 and v4
are chosen, respectively, to be

w4 = 1/4, w5 =
1

2A1
, v3 =

K1K
2
5

βCσCμ
and v4 =

K1K
2
5

K1K2
5 + βCσCμαψ

,

where,

A1 =
σIK

2
5 (K1K4 + μβ∗

I ) + μαβCK1K5(K4 +K5)

βCσCσIK4

+

αψ[β∗
IK

2
5 + αβC(K4 +K5)]

K4(K1K2
5 + βCαψ)

, so that v.w = 1 (in line with [10]).

It can be shown, by computing the non-zero partial derivatives
of the right-hand side functions, fi(i = 1, ..., 9), that the associated
backward bifurcation coefficients, a and b, are given, respectively,
by (see Theorem 4.1 in [10]):

a =

8∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

=
2μ

ΠK1
[β∗
I (w3ηI + w5) + βC(w4ηC + w6)][(w1α− μw2)(v3 − ψv4)

− (μv3 + ψαv4)(w3 + w4 + w5 + w6 + w7 + w8 + w9)],

=
2μA2

ΠK1

{
A2ψ

K1

(
K1K

2
5

βCσCμ
− K1K

2
5ψ

K1K2
5 + βCσCμαψ

)

− (μ+ ψα)

4A1σIK1K5K7

(
K1K7{2K5(K4 + σIσC) + σI [σCA1 + 2α

+ A1K5 + σ3(σCA1 + 2α)]}+ 2σIK5[K1ασ2 + 2K7(σ2γI + γ3)]

)}
,

(A.4)

where, A2 =
β∗
I

2A1σI
(ηIK4 + σI) +

βC
4A1K5

[A1(ηCK5 + σC) + α], and,

b =

9∑
k,i=1

vkwi
∂2fk
∂xi∂β∗

I

(0, 0) =
1

K1
(v3μ+ v4ψα)(w3η1 + w5),

=
K2

5 (η1K4 + σI)

2A1σI

(
1

βCσCμ
+

ψα

K1K2
5 + βCσCμαψ

)
.

Since the bifurcation coefficient, b, is automatically positive, it fol-
lows from Theorem 4.1 in [10] that the vaccination-free model (4)
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(or its transformed equivalent (A.1)) will undergo backward bifur-
cation if the bifurcation coefficient, a, given by (A.4), is positive. �
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Table 2: Parameter Values

Parameter Nominal Value (per year) References

Π Variable Assumed
1

μ
78 years [27]

f 0.85 [7]
εI 0.85 [7]
εC 0.95 [7]
βI 0.09091 [27]
βC 0.09091 [27]
ξC 70% [7]
ωC 1.5% per year [7]
ρ 0.6 [27]
σI , σ2 0.125 [27]
σC , σ3 0.125 [27]
γI , γ2 0.14286 [27]
γC , γ3 0.14286 [27]
γI , γC 0.14286 [27]
δI , δC , δ2, δ3 0.0000351 [27]
θI 1 [27]
θC 1 [27]
ηI , ηC [0, 1]
τ1, τv 0.09 Assumed
ψ [0,1] Assumed
α 0.025 Assumed
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Figure 1. Schematic diagram of the vaccination model (1).
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Figure 2. Bifurcation diagram for the vaccination-free
model (4). Parameter values used are: Π = 1000, μ =
0.00004, ψ = 0.54, α = 0.025, ηI = 0.65, ηC = 0.5, βI =
0.9, βC = 0.9, δI = 0.0599, δC = 0.45, γI = 0.5, γC =
0.5, γ2 = 0.25, γ3 = 0.25, σI = 0.853, σC = 0.5, σ2 =
0.853, σ3 = 0.52 (so that, R0 = 0.9832984689 < 1, and
a = 0.000002779040026 > 0).
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Figure 3. Simulations of the vaccination-free mod-
els (A) (4) and (B) (23), showing the total number of
symptomatic individuals (II(t) + IC(t)) as a function of
time. Parameter values used are as in Table 2, with (A)
βI = 0.7 and βC = 0.085 (so that, R0 = 0.4150 < 1) and
(B) β = 0.7 (so that, Rm

0s = 3.4182 > 1).
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Figure 4. Simulations of the vaccination model (1),
showing the total number of symptomatic individuals
(II(t) + IC(t)) as a function of time. Parameter values
used are as in Table 2, with δ = 0, ε = 1, βI = 0.07 and
βC = 0.7 (so that, Rm

v = 0.3418 < 1).
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Figure 5. Simulations of the vaccination model (1),
showing the cumulative number of symptomatic cases of
measles infection as a function of time in the presence
or absence of routine measles vaccination. Parameter
values used are as given in Table 2, with εI = 0.9, εC =
0.9, ωC = 0.25, ξ = 0.80 and f = 0.75 (so that, Λ =
0.7572 > 0, and the vaccine has a positive impact).
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Figure 6. Simulations of the vaccination model (1),
showing a contour plot of Rv as a function of the fraction
of vaccinated individuals at steady-state (p) and vaccine
efficacy (ε). Parameter values used are as given in Table
2, with δ = 0.


