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STRONG CONVERGENCE THEOREMS FOR

EQUILIBRIUM PROBLEMS AND FIXED POINTS OF
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ABSTRACT. Zhenhua He and Wei-Shih Du, Fixed Point The-
ory and Applications 2011, 2011:33 introduced a new method
of finding a common element in the intersection of the set of
solutions of a finite family of equilibrium problems and the set
of fixed points of a nonexpansive mapping in real Hilbert spaces.
In this paper we modify the algorithm of He and Du and prove
strong convergence results for finding a common element in the
intersection of the set of solutions of a finite family of equilib-
rium problems and the set of fixed points of an asymptotically
nonexpansive mapping in real Hilbert spaces.
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1. INTRODUCTION

Let H be a real Hilbert space with the inner product 〈., .〉 and the
induced norm ||.||. Let C be a nonempty closed convex subset of H.
A mapping T : C → C is said to be L-Lipschitzian if there exists
L > 0 such that

||Tx− Ty|| ≤ L||x− y||, ∀x, y ∈ C. (1.1)

T is said to be a contraction if L ∈ [0, 1) and T is said to be
nonexpansive if L = 1. T is said to be asymptotically nonexpansive
(see for example [1]) if there exists a sequence {kn}∞n=1 ⊆ [1,∞)
with lim

n→∞
kn = 1 such that

||T nx− T ny|| ≤ kn||x− y||, ∀x, y ∈ C. (1.2)

It is well known (see for example [1]) that the class of nonexpansive
mappings is a proper subclass of the class of asymptotically nonex-
pansive mappings. T is said to be uniformly L-Lipschitzian if there

Received by the editors November 16, 2012; Accepted: February 21, 2014
1Corresponding author

77



78 M. O. OSILIKE AND C. I. UGWUOGOR

exists L > 0 such that

||T nx− T ny|| ≤ L||x− y||, ∀x, y ∈ C. (1.3)

T is said to be asymptotically regular at a point x ∈ C (see for
example [2-5]) if lim

n→∞
||T n+1x − T nx|| = 0, and it is said to be

asymptotically regular on C if it is asymptotically regular at all x ∈
C. T is said to be uniformly asymptotically regular (see for example
[2-5]) if for any ε > 0 there exists an N such that for all x ∈ C and
for all n ≥ N , ||T n+1x−T nx|| < ε. It is known (see for example [5])
that if T is nonexpansive, then for all λ ∈ (0, 1), Tλ = λI+(1−λ)T
is asymptotically regular at x if {T n

λ (x) : n ∈ N} is bounded, and
if C is bounded; then Tλ is uniformly asymptotically regular. T is
said to be demiclosed at p if whenever {xn}∞n=1 is a sequence in C
which converges weakly to x∗ ∈ C and {Txn}∞n=1 converges strongly
to p, then Tx∗ = p.
Let PC : H → C denote the metric projection (the proximity

map) which assigns to each point x ∈ H the unique nearest point
in C, denoted by PC(x). It is well known that z = PC(x) if and
only if 〈x− z, z − y〉 ≥ 0, ∀y ∈ C, and that PK is nonexpansive.
We recall that a bi-function f : C × C → � is any function

such that f(x, x) = 0 for all x ∈ C. A bi-function f is said to
be monotone if for all x, y ∈ C, f(x, y) + f(y, x) ≤ 0. If f is a
bi-function, the classical equilibrium problem is to find x ∈ C such
that

f(x, y) ≥ 0, ∀y ∈ C. (1.4)

Let EP (f) denote the set of all solutions of the problem (1.4). Since
several problems in Physics, Optimization and Economics reduce to
finding a solution of (1.4) (see for example [6-7]), some authors had
proposed some methods to find the solution of the equilibrium prob-
lem (see for example [6-9]). If F (T ) := {x ∈ C : Tx = x} 
= ∅,
several authors have applied various iterative methods such as the
composite iterative algorithm, the CQ algorithm, viscosity approx-
imation methods, etc, to find a common element in EP (f)∩ F (T )
(see for example [10-17]). Let I denote an index set, for each i ∈ I,
let fi be a bi-function from C×C into �. The system of equilibrium
problem is to find x ∈ C such that

fi(x, y) ≥ 0, ∀y ∈ C and ∀i ∈ I. (1.5)
⋂

i∈I EP (fi) is the set of all solutions of the system of equilibrium
problem (1.5). For each i ∈ I, if fi(x, y) = 〈Aix, y − x〉, where
Ai : C → C is a nonlinear operator, then the problem (1.5) becomes
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the following system of variational inequality problem:
Find an element x ∈ C such that

〈Aix, y − x〉 ≥ 0, ∀y ∈ C. (1.6)

As we already mentioned above, the equilibrium problem unifies a
lot of different problems in Optimization and Nonlinear Analysis
and for this reason the existence of solutions for equilibrium prob-
lems was studied in a large number of papers. Recently, there were
many papers devoted to algorithms for finding such solutions (see
for example [10-17]).
Recently, He and Du [17] proved the following strong convergence

theorem for equilibrium problems and fixed points of nonexpansive
mappings in real Hilbert spaces:

Theorem 1.1 ([17]). Let C be a nonempty closed convex subset
of a real Hilbert space H and I = {1, 2, 3, . . . , k} be a finite index
set. For each i ∈ I, let fi be a bi-function from C×C into � which
satisfies the following conditions:

(A1) fi(x, x) = 0 for all x ∈ C,
(A2) fi is monotone,
(A3) for each x, y, z ∈ C, lim

t↓0
fi(tz + (1− t)x, y) ≤ fi(x, y), and

(A4) for each x ∈ C, y �−→ fi(x, y) is convex and lower semi-
continuous.

Let S : C −→ C be a nonexpansive mapping with
Ω = (∩k

i=1EP (fi))∩F (S) 
= ∅. Let λ, ρ ∈ (0, 1) and let g : C −→ C
be a ρ-contraction. Define T i

rn : H → C by

T i
rnx = {z ∈ C : fi(z, y) +

1

rn
〈y − z, z − x〉, ∀y ∈ C},

and let {xn} be a sequence generated as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 ∈ C
ui
n = T i

rnxn, ∀i ∈ I
xn+1 = αng(xn) + (1− αn)yn,
yn = (1− λ)xn + λSzn,

zn = u1
n+...+uk

n

k
, ∀n ∈ N.

(1.7)

If the control coefficient sequence {αn} ⊂ (0, 1), and {rn} ⊂ (0, ∞)
satisfy the following conditions:

(D1) lim
n→∞

αn = 0, Σ∞
n=1αn = ∞ and lim

n→∞
|αn+1 − αn| = 0,

(D2) lim inf
n→∞

rn > 0 and lim
n→∞

|rn+1 − rn| = 0,
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then the sequence {xn} and {ui
n}, for all i ∈ I, converge strongly

to an element c = PΩg(c) ∈ Ω.
Theorem 1.1 contains many important results in the literature

and has many important applications as demonstrated in [17].
It is our purpose in this paper to extend Theorem 1.1 to the case

where S belongs to a certain class of asymptotically nonexpansive
maps.

2. PRELIMINARY

We shall need the following results:

Lemma 2.1 [18] (Demiclosednes Principle). Let E be a uni-
formly convex Banach space, C a nonempty closed convex subset
of E and T : C → C an asymptotically nonexpansive mapping
with a sequence {kn} ⊆ [1,∞) with lim

n→∞
kn = 1. Then (I − T ) is

demiclosed at zero.

Lemma 2.2 ([19]) Let {xn} and {yn} be bounded sequences
in a Banach space E and let {βn} be a sequence in [0,1] with
0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1. Suppose xn+1 = βnyn + (1− βn)xn

for all integers n ≥ 0 and lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0,

then lim
n→∞

‖yn − xn‖ = 0

Lemma 2.3 ([6]). Let C be a nonempty closed convex subset of
H and let f be a bi-function of C×C into � satisfying the following
conditions:

(A1) f(x, x) = 0 for all x ∈ C,
(A2) f is monotone,
(A3) for each x, y, z ∈ C, lim

t↓0
f(tz + (1− t)x, y) ≤ f(x, y),

(A4) for each x ∈ C, y �−→ f(x, y) is convex and lower semi-
continuous.

Let r > 0 and x ∈ H . Then, there exists z ∈ C such that
f(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, for all y ∈ C.

Lemma 2.4 ([8]). Let C be a nonempty closed convex subset
of H and let f be a bi-function of C × C into � satisfying (A1) -
(A4). For r > 0 and each x ∈ H, define a mapping Tr : H → C as
follows: Tr(x) = {z ∈ C : f(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then the following hold:
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(i) Tr is single valued;
(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉
(iii) F (Tr) = EP (f)
(iv) EP (f) is closed and convex.

If I = {1, 2, . . . k, k ∈ N} is a finite index set, fi : C × C → �
bi-functions satisfying conditions (A1)-(A4) and for each i ∈ I,
T i
rn : H → C is given by

T i
rnx = {z ∈ C : fi(z, y) +

1

rn
〈y − z, z − x〉, ∀y ∈ C},

then for each i ∈ I, n ∈ N it follows from Lemmas 2.3 and 2.4
that T i

rn is a firmly nonexpansive single-valued mapping such that
F (T i

rn) = EP (fi) is closed and convex.

Lemma 2.5 ([17]). Let H be a real Hilbert space. Then for any

x1, x2, . . . , xk ∈ H and a1, a2, . . . , ak ∈ [0, 1] with
∑k

i=1 ai = 1, k ∈
N, we have

‖
k∑

i=1

aixi‖2 =
k∑

i=1

ai‖xi‖2 −
k−1∑
i=1

k∑
j=i+1

aiaj‖xi − xj‖2. (2.1)

Lemma 2.6 ([20]). Let {an}∞n=1 be a sequence of non negative
real numbers such that

an+1 ≤ (1− λn)an + λnβn + σn, n ≥ 1,

where {λn} ⊆ (0, 1), {βn} ⊆ �, {σn} is a sequence of nonnegative
real numbers and

(i) Σ∞
n=0λn = ∞, or equivalently Π∞

n=0(1− λn) = 0,
(ii) lim sup

n→∞
βn ≤ 0, and

(iii) Σ∞
n=0σn < ∞.

Then limn→∞ an = 0.
It is also well known that in real Hilbert spaces H , we have,

||x+ y||2 ≤ ||y||2 + 2〈x, x+ y〉, ∀x, y ∈ H (2.2)

3. MAIN RESULTS

We now prove the following:

Theorem 3.1 Let C be a nonempty closed convex subset of a real
Hilbert space H and I = {1, 2, 3, . . . , k} be a finite index set. For
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each i ∈ I, let fi be a bi-function from C×C into � satisfying (A1)−
(A4). Let S : C −→ C be an asymptotically nonexpansive with
sequence {kn}∞n=1 ⊆ [1,∞), let S be also uniformly asymptotically
regular. Let Ω = (∩k

i=1EP (fi)) ∩ F (S) 
= ∅, λ, ρ ∈ (0, 1), and let
g : C −→ C be a ρ-contraction. Let {xn} be the sequence generated
as follows: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 ∈ C
ui
n = T i

rnxn, ∀i ∈ I
xn+1 = αng(xn) + (1− αn)yn,
yn = (1− λ)xn + λSnzn,

zn = u1
n+...+uk

n

k
, ∀n ∈ N.

(3.1)

If the control coefficient sequence {αn} ⊂ (0, 1), and the sequence
{rn} ⊂ (0,+∞) satisfy the following conditions:

(D1) lim
n−→∞

αn = 0, Σ∞
n=1αn = ∞ and lim

n−→∞
|αn+1 − αn| = 0,

(D2) lim inf
n−→∞

rn > 0 and lim
n−→∞

|rn+1 − rn| = 0,

(D3) Σ∞
n=1(kn − 1) < ∞.
Then the sequence {xn} and {ui

n}, for all i ∈ I, converge
strongly to an element c = PΩg(c) ∈ Ω.

Proof. Since g : C → C is a ρ-contraction, and PΩ : H → Ω ⊆ H
is nonexpansive, then PΩg : H → Ω ⊆ H is a ρ-contraction and
hence has a unique fixed point. Thus, there exists unique c ∈ C ⊆
H such that PΩg(c) = c ∈ Ω.
We proceed to prove that the sequences {xn}, {yn}, {zn} and {ui

n}
are all bounded. Observe that (3.1) is equivalent to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 ∈ C
fi(u

i
n, y) +

1
rn
〈y − ui

n, u
i
n − xn〉 ≥ 0, ∀y ∈ C, and ∀i ∈ I

xn+1 = αng(xn) + (1− αn)yn,
yn = (1− λ)xn + λSnzn,

zn = u1
n+...+uk

n

k
, ∀n ∈ N.

(3.2)
For each i ∈ I we have

||ui
n − c|| = ||T i

rnxn − T i
rnc|| ≤ ||xn − c||, ∀n ∈ N. (3.3)

From (3.2) we have

||zn − c|| ≤ 1

k

k∑
i=1

||ui
n − c|| ≤ ||xn − c||. (using (3.3)) (3.4)
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Using (3.4) we obtain

‖yn − c‖ = ‖(1− λ)(xn − c) + λ(Snzn − c)‖
≤ (1− λ)‖xn − c‖+ λ‖Snzn − c‖
≤ (1− λ)‖xn − c‖+ λkn‖zn − c‖
≤ (1− λ)‖xn − c‖+ λkn‖xn − c‖
= (1 + λ(kn − 1))‖xn − c‖. (3.5)

Observe that application of (3.5) now yields

‖xn+1 − c‖ ≤ αn‖g(xn)− c‖+ (1− αn)‖yn − c‖
≤ αn‖g(xn)− g(c)‖+ αn‖g(c)− c‖

+(1− αn)‖yn − c‖
≤ αnρ‖xn − c‖+ αn‖g(c)− c‖

+(1− αn)(1 + λ(kn − 1))‖xn − c‖
= (1− αn(1− ρ) + λ(kn − 1)(1− αn))‖xn − c‖

+αn‖g(c)− c‖
≤ (1 +

λ

ρ
(kn − 1))[1− αn(1− ρ)]‖xn − c‖

+αn(1− ρ)
‖g(c)− c‖
(1− ρ)

≤ (1 +
λ

ρ
(kn − 1))max{‖xn − c‖, ‖g(c)− c‖

(1− ρ)
}

...

≤ Πn
j=1(1 +

λ

ρ
(kj − 1))max{‖x1 − c‖, ‖g(c)− c‖

(1− ρ)
}.

Since
∑∞

n=1(kn − 1) < ∞, it follows that {xn} is bounded. Thus
{yn}, {zn}, and {ui

n}, i ∈ I are all bounded.
Next we verify that lim ||xn+1 − xn|| = 0.
Since ui

n−1, u
i
nεC for each iεI, we obtain from (3.2) that

fi(u
i
n, u

i
n−1) +

1

rn
〈ui

n−1 − ui
n, u

i
n − xn〉 ≥ 0, (3.6)

fi(u
i
n−1, u

i
n) +

1

rn−1
〈ui

n − ui
n−1, u

i
n−1 − xn−1〉 ≥ 0. (3.7)
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It follows from (3.6), (3.7) and condition (A2) that

0 ≤ rn[fi(u
i
n, u

i
n−1) + fi(u

i
n−1, u

i
n] + 〈ui

n−1 − ui
n, u

i
n − xn

− rn
rn−1

〈ui
n−1 − xn−1〉

≤ 〈ui
n−1 − ui

n, u
i
n − xn − rn

rn−1
(ui

n−1 − xn−1)〉. (3.8)

From (3.8) we obtain

〈ui
n−1 − ui

n, u
i
n−1 − ui

n + xn − xn−1 + xn−1 − ui
n−1

+
rn
rn−1

(ui
n−1 − xn−1)〉 ≤ 0. (3.9)

Hence

‖ui
n − ui

n−1‖ ≤ ‖xn − xn−1‖
+|rn − rn−1

rn−1
|‖xn−1 − ui

n−1‖ ∀n ∈ N. (3.10)

Let M := 1
k
Σk

i=1‖xn−1 − ui
n−1‖. Then using (3.10) we obtain

‖zn − zn−1‖ = ||1
k
(u1

n + u2
n + . . . uk

n)

− 1

k
(u1

n−1 + u2
n−1 + . . . uk

n−1)||

≤ 1

k
Σk

i=1‖ui
n − ui

n−1‖

≤ ‖xn − xn−1‖+M |rn − rn−1

rn−1
|. (3.11)

Set vn = xn+1−(1−βn)xn

βn
, where βn = 1−(1−λ)(1−αn), n ∈ N. Then

for each n ∈ N

xn+1 − xn = βn(vn − xn), and

vn =
αng(xn) + λ(1− αn)S

nzn
βn

.
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Thus for any n ∈ N we have

vn+1 − vn =
αn+1g(xn+1)

βn+1
− αng(xn)

βn
− λ(1− αn)S

nzn
βn

+
λ(1− αn+1)S

n+1zn+1

βn+1

=
αn+1g(xn+1)

βn+1

− αng(xn)

βn

−λ(1− αn)

βn
[Snzn − Sn+1zn]

−λ[
1− αn

βn
− 1− αn+1

βn+1
]Sn+1zn+1

−λ(1− αn)

βn

[sn+1zn − sn+1zn+1].

Hence

‖vn+1 − vn‖ − ‖xn+1 − xn‖ ≤ αn+1

βn+1
‖g(xn+1)‖+ αn

βn
||g(xn)||

+
λ(1− αn)

βn
||Snzn − Sn+1zn||

+λ
∣∣∣1− αn

βn
− 1− αn+1

βn+1

∣∣∣||Sn+1zn+1||

+
λ(1− αn)

βn
||Sn+1zn − Sn+1zn+1||

−‖xn+1 − xn‖
≤ αn+1

βn+1
‖g(xn+1)‖+ αn

βn
||g(xn)||

+
λ(1− αn)

βn
||Snzn − Sn+1zn||

+λ
∣∣∣1− αn

βn
− 1− αn+1

βn+1

∣∣∣||Sn+1zn+1||

+
λ(1− αn)

βn
(kn+1 − 1)||zn − zn+1||

+
λ(1− αn)

βn
||zn − zn+1|| − ||xn+1 − xn|| (3.12)

≤ αn+1

βn+1
‖g(xn+1)‖+ αn

βn
||g(xn)||

+
λ(1− αn)

βn
||Snzn − Sn+1zn||

+λ
∣∣∣1− αn

βn
− 1− αn+1

βn+1

∣∣∣||Sn+1zn+1||

+
λ(1− αn)

βn
(kn+1 − 1)||zn − zn+1||

+
[λ(1− αn)

βn
− 1

]
||xn+1 − xn||
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+
λ(1− αn)

βn

M
∣∣∣rn+1 − rn

rn

∣∣∣.

Since S is uniformly asymptotically regular, it follows from (3.12)
and conditions (D1) and (D2) that

lim sup
n→∞

{||vn+1 − vn|| − ||xn+1 − xn||} = 0. (3.13)

It now follows from (3.13) and Lemma 2.2 that lim
n→∞

||vn−xn|| = 0.

This with the relation xn+1 − xn = βn(vn − xn) yields

lim
n→∞

||xn+1 − xn|| = 0.

Next we show that lim
n→∞

||Sui
n−ui

n|| = 0.We first prove that ||Snui
n−

ui
n|| = 0. From (3.10) we obtain

lim
n→∞

||ui
n+1 − ui

n|| = 0, ∀i ∈ I (3.14)

Also

lim
n→∞

||xn+1 − yn|| = lim
n→∞

αn||g(xn)− yn|| = 0. (3.15)

Hence

||xn − yn|| ≤ ||xn − xn+1||+ ||xn+1 − yn|| → 0 as n → ∞. (3.16)

It follows that

lim
n→∞

||Snzn − xn|| = lim
n→∞

1

λ
||yn − xn|| = 0. (3.17)

From Lemma 2.4 we obtain

||ui
n − c||2 = ||T i

rnxn − T i
rnc||2

≤ 〈T i
rnxn − T i

rnc, xn − c〉
= 〈ui

n − c, xn − c〉
=

1

2

[||ui
n − c||2 + ||xn − c||2 − ||ui

n − xn||2
]
.

Hence

||ui
n − c||2 ≤ ||xn − c||2 − ||ui

n − xn||2. (3.18)
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It follows from (3.18) and Lemma 2.5 that

||zn − c||2 =
∥∥∥

k∑
i=1

1

k
(ui

n − c)
∥∥∥
2

≤ 1

k

k∑
i=1

||ui
n − c||2

≤ 1

k

k∑
i=1

[
||xn − c||2 − ||ui

n − xn||2
]

= ||xn − c|| − 1

k

k∑
i=1

||ui
n − xn||2. (3.19)

Furthermore,

||xn+1 − c||2 = ||αn(g(xn)− c) + (1− αn)(yn − c)||2
≤ αn||g(xn)− c||2 + (1− αn)||yn − c||2
≤ 2αn||g(xn)− g(c)||2 + 2αn||g(c) − c||2

+(1− αn)
[
(1 − λ)||xn − c||2 + λ||Snzn − c||2

]

≤ 2ρ2αn||xn − c||2 + 2αn||g(c) − c||2

+(1− αn)
[
(1 − λ)||xn − c||2 + λk2n||zn − c||2

]

≤ (1− αn)(1− λ)||xn − c||2 + αn[2ρ
2||xn − c||2

+2||g(c) − c||2] + λ(k2n − 1)||zn − c||2
+λ(1− αn)||zn − c||2

≤ (1− αn)(1− λ)||xn − c||2 + αn[2ρ
2||xn − c||2

+2||g(c) − c||2] + λ(k2n − 1)||zn − c||2

+λ(1− αn)
[
||xn − c||2 − 1

k

k∑
i=1

||uin − xn||2
]
(3.20)

Hence

λ(1− αn)

k

k∑
i=1

||uin − xn||2 ≤ ||xn − c||2 − ||xn+1 − c||2

+αn

[
2ρ2||xn − c||2 + 2||g(c) − c||2]

+λ(k2n − 1)||zn − c||2
≤ (||xn − c||+ ||xn+1 − c||)||xn+1 − xn||

+αn

[
2ρ2||xn − c||2 + 2||g(c) − c||2

]

+λ(k2n − 1)||zn − c||2 → 0 as n → ∞.
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Hence
lim
n→∞

||ui
n − xn|| = 0. (3.21)

Furthermore,

||zn − xn|| ≤ 1

k

k∑
i=1

||ui
n − xn|| → 0 as n → ∞, (3.22)

and hence

||ui
n − zn|| ≤ ||ui

n − xn||+ ||xn − zn|| → 0 as n → ∞. (3.23)

For all i ∈ I, we obtain from (3.17), (3.2) and (3.23) that

||Snui
n − ui

n|| ≤ ||Snui
n − Snzn||+ ||Snzn − xn||+ ||xn − ui

n||
≤ kn||ui

n − zn||+ ||Snzn − xn||
+||xn − ui

n|| → 0 as n → ∞. (3.24)

Observe that

||xn − Szn|| ≤ ||xn − Snzn||+ ||Snzn − Szn||
≤ ||xn − Snzn||+ L||Sn−1zn − zn||
≤ ||xn − Snzn||+ L||Sn−1zn − Sn−1zn−1||

+L||Sn−1zn−1 − zn||
≤ ||xn − Snzn||+ L2||zn − zn−1||

+L||Sn−1zn−1 − xn−1||+ L||xn−1 − zn||
≤ ||xn − Snzn||+ L2||zn − xn||+ L2||xn − xn−1||

+L2||xn−1 − zn−1||+ L||Sn−1zn−1 − xn−1||
+L||xn−1 − xn||
+L||xn − zn|| → 0 as n → ∞. (3.25)

Hence

||Sui
n − ui

n|| ≤ ||Sui
n − Szn||+ ||Szn − xn||+ ||xn − ui

n||
≤ L||ui

n − zn||+ ||Szn − xn||
+||xn − ui

n|| → 0 as n → ∞. (3.26)

We proceed to prove that lim sup
n→∞

〈g(c)− c, xn − c〉 ≤ 0. Since {xn}
is bounded, let {xnj

}∞j=1 be a subsequence of {xn} such that

lim sup
n→∞

〈g(c)− c, xn − c〉 = lim
j→∞

〈g(c)− c, xnj
− c〉. (3.27)

Again since {xnj
}∞j=1 is bounded, it has a subsequence {xnjm

}∞m=1

which converges weakly to a point x∗ ∈ C. It follows from (3.21)
that lim

m→∞
||ui

njm
− xnjm

|| = 0, and hence {ui
njm

}∞m=1 converges
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weakly to x∗ for all i ∈ I. Since (I −S) is demiclosed at 0 (Lemma
2.1), it follows from (3.26) that x∗ ∈ F (S) := {x ∈ C : Sx = x}.
Furthermore, since

fi(u
i
njm

, y) +
1

rnjm

〈y− ui
njm

, ui
njm

− xnjm
〉 ≥ 0, ∀y ∈ C, and ∀i ∈ I,

it follows from (A2) that

1

rnjm

〈y − ui
njm

, ui
njm

− xnjm
〉 ≥ fi(y, u

i
njm

) + fi(u
i
njm

, y)

+
1

rnjm

〈y − ui
njm

, ui
njm

− xnjm
〉

≥ fi(y, u
i
njm

).

Thus

〈y − ui
njm

,
ui
njm

− xnjm

rnjm

〉 ≥ fi(y, u
i
njm

), ∀y ∈ C.

It follows from (3.21) and (D2) that

fi(y, x
∗) ≤ 0, ∀y ∈ C. (3.28)

For arbitrary but fixed y ∈ C, let yt = ty + (1 − t)x∗, t ∈ [0, 1].
Then yt ∈ C and hence fi(yt, x

∗) ≤ 0, ∀i ∈ I. From (A1)-(A4) we
obtain for all i ∈ I

0 = fi(yt, yt) ≤ tfi(yt, y) + (1− t)fi(yt, x
∗) ≤ tfi(yt, y), ∀i ∈ I;

and hence,

fi(x
∗, y) ≥ lim

t↓0
fi(ty + (1− t)x∗, y) = lim

t↓0
fi(yt, y) ≥ 0. (3.29)

It follows from (3.29) that x∗ ∈ ∩k
i=1EP (fi), and hence

x∗ ∈ Ω = (∩k
i=1EP (fi)) ∩ F (S). From (3.27) we obtain

lim sup
n→∞

〈g(c)− c, xn − c〉 = lim
j→∞

〈g(c)− c, xnj
− c〉

= lim
m→∞

〈g(c)− c, xnjm
− c〉

= 〈g(c)− c, x∗ − c〉 ≤ 0. (3.30)

Finally we prove that {xn}, {ui
n}, ∀i ∈ I converge strongly to

c = PΩg(c) ∈ Ω.
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Using (2.2) we obtain

||xn+1 − c||2 = ||(1− αn)(yn − c) + αn(g(xn)− c)||2
≤ (1− αn)

2||yn − c||2 + 2αn〈g(xn)− c, xn+1 − c〉
≤ (1− αn)

2
[
||(1− λ)(xn − c) + λ(Snzn − c)||2

]

+2αn〈g(c)− c, xn+1 − c〉
+2αnρ||xn − c||||xn+1 − c||

≤ (1− αn)
2
[
1 + λ(kn − 1)

]
||xn − c||2

+2αn〈g(c)− c, xn+1 − c〉
+2αnρ||xn − c||

[
||xn+1 − xn||+ ||xn − c||

]

=
[
1− 2αn(1− ρ)

]
||xn − c||2

+αn

[
αn||xn − c||+ 2〈g(c)− c, xn+1 − c〉

+2ρ||xn − c||||xn+1 − xn||
]

+(1− αn)
2λ(kn − 1)||xn − c||2. (3.31)

Let an := ||xn − c||2, λn := 2αn(1− ρ),

βn := 1
2(1−ρ)

[
αn||xn − c||+ 2〈g(c)− c, xn+1 − c〉

+2ρ||xn − c||||xn+1 − xn||
]
, σn := λ(kn − 1)||xn − c||2. Then it

follows from (3.31) that

an+1 ≤ [1− λn]an + λnβn + σn,

and it follows from Lemma 2.6 that lim
n→∞

an = lim
n→∞

|||xn − c|| = 0,

and it also follows from (3.21) that lim
n→∞

||ui
n − c|| = 0, ∀i ∈ I. �

Corollary 3.1 Let C be a nonempty closed convex subset of a
real Hilbert space H and Let f be a bi-function from C × C into
� satisfying (A1) − (A4). Let S : C −→ C be an asymptotically
nonexpansive mapping with sequence {kn}∞n=1 ⊆ [1,∞). Let S
uniformly asymptotically regular with Ω = EP (f)∩F (S) 
= ∅. Let
λ, ρ ∈ (0, 1) and g : C −→ C is a ρ-contraction. Let {xn} be a
sequence generated as follows:⎧⎪⎪⎨

⎪⎪⎩

x1 ∈ C
un = Trnxn,
xn+1 = αng(xn) + (1− αn)yn,
yn = (1− λ)xn + λSnun,
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If the above control coefficient sequence {αn} ⊂ (0, 1) and {rn} ⊂
(0,+∞) satisfying the following restrictions:

(D1) lim
n−→∞

αn = 0, Σ∞
n=1αn = +∞ and lim

n−→∞
|αn+1 − αn| = 0,

(D2) lim inf
n−→∞

rn > 0 and lim
n−→∞

|rn+1 − rn| = 0.

(D3) Σ∞
n=1(kn − 1) < ∞,
Then the sequence {xn} and {un} converge strongly to

an element c = PΩg(c) ∈ Ω.

If fi ≡ 0, ∀i in Theorem 3.1, then from the algorithm (3.1) we
obtain ui

n ≡ PC(xn), ∀i. Thus we have the following:

Corollary 3.2 Let C be a nonempty closed convex subset of
a real Hilbert space H and let S : C −→ C be an asymptotically
nonexpansive mapping with sequence {kn}∞n=1 ⊆ [1,∞), and let S
be uniformly asymptotically regular with F (S) 
= ∅. Let λ, ρ ∈
(0, 1) and g : C −→ C is a ρ-contraction. Let {xn} be a sequence
generated as follows:⎧⎨

⎩
x1 ∈ C
xn+1 = αng(xn) + (1− αn)yn,
yn = (1− λ)xn + λSnPC(xn),

If the above control coefficient sequence {αn} ⊂ (0, 1) satisfy the
conditions:

(D1) lim
n−→∞

αn = 0, Σ∞
n=1αn = +∞ and lim

n−→∞
|αn+1−αn| = 0, and

(D2) Σ∞
n=1(kn − 1) < ∞.
Then the sequence {xn} converges strongly to an element

c = PΩg(c) ∈ F (S).
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