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SOLVING SYSTEM OF NONLINEAR EQUATIONS

USING IMPROVED DOUBLE DIRECTION METHOD

A. S. HALILU1 AND M. Y. WAZIRI

ABSTRACT.The fundamental reason behind double direction
approach is that, there are two corrections in the scheme. If one
correction fails during iterative process then the other one will
correct the system. Therefore, this research aims to present a
derivative-free method for solving large-scale system of nonlin-
ear equations via double direction approach. The acceleration
parameter used in this approach approximated the Jacobian ma-
trix in order to form a derivative-free method by reducing two
direction presented in double direction scheme into a single one.
under mild conditions, the proposed method is proved to be
globally convergent using derivative-free line search. Numerical
results recorded in this paper using a set of large-scale test prob-
lems show that the proposed approach is successful for solving
large-scale problems.

Keywords and phrases: Acceleration parameter, Double direc-
tion; Global Convergence.
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1. INTRODUCTION

Due to the fact that most problems arising from engineering, bi-
ology, mathematics, physics, and many other branches of science,
are naturally nonlinear in nature. In this paper following system of
nonlinear equations is to be considered.

F (x) = 0, (1)

where F : Rn → Rn is nonlinear map. Throughout this paper, the
space Rn denote the n−dimensional real space equipped with the
Euclidean norm ‖ · ‖.

The most popular schemes for solving (1) are based on successive
linearization [3, 4, 5], where the search direction dk is obtained by
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solving the following linear equation:

F (xk) + F ′(xk)dk = 0, (2)

where, F ′(xk) is the Jacobian matrix of F (xk) at xk or an approx-
imation of it.

The well-known approach for solving (1) is the Newton’s method
[5, 10]. The method has some nice properties, such as a fast conver-
gence rate from a reasonably good starting point [5]. Despite the
appealing characteristics of the Newton methods, Jacobian matrix
will be computed at each iteration, so they are not ideal for solving
large-scale problems. Due to the shortcomings of Newton method,
the double direction method has been proposed in [2] and the iter-
ative procedure is given as:

xk+1 = xk + αkdk + α2
kck, (3)

where xk+1 represents a new iterative point, xk is the previous it-
eration, and αk denotes the step length, while bk and ck are search
directions respectively. In addition, (1) can be obtained from an
unconstrained optimization problem [14]. Let f be a norm function
defined by

f(x) =
1

2
‖F (x)‖2. (4)

The nonlinear equations problem (1) is analogous to the following
global optimization problem

minf(x), x ∈ Rn, where, f : Rn → R.
The idea of double direction approach is presented by Duranovic-

Milicic, in [2], using multi-step iterative scheme to generate new it-
erate. Notwithstanding, Duranovic et.al [1] also proposed a multi-
step algorithm for minimizing a non-differentiable function using
double direction approach. The approach in [1], Motivated Petro-
vic and Stanimirovic, [15] and proposed a double direction method
for solving unconstrained optimization problems. In their work,
an approximation to Hessian matrix is obtained via acceleration
parameter γk > 0 i.e., 52f(xk) ≈ γkI, where, I is an identity ma-
trix. The attractive feature of the scheme in [15], is that, the two
directions presented are derivative-free, in the first direction, the
Hessian matrix is approximated with diagonal matrix via accelera-
tion parameter and the second one is presented as steepest decent
direction. For this reason, the method is opportuned to solve the
large-scale problems. Nonetheless, the study of derivative-free dou-
ble direction methods for solving system of nonlinear equations is
very rare in the literature, this motivated Halilu and Waziri [8]
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and used the scheme in (3), and proposed a derivative-free method
via double direction approach for solving system of nonlinear equa-
tions. The Jacobian matrix is approximated via acceleration pa-
rameter γk > 0 i.e., F ′k ≈ γkI, where, I is an identity matrix. The
study of double direction is further improved by Habibu et al. [7]
and solve conjugate gradient method for solving symmetric non-
linear equations. In their scheme, the two direction are presented
as conjugate gradient and steepest descent direction respectively.
Despite, the good convergence properties of the methods in [8, 7],
but it is numerical performance defined weaker due to the present
of steepest descent direction in the schemes. Therefore, motivated
by this idea, we aimed at developing a matrix-free method with line
search for solving system of nonlinear equations, without comput-
ing the Jacobian matrix with less number of iterations and CPU
time that is globally convergent. This is made possible by making
the two directions in (3) to a single direction, and make the nu-
merical comparison with a single direction method existing in the
literature.

There are several procedure for the choice of the search direction
[1, 5, 12, 13, 14]. In steepest descent method the direction dk is
defined by dk = −F (xk) [18]. The conjugate gradient direction for
solving system of nonlinear equations has received a good attention
and take an appropriate progress, where the direction dk is defined
by

dk =

{
−F (xk), if k = 0
−F (xk) + βkdk−1, if k ≥ 1

where βk is a CG-parameter.See[6, 7, 9].
The step length αk can also be computed either exact or in ex-

act. It is very expensive to find exact step length in practical
computation. Therefore the most frequently used line search in
practice is inexact line search [6, 8, 9, 16, 20, 22],which sufficiently
decrease the function values along the ray xk + αkdk, αk > 0. i.e
‖F (xk + αkdk)‖ ≤ ‖F (xk)‖.

We organized the paper as follows; In the next section, we present
the proposed method, convergence results are presented in section
3. Some numerical results are reported in section 4. Finally we
made conclusions in section 5.
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2. MAIN RESULT

In this section, we propose to reduce the two directions (3) into a
single one. In order to incorporate more information of the iter-
ates at each iteration and to improve good direction towards the
solution, we suggest a new directions dk and ck in (3) to be defined
as:

dk = −γ−1k F (xk) = ck, (5)

where, γk ∈ R is an acceleration parameter.
By putting (5) into (3) we obtained

xk+1 = xk − (αk + α2
k)γ−1k F (xk), (6)

from (6) we can easily show that, our direction is :

dk = −γ−1k F (xk). (7)

The acceleration parameter, γk is obtained by applying Taylor’s
expansion of the first order as follows:

F (xk+1) ≈ F (xk) + F ′(ξ)(xk+1 − xk), (8)

where the parameter ξ fulfills the conditions ξ ∈ [xk, xk+1],

ξ = xk + δ(xk+1 − xk) = xk − δ(αk + α2
k)dk, 0 ≤ δ ≤ 1. (9)

putting in mind that the distance between xk and xk+1 is small
enough, Taking δ = 1 in (9), we get ξ = xk+1. So we are interested
to approximate Jacobian via

F ′(ξ) ≈ γk+1I. (10)

Now from (8) and (10) its not difficult to verify:

yk = γk+1sk (11)

where, yk = F (xk+1)− F (xk) and sk = xk+1 − xk.
By multiplying yTk to the both side of (11) we obtained the accel-
eration parameter as:

γk+1 =
yTk yk

(αk + α2
k)yTk dk

, (12)

From (6) and (7) we have the general scheme as:

xk+1 = xk + (αk + α2
k)dk. (13)

We use the derivative-free line used in [11, 14] in order to compute
our step length αk.
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Let ω1 > 0, ω2 > 0 and r ∈ (0, 1) be constants and let {ηk} be a
given positive sequence such that

∞∑
k=0

ηk < η <∞. (14)

Let αk = rik , ik is the smallest non negative integer i that satisfies

f(xk+(αk+α2
k)dk)−f(xk) ≤ −ω1‖αkF (xk)‖2−ω2‖αkdk‖2+ηkf(xk).

(15)
Now we describe the algorithm of the proposed method as follows:
Algorithm 1(SSIDD)
STEP 1: Given x0, γ0 = 1, ε = 10−4, set k = 0.
STEP 2: Compute F (xk).
STEP 3: If ‖F (xk)‖ ≤ ε then stop, else goto STEP 4.
STEP 4: Compute search direction dk = −γ−1k F (xk).
STEP 5: Compute step length αk(using (15)).
STEP 6: Set xk+1 = xk + (αk + α2

k)dk.
STEP 7: Compute F (xk+1).

STEP 8: Update γk+1 =
yTk yk

(αk + α2
k)yTk dk

.

STEP 9: Set k = k + 1, and go to STEP 3.

3. CONVERGENCE ANALYSIS

In this section we present the global convergence of our method
(SSIDD). To begin with, let us defined the level set

Ω = {x|‖F (x)‖ ≤ ‖F (x0)‖}. (16)

In order to analyze the convergence of algorithm 1 we need the
following assumption:
Assumption 1.
(1) There exists x∗ ∈ Rn such that F (x∗) = 0.
(2) F is continuously differentiable in some neighborhood say N of
x∗ containing Ω.
(3) The Jacobian of F is bounded and positive definite on N, i.e.,
there exists a positive constants M > m > 0 such that

‖F ′(x)‖ ≤M ∀x ∈ N, (17)

and

m‖d‖2 ≤ dTF ′(x)d ∀x ∈ N, d ∈ Rn. (18)

From the level set we have:

‖F (x)‖ ≤ m1 ∀x ∈ Ω. (19)
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Remarks:
Assumption 1 implies that there exists a constants M > m > 0
such that

m‖d‖ ≤ ‖F ′(x)d‖ ≤M‖d‖ ∀x ∈ N, d ∈ Rn. (20)

m‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤M‖x− y‖ ∀x, y ∈ N. (21)

Since γkI approximates F ′(xk) along direction sk, now we consider
the following assumption.
Assumption 2.
γkI is a good approximation to F ′(xk), i.e.,

‖(F ′(xk)− γkI)dk‖ ≤ ε‖F (xk)‖ (22)

where ε ∈ (0, 1) is a small quantity [17].
Lemma 1. Suppose assumption 2 holds and let {xk} be generated
by algorithm 1. Then dk is a descent direction for f(xk) at xk i.e.,

f(xk)Tdk < 0. (23)

Proof. From (7), we have

f(xk)Tdk = F (xk)TF ′(xk)dk

= F (xk)T [(F ′(xk)− γkI)dk − F (xk)]

= F (xk)T ((F ′(xK)− γkI)dk − ‖F (xk)‖2,
(24)

by Chauchy-Schwarz we have,

f(xk)Tdk ≤ ‖F (xk)‖‖((F ′(xk)− γkI)dk‖ − ‖F (xk)‖2

≤ −(1− ε)‖F (xk)‖2.
(25)

Hence for ε ∈ (0, 1) this lemma is true.
From lemma 1, we can deduce that the norm function f(xk) is a
descent along dk , which means that ‖F (xk+1)‖ ≤ ‖F (xk)‖ is true.
Lemma 2. Let assumption 2 hold and {xk} be generated by algo-
rithm 1. Then {xk} ⊂ Ω.
Proof. By lemma 1, we have ‖F (xk+1)‖ ≤ ‖F (xk)‖. Moreover, we
have for all k.

‖F (xk+1)‖ ≤ ‖F (xk)‖ ≤ ‖F (xk−1)‖ ≤ . . . ≤ ‖F (x0)‖.
This implies that {xk} ⊂ Ω.
Lemma 3. Suppose that assumption 1 holds and {xk} be gener-
ated by algorithm 1. Then there exists a constant m > 0 such that
for all k

yTk sk ≥ m‖sk‖2. (26)

Proof. By mean-value theorem and (18) we have,
yTk sk = sTk (F (xk+1)− F (xk)) = sTkF

′(ζ)sk ≥ m‖sk‖2,
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where ξ = xk + ζ(xk+1 − xk) , ζ ∈ (0, 1). The proof is completed.
Using yTk sk ≥ m‖sk‖2 > 0, γk+1 is always generated by the update
formula (12), and we can deduce that γk+1I inherits the positive
definiteness of γkI. By the above lemma and (21), we obtained

yTk sk
‖sk‖2

≥ m,
‖yk‖2

yTk sk
≤ M2

m
. (27)

Lemma 4. Suppose that assumption 1 holds and {xk} is generated
by algorithm 1. Then we have

lim
k→∞
‖αkdk‖ = lim

k→∞
‖sk‖ = 0, (28)

and
lim
k→∞
‖αkF (xk)‖ = 0. (29)

Proof. From (15) we have for all k > 0

ω2‖αkdk‖2 ≤ ω1‖αkF (xk)‖2 + ω2‖αkdk‖2

≤ ‖F (xk)‖2 − ‖F (xk+1)‖2 + ηk‖F (xk)‖2.
(30)

By summing the above inequality, we have

ω2

k∑
i=0

‖αidi‖2 ≤
k∑

i=0

(
‖F (xi)‖2 − ‖F (xi+1)‖2

)
+

k∑
i=0

ηi‖F (xi)‖2

= ‖F (x0)‖2 − ‖F (xk+1)‖2 +
k∑

i=0

ηi‖F (xi)‖2

≤ ‖F (x0)‖2 + ‖F (x0)‖2
k∑

i=0

ηi

≤ ‖F (x0)‖2 + ‖F (x0)‖2
∞∑
i=0

ηi.

≤ ‖F (x0)‖2(1 + η).
(31)

From the level set and fact that {ηk} satisfies (14), the series
∞∑
i=0

‖αidi‖2 is convergent. This implies (28). By similar argument,

we can prove that (29) holds.
Lemma 5. Suppose assumption 1 holds and let {xk} be generated
by algorithm 1. Then there exist a constant m3 > 0 such that for
all k > 0,

‖dk‖ ≤ m3. (32)
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Proof. From the level set, (7) and (21) we have,

‖dk‖ =

∥∥∥∥−yTk−1sk−1F (xk)

‖yk−1‖2

∥∥∥∥
≤ ‖F (xk)‖‖sk−1‖‖yk−1‖

m2‖sk−1‖2

≤ ‖F (xk)‖M‖sk−1‖
m2‖sk−1‖

≤ ‖F (xk)‖M
m2

≤ ‖F (x0)‖M
m2

.

(33)

Taking m3 = ‖F (x0)‖M
m2 , we have (32). We can deduce that for all k

(32) hold.
Now we are going to establish the following global convergence the-
orem to show that under some suitable conditions, there exist an
accumulation point of {xk} which is a solution of problem (1).
Theorem 1. Suppose that assumption 1 holds,{xk} is generated
by algorithm 1. Assume further for all k > 0,

αk ≥ c
|F (xk)Tdk|
‖dk‖2

, (34)

where c is some positive constant. Then

lim
k→∞
‖F (xk)‖ = 0. (35)

Proof. From lemma 5 we have (32). Therefore by (28) and the
boundedness of {‖dk‖}, we have

lim
k→∞

αk‖dk‖2 = 0, (36)

from (34) and (36) we have

lim
k→∞
|F (xk)Tdk| = 0. (37)

On the other hand from (7) we have,

F (xk)Tdk = −γ−1k ‖F (xk)‖2, (38)

‖F (xk)‖2 = ‖ − F (xk)Tdkγk‖
≤ |F (xk)Tdk||γk|.

(39)

But

γk =
‖yk−1‖2

yTk−1sk−1
≥ m‖sk−1‖2

yTk−1sk−1
.
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So,

|γk| ≥
‖yk−1‖2

‖yk−1‖‖sk−1‖
≥ m‖sk−1‖2

‖yk−1‖‖sk−1‖
≥ m‖sk−1‖
M‖sk−1‖

≥ m

M
,

from (39) we have,

‖F (xk)‖2 ≤ |F (xk)Tdk|
(m
M

)
. (40)

As a result,

0 ≤ ‖F (xk)‖2 ≤ |F (xk)Tdk|
(m
M

)
−→ 0. (41)

Therefore,

lim
k→∞
‖F (xk)‖ = 0. (42)

The proof is completed.

4. NUMERICAL RESULTS

In this section, some numerical results are reported in order to show
the effectiveness of the proposed method by comparing it with the
following existing method in the literature.

• An inexact PRP conjugate gradient method for symmetric
nonlinear equations (IPRP) [23].

The codes, were written in Matlab 7.9.0 (R2009b) and run on
a computer 2.00 GHz CPU processor and 3 GB RAM memory.
However, two algorithms were implemented with the same line
search (15) in the experiments, and the following parameters are

set: ω1 = ω2 = 10−4, r = 0.2 and ηk =
1

(k + 1)2
. The iteration

is set to stop for all the methods if ‖F (xk)‖ ≤ 10−4 or when the
iterations exceed 1000 but no point of xk satisfying the stopping
criterion is obtained. We use the symbol ’-’ to represent failure due
to; (i) Memory requirement (ii) Number of iterations exceed 1000.
To show the extensive numerical experiments of SSIDD and IPRP
methods, we used ten test problems with different initial points and
dimension (n values) between 10 to 10,000. problems 1-7 are from
[9] and problem 8 was arbitrarily constructed by us, while problems
9 and 10 are from [21].
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Problem 1:

F (x) =


2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1
−1 2

x+ (ex1 − 1, ..., exn − 1)T .

x0 = (0.5, 0.5, ..., 0.5)T .

Problem 2:

F (x) =


2 −1
0 2 −1

. . . . . . . . .
. . . . . . −1
−1 2

x+ (sinx1 − 1, ..., sinxn − 1)T .

x0 = (1, 1, ..., 1)T .

Problem 3:

F1(x) = x1(x
2
1 + x22)− 1,

Fi(x) = xi(x
2
i−1 + 2x2i + x2i+1),

Fn(x) = xn(x2n−1 + x2n). i = 2, 3, ..., n− 1.

x0 = (0.01, 0.01, ..., 0.01)T .

Problem 4:

F3i−2(x) = x3i − 2x3i−1 − x23i − 1,

F3i−1(x) = x3i−2x3i−2x3i − x23i−2 + x23i−1 − 2,

F3i(x) = e−x3i−2 − e−x3i−1 . i = 1, ...,
n

3
.

x0 = (0.4, 0.4, ..., 0.4)T .

Problem 5:

Fi(x) = (1− x2i ) + xi(1 + xixn−2xn−1xn)− 2.

i = 1, 2, ..., n.

x0 = (0.7, 0.7, ..., 0.7)T .
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Problem 6:

F1(x) = x21 − 3x1 + 1 + cos(x1 − x2),
Fi(x) = x21 − 3xi + 1 + cos(xi − xi−1). i = 1, 2, ..., n.

x0 = (0.4, 0.4, ..., 0.4)T .

Problem 7:

Fi(x) = xi − 0.1x2i+1,

Fn(x) = xn − 0.1x21. i = 1, 2, ..., n− 1.

x0 = (1, 1, ..., 1)T .

Problem 8:

Fi(x) = 0.i(1− xi)2 − e−x
2
i ,

Fn(x) =
n

10
(1− e−x2

n). i = 1, 2, ..., n− 1.

x0 = (−0.1,−0.1, ...,−0.1)T .

Problem 9:

Fi(x) = 2xi − sin|xi|, i = 1, 2, ..., n.

x0 = (−0.1,−0.1, ...,−0.1)T .

Problem 10:

F1 = x1 − ecos(
x1+x2
n+1 )

Fi = xi − e
cos

(
xi−1+xi+xi+1

n+1

)

Fn = xn − e
cos

(
xn−1+xn

n+1

)
i = 2, 3, ..., n− 1.

x0 = (−2,−2, ...,−2)T .

The numerical results of the two methods are shown in Table 1,
where, ”NI” and ”TIME” represent the total number of iterations
and the CPU time (in seconds) respectively, and ‖F (xk)‖ repre-
sents the value of the residual at the stopping point. From Table
1, the numerical results indicated that the proposed method, i.e.,
SSIDD method has performed better than IPRP method for it has
minimum number of iterations and CPU time than IPRP method.
Except for problem 9 and 10, where the number of iteration in
SSIDD method is less than that of IPRP method. Furthermore,
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Table 1. The numerical results for SSIDD and
IPRP methods on problems 1 to 10

SSIDD IPRP

Problems Dimension NI TIME ‖F (xk)‖ NI TIME ‖F (xk)‖
1 10 18 0.041624 3.51E-05 31 0.141133 8.18E-05

100 19 0.075251 8.59E-05 46 0.270288 7.74E-05
1000 22 0.568489 8.30E-05 56 2.988004 9.44E-05
2000 23 1.952655 3.00E-05 63 11.296114 9.98E-05

2 10 12 0.068755 2.75E-05 39 0.196596 9.66E-05
100 13 0.060112 7.00E-05 58 0.372076 7.98E-05
1000 14 0.390139 4.77E-05 59 3.574642 9.37E-05
2000 14 1.207898 5.88E-05 67 13.693516 9.92E-05

3 10 21 0.008905 6.66E-05 57 0.040270 9.13E-05
100 21 0.009361 6.61E-05 49 0.048546 9.62E-05
1000 22 0.041587 4.40E-05 78 0.121970 8.87E-05
10000 21 0.175196 7.40E-05 61 0.858538 7.90E-05

4 10 10 0.006528 2.00E-05 24 0.026414 4.19E-05
100 10 0.006197 6.62E-05 26 0.040968 3.25E-05
1000 11 0.034254 4.06E-05 28 0.095478 2.39E-05
10000 12 0.132343 2.46E-05 28 0.523166 7.56E-05

5 10 13 0.010148 1.93E-05 19 0.011114 7.02E-05
100 13 0.007288 6.10E-05 21 0.016205 6.88E-05
1000 14 0.026965 3.67E-05 23 0.048532 6.74E-05
10000 15 0.117319 2.20E-05 25 0.321242 6.60E-05

6 10 7 0.020930 4.29E-05 15 0.012938 2.97E-06
100 8 0.004707 2.58E-05 15 0.010200 9.38E-06
1000 8 0.030770 8.15E-05 15 0.054797 2.97E-05
10000 9 0.102759 4.89E-05 15 0.201566 9.38E-05

7 10 7 0.024790 2.07E-05 7 0.014107 1.01E-05
100 7 0.022932 5.59E-05 8 0.043108 2.90E-05
1000 8 0.204210 3.29E-05 9 0.303001 6.16E-06
10000 9 3.816874 1.97E-05 9 6.864108 5.15E-05

8 10 5 0.001114 7.39E-05 — — —
100 7 0.006096 7.41E-05 — — —
1000 9 0.024428 7.76E-05 — — —
10000 9 0.018475 7.76E-05 — — —

9 10 13 0.008806 6.08E-05 7 0.003152 1.04E-07
100 14 0.003623 6.07E-05 7 0.004767 3.27E-07
1000 16 0.030029 6.23E-05 7 0.017545 1.04E-06
10000 17 0.106776 6.22E-05 7 0.101793 3.27E-06

10 10 8 0.001538 9.87E-05 84 0.041959 8.25E-05
100 8 0.004155 8.74E-05 5 0.00475 7.89E-05
1000 9 0.025882 4.86E-05 4 0.018542 1.81E-05
10000 10 0.103763 2.90E-05 4 0.087698 7.26E-07

SSIDD method solved problem 8 where IPRP method fails com-
pletely. This is evidently due to contribution of the proposed accel-
eration parameter that approximated the Jacobian matrix at each
iteration.
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Figure 1. Performance profile of SSIDD and IPRP
methods with respect to the number of iteration for
the problems 1-10.

Figures (1-2) show the performance of our method relative to the
number of iterations and CPU time, which were evaluated using the
profiles of Dolan and Moré [19]. That is, for each method, we plot
the fraction P (τ) of the problems for which the method is within a
factor τ of the best time. The top curve is the method that solved
the most problems in a time that was within a factor τ of the best
time.

5. CONCLUSION

In this paper, solving system of nonlinear equations using improved
double direction approach is presented. This was achieved by ap-
proximating the Jacobian matrix via acceleration parameter. The
proposed method is completely derivative-free iterative method that
is globally convergent under certain appropriate conditions. Nu-
merical comparisons of SSIDD and IPRP methods have been made
using a set of large-scale test problems. Furthermore, Table 1 and
Figure (1-2), showed that the proposed method is practically quite
efficient because it has the least number of iteration compared to
IPRP method. In the future research, the double direction scheme
will also be modified to solve the monotone nonlinear equations
with convex constraints.
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Figure 2. Performance profile of SSIDD and IPRP
methods with respect to the CPU time (in second)
for the problems 1-10.
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