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ABSTRACT. It is our aim in this paper to introduce an ex-
plicit iterative scheme for a finite family of total asymptotically
nonexpansive mappings and prove its strong convergence to a
common fixed point of these mappings in smooth reflexive real
Banach spaces which admits weakly sequentially continuous du-
ality mappings. In addition, we proved path existence theorem
for finite family of asymptotically nonexpansive mappings; and
further showed that the convergence of the path guarantees that
the set of common fixed points of finite family of asymptoti-
cally nonexpansive mappings is a sunny nonexpansive retract.
Our theorems improve, generalize and unify several recently an-
nounced results in the literature.
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1. Introduction

Approximation of solutions of equations involving nonexpansive
mappings and their generalizations by iteration process has been
of increasing research interest to numereous mathematicians in re-
cent years. One of the first results of this nature was obtained by
Browder [6] for nonexpansive self-mappings in Hilbert spaces. If
K is a nonempty closed and convex subset of a Hilbert space H .
Browder [6] studied the path

u ∈ K, xt = tu+ (1− t)Tzt, t ∈ (0, 1), (1)

where T : K → K is a nonexpansive mapping (that is, ‖Tx−Ty‖ ≤
‖x− y‖ ∀ x, y ∈ K), with nonempty fixed points set F (T ) = {x ∈
K : Tx = x}. In [6], Browder proved that lim

t→0
xt exists and that

lim
t→0

xt ∈ F (T ). The result was extended by Reich [21] to uniformly
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smooth real Banach spaces. In fact, it was shown in [21] that lim
t→0

xt

is a sunny nonexpansive retraction of K onto F (T ).

In [17], Halpern discussed the convergence of the explicit iteration
process

x1 ∈ K, xn+1 = αnu+ (1− αn)Txn, n ≥ 1, (2)

in the frame work of real Hilbert spaces. Under appropriate condi-
tions on the iterative parameter {αn}n≥1, it has been shown by
Halpern [17], Lions [19], Wittmann [23] and Bauschke [4] that
{xn}n≥1 converges strongly to PF (T )u, the projection of u to the
fixed point set F (T ) of T .
Browder and Halpern iterative algorithms had motivated different
iteration processes for approximation of fixed points of asymptot-
ically nonexpansive mappings (where a mapping T : K → K is
called asymptotically nonexpansive (see Goebel and Kirk [16]) if and
only if there exists a sequence {μn}n≥1 ⊂ [0,+∞) with lim

n→∞
μn = 0

such that for all x, y ∈ K, ‖T nx − T ny‖ ≤ (1 + μn)‖x − y‖ for all
n ∈ N). In this regard, Lim and Xu [18] introduced and studied the
following implicit iteration scheme for asymptotically nonexpansive
mapping T

zn = αnu+ (1− αn)T
nzn, n ≥ 1. (3)

They showed that the sequence {zn}n≥1 generated by (3) converges
strongly to a fixed point of T in the frame work of uniformly smooth
Banach spaces, under suitable conditions on the iterative parame-
ters.

In [15], Chidume et al. proved the strong convergence of the explicit
iteration scheme generated by

x1, u ∈ K, xn+1 = αnu+ (1− αn)T
nxn, n ≥ 1, (4)

where lim
n→∞

αn = 0,
∞∑
n=1

αn = +∞ and T is asymptotically nonex-

pansive.

Recently, Alber et al. [2] obtained strong convergence of (4) for
a total asymptotically nonexpansive mapping T in the setting of
smooth reflexive Banach space with weakly sequentially continuous
duality mapping.



ITERATIVE PROCEDURES FOR FINITE FAMILY OF TOTAL . . . 95

Motivated by the results of these authors, it is our aim in this
paper to introduce an explicit iterative scheme for finite family of
total asymptotically nonexpansive mappings and prove its strong
convergence to a common fixed point of these mappings in smooth
reflexive real Banach spaces E which admits weakly sequentially
continuous duality mappings. We also proved path existence theo-
rem for finite family of asymptotically nonexpansive mappings; and
further showed that the convergence of the path guarantees the ex-
istence of sunny nonexpansive retraction of a nonempty closed and
convex subset K of E onto the set of common fixed points finite
family of asymptotically nonexpansive mappings.

2. Preliminaries

A real normed space (E, ‖.‖) (with dual space E∗) is said to be
smooth if and only if for all x ∈ E with ‖x‖ = 1, there exists a
unique f ∗ ∈ E∗ such that ‖f ∗‖ = 1 and

〈
x, f ∗〉 = ‖x‖, where 〈

,
〉

denotes the duality pairing between members of E and E∗. The
space E is said to be uniformly smooth if and only if for all ε > 0,
there exists δ > 0 such that for all x, y ∈ E with ‖x‖ = 1 and
‖y‖ ≤ δ, the inequality

‖x+ y‖+ ‖x− y‖
2

− 1 < ε‖y‖
holds. It is well known that every uniformly smooth real Banach
space is smooth and reflexive real Banach space (see e.g., [12]).

We denote by Jq the generalized duality mapping from E to 2E
∗

defined by

Jqx := {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1} ∀ x ∈ E.

For q = 2, the mapping J = J2 from E to 2E
∗
is called the nor-

malized duality mapping. It is well known that if E is uniformly
smooth or E∗ is strictly convex (that is, for all f, g ∈ E∗ such that

‖f‖ = 1 = ‖g‖, we have that ‖f+g‖
2

< 1), then the duality mapping
is single-valued. If E = H is a Hilbert space then the duality map-
ping becomes the identity map of H (see e.g., [12]). In the sequel,
we shall denote the single-valued normalized duality mapping by j.

A real normed space E with strictly convex dual is said to have a
weakly sequentially continuous normalized duality mapping j if and
only if for each sequence {xn}n≥1 in X such that {xn}n≥1 converges
weakly to x∗ in X, we have that {j(xn)}n≥1 converges in the weak∗
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topology to j(x∗). Apart from Hilbert spaces, it was noted in [6]
that the most significant class of Banach spaces having a weakly se-
quentially continuous generalized duality mapping are the sequence
spaces �p for 1 < p < +∞ (see [7] and [8], where it is also made
known that Lp(R) has no weakly sequentially continuous duality
mapping for p 
= 2).

A mapping T : K → K is said to be total asymptotically nonexpan-
sive (see e.g., [1]) if there exist nonnegative real sequences {μn}n≥1

and {ln}n≥1 with μn → 0, ln → 0 as n → ∞ and nondecreasing
continuous function φ : [0,+∞) → [0,+∞) with φ(0) = 0 such
that for all x, y ∈ K,

‖T nx− T ny‖ ≤ ‖x− y‖+ μnφ(‖x− y‖) + ln, n ≥ 1. (5)

Remark 1. If φ ≡ 0, the zero operator, then (5) reduces to

‖T nx− T ny‖ ≤ ‖x− y‖+ ln, n ≥ 1,

so that if K is bounded and TN is continuous for some integer
N ≥ 1, then the mapping T is of asymptotically nonexpansive type
(the class of mappings which are of asymptotically nonexpansive
type includes the class of mappings which are asymptotically non-
expansive in the intermediate sense and the class of nearly asymp-
totically nonexpansive mappings which had been studied by several
authors, see e.g. [13, 14, 22]). If φ(t) = t, then (5) becomes

‖T nx− T ny‖ ≤ (1 + μn)‖x− y‖+ ln, n ≥ 1.

In addition, if ln = 0 for all n ≥ 1, then total asymptotically
nonexpansive mappings coincide with asymptotically nonexpansive
mappings. If μn = 0 and ln = 0 for all n ≥ 1, we obtain from (5) the
class of mappings that contains the class of nonexpansive mappings.

Alber et al. [1] introduced the class of total asymptotically nonex-
pansive mappings as a more general class of asymptotically nonex-
pansive mappings. The idea behind the introduction of the class of
total asymptotically nonexpansive mappings is to unify various def-
initions of classes of mappings associated with the class of asymp-
totically nonexpansive mappings and to prove general convergence
theorems applicable to all these classes of mappings.

It is worthy to mention that (to the best of our knowledge) in the
earlier work done on total asymptotically nonexpansive mappings,
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no example of such mapping which is more general than asymp-
totically nonexpansive mappings has been provided. As part of
our contributions in this paper, we at this juncture give the fol-
lowing example which seems new to show that the class of total
asymptotically nonexpansive mappings properly contains that of
asymptotically nonexpanssive mappings:

Example 2. Let E := R × �1 be endowed with the norm ‖.‖E =
|.| + ‖.‖�1. Let K be a subset of E defined by K := [0, 1] × B,
where B is the closed unit ball of �1. For all u ∈ [0, 1] and x =
(x1, x2, x3, ...) ∈ B define T : K → K by

T (u, x) =

⎧⎪⎪⎨
⎪⎪⎩

(
1
3
,
(
0, |x1|2

3
, x2

3
, x3

3
, x4

3
, . . .

))
, if u ∈

[
0, 1

3

]

(
0,
(
0, |x1|2

3
, x2

3
, x3

3
, x4

3
, . . .

))
, if u ∈

(
1
3
, 1
]
.

(6)

We can easily check that T given by (6) is well defined; not contin-
uous and thus cannot be asymptotically nonexpansive (since every
asymptotically nonexpansive mapping is uniformly L-Lipschitzian,
so Lipschitz and every Lipschitz mapping is continuous). Next,
let {ln}n≥1 be a sequence of real numbers such that l1 = 1

3
and

lim
n→∞

ln = 0. Observe that for all (u, x), (v, y) ∈ K (i.e., u, v ∈ [0, 1],

x = (x1, x2, x3, ...), y = (y1, y2, y3, ...) ∈ B),∥∥∥T (u, x)−T (v, y)
∥∥∥
E
≤ |u−v|+ l1+

1

3
max

{
|x1|+ |y1|, 1

}
‖x−y‖�1.

Moreover, we can equally check easily that for all n ≥ 2 and for all
(u, x), (u, y) ∈ K,

T n(u, x) =
(1
3
,
(
0, 0, . . . , 0, 0︸ ︷︷ ︸

n−times

,
|x1|2
3n

,
x2

3n
,
x3

3n
,
x4

3n
, . . .

))

and∥∥∥T n(u, x)− T n(v, y)
∥∥∥
E
≤ 1

3n
max

{
|x1|+ |y1|, 1

}
‖x− y‖�1 .

So, for all n ≥ 1,∥∥∥T n(u, x)− T n(v, y)
∥∥∥
E

≤ |u− v|+ ‖x− y‖�1
+

2

3n

[
|u− v|+ ‖x− y‖�1

]
+ ln.(7)

Thus, with φ : [0,+∞) → [0,+∞) defined by φ(t) = 2t, μn = 1
3n

for all n ≥ 1 and {ln}n≥1 any null sequence with l1 =
1
3
, we obtain
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from (7) that∥∥∥T n(u, x)−T n(v, y)
∥∥∥
E
≤

∥∥∥(u, x)−(v, y)
∥∥∥
E
+μnφ

(∥∥∥(u, x)−(v, y)
∥∥∥
E

)
+ln.

Thus, the operator T given by (6) is total asymptotically nonex-
pansive but not asymptotically nonexpansive.

Let K be a nonempty closed convex subset of E and let P be a

mapping of E onto K. Then P is said to be sunny if P
(
Px+ t(x−

Px)
)
= Px ∀ x ∈ E and t > 0. A mapping P of E into E is said

to be a retraction if P 2 = P. If a mapping P is a retraction, then
Px = x ∀ x ∈ R(P ), where R(P ) denotes the range of P . A subset
K of E is said to be sunny nonexpansive retract of E if there exists
a sunny nonexpansive retraction of E onto K and it is said to be a
nonexpansive retract of E if there exists a nonexpansive retraction
of E onto K. If E = H, where H denotes a Hilbert space, the
metric projection PK is a sunny nonexpansive retraction from H
to any nonempty closed and convex subset of H . This, however, is
not true for larger Banach spaces since nonexpansivity of projec-
tions PK characterizes Hilbert spaces. On the other hand, a sunny
nonexpansive retraction can play a similar role in a Banach space
as a projection does in Hilbert spaces. For more details on nonex-
pansive retractions, see, for example, [3, 5, 9, 10, 11, 20, 21].

Proposition 3. (see e.g. [9, 10]) Suppose that K is a nonempty
closed and convex subset of a smooth Banach space E and Ω is a
subset of K, then a nonexpansive retraction P : K → Ω is at most
one and it is sunny retraction if and only if for x ∈ K and for all
x̃ ∈ Ω, 〈

x− Px, j(x̃− Px)
〉
≤ 0. (8)

In what follows, we shall make use of the following lemmas.

Lemma 4. Let E be a real normed space, then

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
∀ x, y ∈ E, j(x+ y) ∈ J(x+ y).

Lemma 5. (see [2]) Let {λn}n≥1 and {γn}n≥1 be nonnegative real
sequences. Let {αn}n≥1 be a sequence of positive real numbers such
that

λn+1 ≤ λn − αnλn + γn, ∀ n ≥ 1.
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Suppose that for n ≥ 1,
γn
αn

≤ c1 and αn ≤ α,

for some constants c1, α > 0, then λn ≤ max{λ1, (1 + α)c1}. More-

over, if

∞∑
n=1

αn = +∞ and γn = o(αn), then lim
n→∞

λn = 0.

Lemma 6. (see e.g., [2]) Let E be a reflexive Banach space with
weakly continuous normalized duality mapping. Let K be a closed
convex subset of E and T : K → K a uniformly continuous total
asymptotically nonexpansive mapping with bounded orbits. Then
I − T is demiclosed at zero.

3. Main results

Let K be a nonempty closed and convex subset of a real normed
space E. Let T1, T2, ..., Tm : K → K be m total asymptotically non-
expansive mappings and {αn}n≥1 ⊂ (0, 1). We define the explicit
iteration process {xn} by

x1, u ∈ K, x2 = α1u+ (1− α1)T1x1

x3 = α2u+ (1− α2)T2x2
...
xm = αm−1u+ (1− αm−1)Tm−1xm−1

xm+1 = αmu+ (1− αm)Tmxm

xm+2 = αm+1u+ (1− αm+1)T
2
1 xm+1

...
x2m = α2m−1u+ (1− α2m−1)T

2
m−1x2m−1

x2m+1 = α2mu+ (1− α2m)T
2
mx2m

x2m+2 = α2m+1u+ (1− α2m+1)T
3
1 x2m+1

...

(9)

Since for all z ∈ Z (where Z is the set of integers), there exists
j(z) ∈ {1, 2, ..., m} such that z − j(z) is divisible by m (that is
j(z) = z mod m), then there exists q(z) ∈ Z with lim

z→+∞
q(z) = +∞

such that

z =
(
q(z)− 1

)
m+ j(z). (10)

We may write (9) in a more compact form as

x1, u ∈ K, xn+1 = αnu+ (1− αn)T
q(n)
j(n) xn, ∀ n ≥ 1. (11)
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By similar procedure as in (9), the following implicit iteration pro-
cess is generated:

z1, u ∈ K, zn = αnu+ (1− αn)T
q(n)
j(n) zn, ∀ n ≥ 1. (12)

Remark 7. Since n−m ∈ Z for all n ∈ N (where N denotes the set
of positive integers), we obtain from (10) (for the particular case
n−m ∈ Z) that

n−m =
(
q(n−m)− 1

)
m+ j(n−m). (13)

Also substituting n ∈ N for z in (10) and subtracting m from both
sides of the resulting equation gives

n−m =
((

q(n)− 1
)− 1

)
m+ j(n). (14)

Comparing (13) and (14) we obtain (by unique representation the-
orem) that

q(n−m) = q(n)− 1 and j(n−m) = j(n) ∀ n ∈ N. (15)

Proposition 8. Let K be a nonempty subset of a real normed space
E and T1, T2, ..., Tm : K → K be m total asymptotically nonex-
pansive mappings, then there exist sequences {μn}, {�n} ⊂ [0,+∞)
with lim

n→∞
μn = 0 = lim

n→∞
�n and a nondecreasing continuous function

φ : [0,+∞) → [0,+∞), with φ(0) = 0 such that for all x, y ∈ K,

‖T n
i x−T n

i y‖ ≤ ‖x−y‖+μnφ(‖x−y‖)+ �n ∀ n ≥ 1, i = 1, 2, ..., m.

Proof. Let I := {1, 2, ..., m}. Since T1, T2, ..., Tm : K → K are
m total asymptotically nonexpansive mappings, then there exist
sequences {μin}, {�in} ⊂ [0,+∞) with lim

n→∞
μin = 0 = lim

n→∞
�in and

nondecreasing continuous function φi : [0,+∞) → [0,+∞), with
φi(0) = 0 such that for all x, y ∈ K,

‖T n
i x− T n

i y‖ ≤ ‖x− y‖+ μinφi(‖x− y‖) + �in ∀ n ≥ 1, ∀ i ∈ I.

Setting μn := max
i∈I

{μin}, �n := max
i∈I

{�in} and defining φ : [0,+∞)

→ [0,+∞) by φ(t) = max
i∈I

{φi(t)}, ∀ t ∈ [0,+∞), then φ is non-

decreasing continuous with φ(0) = 0; the sequences {μn}, {�n}
belong to [0,+∞) and are such that lim

n→∞
μn = 0 = lim

n→∞
�n and for

all x, y ∈ K,

‖T n
i x− T n

i y‖ ≤ ‖x− y‖+ μnφ(‖x− y‖) + �n ∀ n ≥ 1, i ∈ I.

This completes the proof. �
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Remark 9. In what follows, μn := max
i∈I

{μin}, �n := max
i∈I

{�in} and

φ(t) = max
i∈I

{φi(t)}, ∀ t ∈ [0,+∞). We shall assume that {αn}n≥1

is a sequence in (0, 1) such that μq(n) = o(αn), �q(n) = o(αn),

lim
n→∞

αn = 0,

∞∑
n=1

αn = +∞. We shall furher assume that there

exists constants M0 > 0,M1 > 0 such that φ(t) ≤ M0t for all
t > M1.

3.1. CONVERGENCE OF EXPLICIT ITERATION SCHEME

We now state and prove the following theorem.

Theorem 10. Let K be a nonempty closed and convex subset of a
smooth reflexive real Banach space E which admits weakly sequen-
tially continous normalized duality mapping and Ti : K → K, i =
1, 2, ..., m be m uniformly continuous total asymptotically nonex-

pansive mappings such that F :=

m⋂
i=1

F (Ti) 
= ∅. Let {xn}n≥1 be

given by (11), then {xn}n≥1 is bounded. Moreover, if P : K → F
is a sunny nonexpansive retraction of K onto F , then the following
are equivalent:

(i) {xn}n≥1 converges to the common fixed point Pu of {Ti}mi=1.

(ii) lim
n→∞

‖xn+1 − xn‖ = 0.

Proof. It is easy to see from (11) that {xn}n≥1 is well defined since
K is convex and nonempty. We first show that {xn}n≥1 is bounded.
Let p ∈ F, then we obtain using (11) that

‖xn+1 − p‖ =
∥∥∥αn(u− p) + (1− αn)

(
T

q(n)
j(n) xn − p

)∥∥∥
≤ αn‖u− p‖+ (1− αn)

∥∥∥T q(n)
j(n) xn − p

∥∥∥
≤ (1− αn)‖xn − p‖+ αn‖u− p‖

+(1− αn)
[
μq(n)φ

(
‖xn − p‖

)
+ �q(n)

]
. (16)

Since φ is a continuous function, it follows that φ attains a maxi-
mum (say M) in the interval [0,M1] and (by our assumption, see
Remark 9) φ(t) ≤ M0t whenever t > M1. In either case, we have
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that

φ(t) ≤ M +M0t ∀ t ∈ [0,+∞). (17)

Thus, using (16) and (17), we get

‖xn+1 − p‖ ≤ ‖xn − p‖ −
(
αn − (1− αn)μq(n)M0

)
‖xn − p‖

+σn, (18)

where σn = (1−αn)
(
μq(n)M+�q(n)

)
+αn‖u−p‖. Since μq(n) = o(αn)

and �q(n) = o(αn), we may assume without loss of generality that
there exist k0 ∈ (0, 1) and M2 > 0 such that for all n ≥ 1,

μq(n)

αn
≤ (1− k0)

M0(1− αn)
and

σn

αn
≤ M2.

Thus, we obtain from (18) that

‖xn+1 − p‖ ≤ ‖xn − p‖ − k0αn‖xn − p‖+ σn;

and by Lemma 5, we have that

‖xn − p‖ ≤ max{‖x0 − p‖, (1 + k0)M2}.
Thus, the sequence {xn}n≥0 is bounded.

Next, it is easy to see that if xn → Pu as n → ∞, then lim
n→∞

‖xn+1−
xn‖ = 0. It therefore suffices to prove the converse. Suppose that
lim
n→∞

‖xn+1 − xn‖ = 0, we show that {xn}n≥1 congerges strongly

to Pu ∈ F. Now, since {xn}n≥1 is bounded, there exists a constant

R1 > 0 such that for fixed p ∈ F, xn ∈ BR1(p) = {x ∈ E : ‖x−p‖ ≤
R1} for all n ≥ 1, Thus, ‖xn − p‖ ≤ R1 ∀ n ≥ 1. This implies that

‖xn‖ ≤ ‖xn − p‖+ ‖p‖ ≤ R1 + ‖p‖ ∀ n ≥ 1.

Observe that if R1 ≤ M1, then since φ is a continuous nondecreasing
function, we have that φ(‖xn − p‖) ≤ φ(R1) ≤ M, where M =
max

t∈[0,M1]
φ(t). On the other hand, if R1 > M1, then φ(R1) ≤ M0R1

so that φ(‖xn − p‖) ≤ φ(R1) ≤ M0R1. In either case, we have that

φ(‖xn − p‖) ≤ M +M0R1 := M3 ∀ n ≥ 1.

So, ∥∥∥T q(n)
j(n) xn

∥∥∥ ≤
∥∥∥T q(n)

j(n) xn − p
∥∥∥+ ‖p‖

≤ ‖xn − p‖+ μq(n)φ(‖xn − p‖) + �q(n) + ‖p‖
≤ R1 + μq(n)M3 + �q(n) + ‖p‖; (19)
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and since {μn}n≥0 and {�n}n≥0 are null sequences, we obtain from

(19) that
{
T

q(n)
j(n) xn

}
n≥1

is bounded. From the recursion formula

(11), using the boundedness of {xn}n≥1,
{
T

q(n)
j(n) xn

}
n≥1

and the fact

that αn → 0 as n → ∞, we obtain from (11) that

lim
n→∞

∥∥∥xn+1 − T
q(n)
j(n) xn

∥∥∥ = 0. (20)

But,

lim
n→∞

‖xn+1 − xn‖ = 0. (21)

Thus, using (20) and (21) we get
∥∥∥xn − T

q(n)
j(n) xn

∥∥∥ ≤ ‖xn − xn+1‖+
∥∥∥xn+1 − T

q(n)
j(n) xn

∥∥∥ → 0 (22)

as n → ∞.

Furthermore, we get using (21) that

lim
n→∞

‖xn − xn−i‖ = 0 = lim
n→∞

‖xn − xn+i‖, i = 1, 2, ..., m. (23)

By uniform continuity of Ti, i = 1, 2, ..., m, there exists a contin-
uous increasing function πi : R → R with πi(0) = 0 such that
‖Tix−Tiy‖ ≤ πi(‖x−y‖) ∀ x, y ∈ K, i = 1, 2, ..., m. Thus, defining
π0 : R → R by π0(t) = max

1≤i≤m
πi(t) ∀ t ∈ R, we have that π0 is a

continuous increasing function with π0(0) = 0 and
∥∥∥xn − Tj(n)xn

∥∥∥ ≤
∥∥∥xn − T

q(n)
j(n) xn

∥∥∥+
∥∥∥T q(n)

j(n) xn − Tj(n)xn

∥∥∥
≤

∥∥∥xn − T
q(n)
j(n) xn

∥∥∥+ π0

∥∥∥T q(n)−1
j(n) xn − xn

∥∥∥.(24)
Observe that from the second summand on the right hand side
(second line) of (24), we get

∥∥∥T q(n)−1
j(n) xn − xn

∥∥∥ ≤
∥∥∥T q(n)−1

j(n) xn − T
q(n)−1
j(n−m)xn−m

∥∥∥
+
∥∥∥T q(n)−1

j(n−m)xn−m − xn−m

∥∥∥ (25)

+‖xn−m − xn‖.
But by (15),

q(n−m) = q(n)− 1 and j(n−m) = j(n).
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Considering the first two summands on the right hand side of (25),
it then follows that the first summand,∥∥∥T q(n)−1

j(n) xn − T
q(n)−1
j(n−m)xn−m

∥∥∥ =
∥∥∥T q(n)−1

j(n) xn − T
q(n)−1
j(n) xn−m

∥∥∥
≤ ‖xn − xn−m‖

+μq(n)−1φ(‖xn − xn−m‖) +
�q(n)−1. (26)

Thus, (26) implies that

lim
n→∞

∥∥∥T q(n)−1
j(n) xn − T

q(n)−1
j(n−m)xn−m

∥∥∥ = 0. (27)

Moreover, the second summand,∥∥∥T q(n)−1
j(n−m)xn−m − xn−m

∥∥∥ =
∥∥∥T q(n−m)

j(n−m) xn−m − xn−m

∥∥∥ → 0 (28)

as n → +∞
So, using (27) and (28) in (25), we obtain that

lim
n→∞

‖T q(n)−1
j(n) xn − xn‖ = 0.

As a result, we obtain from (22) and (24) (using the property of
π0) that

lim
n→∞

‖xn − Tj(n)xn‖ = 0. (29)

Furthermore, we obtain for i = 1, 2, ..., m that

‖xn − Tj(n)+ixn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − Tj(n)+ixn+i‖
+‖Tj(n)+ixn+i − Tj(n)+ixn‖

≤ ‖xn − xn+i‖+ ‖xn+i − Tj(n)+ixn+i‖
+π0(‖xn+i − xn‖). (30)

So, using (23), (29) and (30), we have that

lim
n→∞

‖xn − Tj(n)+ixn‖ = 0, i = 1, 2, ..., m. (31)

But for all i ∈ {1, 2, ..., m}, there exists θi ∈ {1, 2, ..., m} such that

j(n) + θi = i (mod m).

It therefore follows from (31) that

lim
n→∞

‖xn − Tixn‖ = lim
n→∞

‖xn − Tj(n)+θixn‖ = 0.

Hence, lim
n→∞

‖xn − Tixn‖ = 0 for all i ∈ {1, 2, ..., m}.
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Next, let x̃ = Pu, then we obtain from the recursion formula (11)
using Lemma 4 that

‖xn+1 − x̃‖2 ≤ (1− αn)
2
∥∥∥T q(n)

j(n) xn − x̃
∥∥∥2

+ 2αn

〈
u− x̃, j(xn+1 − x̃)

〉
. (32)

Using the fact that T1, T2, ..., Tm are total asymptotically nonex-
pansive and x̃ ∈ F , we have that∥∥∥T q(n)

j(n) xn − x̃
∥∥∥ ≤ ‖xn − x̃‖+ μq(n)

(
M0‖xn − x̃‖+M

)
+ �q(n)

≤ ‖xn − x̃‖+ δn, (33)

where δn = M4

(
μq(n) + �q(n)

)
for some M4 > 0. Since {δn}n≥0

is a null sequence, there exists n0 ∈ N such that for all n ≥ n0,
δn ∈ (0, 1). So, for all n ≥ n0, we obtain from (33) that

∥∥∥T q(n)
j(n) xn − x̃

∥∥∥ ≤ (1− δn)‖xn − x̃‖+ δn(‖xn − x̃‖+ 1). (34)

Thus, since the function f : [0,+∞) → [0,+∞) defined by f(t) = t2

is convex and nondecreasing function, we obtain from (34) that∥∥∥T q(n)
j(n) xn − x̃

∥∥∥2

≤
(
(1− δn)‖xn − x̃‖+ δn

(‖xn − x̃‖+ 1
))2

≤ (1− δn)‖xn − x̃‖2 + δn
(‖xn − x̃‖+ 1

)2
≤ ‖xn − x̃‖2 + δnM5, (35)

for some M5 > 0. Using (35) in (32), we get

‖xn+1 − x̃‖2 ≤ (1− αn)‖xn − x̃‖2 + (1− αn)δnM5

+ 2αn

〈
u− x̃, j(xn − x̃)

〉
. (36)

Next, we show that

lim sup
n→∞

〈
u− x̃, j(xn − x̃)

〉
≤ 0.

Let {xnr}r≥1 be a subsequence of {xn}n≥0 such that

lim sup
n→∞

〈
u− x̃, j(xn − x̃)

〉
= lim

r→∞

〈
u− x̃, j(xnr − x̃)

〉
.

Since {xn}n≥1 is bounded and the space E is reflexive, there ex-
ists a subsequence {xnrk

}k≥1 of {xnr}r≥1 such that {xnrk
}k≥1 con-

verges weakly to some x∗ ∈ K. Since lim
k→∞

‖xnrk
− Tixnrk

‖ = 0, i =
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1, 2, ..., m, we obtain from Lemma 6 that x∗ ∈ F. Since the normal-
ized duality mapping j is weakly sequentially continuous, we obtain
from (8) that

lim sup
n→∞

〈
u− x̃, j(xn − x̃)

〉
= lim

r→∞

〈
u− x̃, j(xnr − x̃)

〉

= lim
k→∞

〈
u− x̃, j(xnrk

− x̃)
〉

=
〈
u− x̃, j(x∗ − x̃)

〉
≤ 0.

Thus, defining ξn := max
{
0,
〈
u− x̃, j(xn− x̃)

〉}
, we easily see that

lim
n→∞

ξn = 0. Thus, we obtain from (36) that

‖xn+1 − x̃‖2 ≤ (1− αn)‖xn − x̃‖2 + (1− αn)δnM5 + 2αnξn+1.

≤ ‖xn − x̃‖2 − αn‖xn − x̃‖2 + γn, (37)

where γn = δnM5 +2αnξn+1 = o(αn). Hence, by Lemma 5, we have
that {xn}n≥1 converges strongly to x̃ = Pu ∈ F. This completes
the proof. �

Remark 11. We note that if T1, T2, ..., Tm in Theorem 10 were
asymptotically nonexpansive mappings, the condition “there exist
M0 > 0 and M1 > 0 such that φ(t) ≤ M0t for all t > M1” is not
needed. Besides, it is easy to see that every asymptitotically non-
expansive mapping T : K → K is uniformly L-Lipschitzian (that
is, there exists a constant L > 0 such that ‖T nx−T ny‖ ≤ L‖x−y‖
for all x, y ∈ K, n ≥ 1). So, every asymptotically nonexpasive
mapping is uniformly continuous. Hence we have the following
corollary.

Corollary 12. Let K be a nonempty closed and convex subset of
a smooth reflexive real Banach space E which admits weakly se-
quentially continous normalized duality mapping and Ti : K →
K, i = 1, 2, ..., m be m asymptotically nonexpansive mappings such

that F :=
m⋂
i=1

F (Ti) 
= ∅. Let {xn}n≥1 be given by (11) and let

P : K → F be the sunny nonexpansive mapping obtained from
Theorem 13, then {xn}n≥1 converges strongly to the common fixed
point Pu of {Ti}mi=1 if and only if lim

n→∞
‖xn+1 − xn‖ = 0.
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3.2. EXISTENCE OF IMPLICIT ITERATION PROCESS AND
SUNNY NONEXPANSIVE RETRACTION

Theorem 13. Let K be a nonempty closed and convex subset of
a smooth reflexive real Banach space E which admits weakly se-
quentially continous normalized duality mapping and Ti : K →
K, i = 1, 2, ..., m be m asymptotically nonexpansive mappings such

that F :=
m⋂
i=1

F (Ti) 
= ∅. Then,

(1) for n ∈ N sufficiently large, there exists unique zn ∈ K
satifying (12).

(2) If, in addition we assume that lim
n→∞

‖zn+1 − zn‖ = 0, then

{zn} converges strongly to a common fixed point of T1, T2,...,
Tm.

(3) Moreover, F is a sunny nonexpansive retract of K.

Proof. For each n ∈ N, defining the mapping Tn : K → K by

Tnz = αnu+ (1− αn)T
q(n)
j(n) z ∀ z ∈ K.

It is not difficult to see that for n ∈ N large enough, Tn is a strict
contraction. To be precise, let x, y ∈ K, then since T1, T2, ..., Tm

are asymptotically nonexpansive, we have that

‖Tnx− Tny‖ = (1− αn)
∥∥∥T q(n)

j(n) x− T
q(n)
j(n) y

∥∥∥
≤ (1− αn)

(
1 + μq(n)

)‖x− y‖. (38)

But since μq(n) = o(αn), there exists N0 ∈ N such that for all
n ≥ N0, μq(n) < αn. Thus,

∀ n ≥ N0, 0 < (1− αn)(1 + μq(n)) < (1− αn)(1 + αn) = 1−α2
n < 1

So, Tn is a strict contraction for n ∈ N sufficiently large. Thus,
for n ∈ N large enough, we obtain (Banach Contraction Mapping
Principle) that there exists unique zn ∈ K such that Tnzn = zn.
This implies that

zn = αnu+ (1− αn)T
q(n)
j(n) zn.

Next, we show that {zn} is bounded. Fix p ∈ F, then

‖zn − p‖ =
∥∥∥αnu+ (1− αn)T

q(n)
j(n) zn − p

∥∥∥
≤ αn‖u− p‖+ (1− αn)(1 + μq(n))‖zn − p‖
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This implies that

‖zn − p‖ ≤ αn

1− (1− αn)(1 + μq(n))
‖u− p‖

=
αn

αn − (1− αn)μq(n)

‖u− p‖

=
1

1− (1−αn)μq(n)

αn

‖u− p‖. (39)

Since μq(n) = o(αn) and lim
n→∞

(1−αn) = 1, we obtain from (39) that

{zn} is bounded. Thus, we obtain from (12) that

∥∥∥zn − T
q(n)
j(n) zn

∥∥∥ ≤ αnM6

for some M6 > 0; and this implies that lim
n→∞

∥∥∥zn − T
q(n)
j(n) zn

∥∥∥ = 0.

Moreover, by the hypothesis, lim
n→∞

‖zn+1− zn‖ = 0. Thus, following

the method of proof of converse part of Theorem 10, we obtain that
lim
n→∞

‖zn −Tizn‖ = 0, i = 1, 2, ..., m. Since {zn}n≥1 is bounded, and

E is reflexive real Banach space, there exits a subsequence {znk
}k≥1

of {zn}n≥0 such {znk
}k≥1 converges weakly to some ỹ ∈ K and since

lim
k→∞

‖znk
−Tiznk

‖ = 0, i = 1, 2, ..., m, we obtain from Lemma 6 that

ỹ ∈ F. We now show that {znk
}k≥1 converges strongly to ỹ. Observe

that

znk
− ỹ = αnk

(u− ỹ) + (1− αnk
)
(
T

q(nk)
j(nk)

znk
− ỹ

)
.

So, by Lemma 4, we get

‖znk
− ỹ‖2 ≤ (1− αnk

)2
∥∥∥T q(nk)

j(nk)
znk

− ỹ
∥∥∥2

+ 2αnk

〈
u− ỹ, j(znk

− ỹ)
〉

≤
(
(1− αnk

)(1 + μq(nk))
)2

‖znk
− ỹ‖2

+ 2αnk

〈
u− ỹ, j(znk

− ỹ)
〉
. (40)
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Since (1 − αnk
)(1 + μ(qnk)) < 1 for k sufficiently large, we obatin

from (40) that

‖znk
− ỹ‖2 ≤ 2αnk

1− (1− αnk
)(1 + μq(nk))

〈
u− ỹ, j(znk

− ỹ)
〉

=
2αnk

αnk
− (1− αnk

)μq(nk))

〈
u− ỹ, j(znk

− ỹ)
〉

=
2

1− μq(nk)

αnk
+ μq(nk)

〈
u− ỹ, j(znk

− ỹ)
〉
. (41)

Now, since {xnk
}k≥1 converges weakly to ỹ and j is weakly sequen-

tially continuous, we have that lim
n→∞

〈
u− ỹ, j(znk

− ỹ)
〉
= 0. Also,

lim
k→∞

(
1− μq(nk)

αnk

+ μnk

)
= 1. Thus, from (41), we have that

lim
k→∞

‖znk
− ỹ‖ = 0.

Next, we show that {zn}n≥0 converges to ỹ. Suppose that there is
another subsequence {zni

}i≥1 of {zn}n≥0 such that zni
→ q∗, q∗ 
= ỹ

as i → ∞, then for p ∈ F ,

〈
zn − T

q(n)
j(n) zn, j(zn − p)

〉
=

〈
zn − p, j(zn − p)

〉

+
〈
p− T

q(n)
j(n) zn, j(zn − p)

〉

≥ ‖zn − p‖2 −
∥∥∥p− T

q(n)
j(n) zn

∥∥∥.‖zn − p‖
≥ ‖z − p‖2 − (1 + μq(n))‖zn − p‖2.(42)

Since {zn}n≥0 is bounded and zn − T
q(n)
j(n) zn = αn

1−αn
(u− zn), we get

from (42) that

〈
u− zn, j(zn − p)

〉
≥ −

((1− αn)μq(n)

αn
‖zn − p‖2

)

≥ −
((1− αn)μq(n)

αn
M7

)
(43)

for some M7 > 0. So, (43) implies that

〈
zn − u, j(zn − p)

〉
≤ (1− αn)μq(n)

αn
M7. (44)
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Thus, since ỹ ∈ F and q∗ ∈ F , we get from (44) that

lim sup
k→∞

〈
znk

− u, j(znk
− q∗)

〉
≤ 0

and lim sup
i→∞

〈
zni

− u, j(zni
− ỹ)

〉
≤ 0. (45)

Since j is weakly sequntially continuous, then careful usage of (45)
gives 〈

ỹ − u, j(ỹ − q∗)
〉
≤ 0 and

〈
q∗ − u, j(q∗ − ỹ)

〉
≤ 0.

This implies that 〈
ỹ − u, j(ỹ − q∗)

〉
≤ 0 (46)

and 〈
u− q∗, j(ỹ − q∗)

〉
≤ 0. (47)

So, adding (46) and (47), we have that〈
ỹ − q∗, j(ỹ − q∗)

〉
≤ 0 ⇔ ‖ỹ − q∗‖ ≤ 0,

a contradiction. Hence, {zn}n≥0 converges strongly to ỹ.

Finally, observe that from (43),
〈
zn − u, j(zn − p)

〉
≤ (1− αn)μq(n)

αn
‖zn − p‖2, (48)

so that taking limit as n → ∞ on both sides of (48) using the facts
that {zn}n≥0 converges strongly to ỹ (thus, converges weakly to ỹ)
and j is weakly sequentially continuous, we obtain from (48) that
for u ∈ K, 〈

ỹ − u, j(ỹ − p)
〉
≤ 0 ∀ p ∈ F.

Thus, defining P : K → F by Pu = ỹ, we have by Proposition 3

that P is a sunny nonexpansive retraction of K onto F =
m⋂
i=1

F (Ti).

This completes the proof. �

Remark 14. A prototype for φ : [0,∞) → [0,∞) satisfying the
conditions of our theorems is φ(λ) = λs, 0 < s ≤ 1.

Remark 15. Addition of bounded (or the so called mean) error
terms to the iteration process studied in this paper leads to no
further generalization.
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Remark 16. If f : K → K is a contraction map and we replace
u by f(xn) in the recursion formulas of our theorems, we obtain
what some authors now call viscosity iteration process. We observe
that all our theorems in this paper carry over trivially to the so-
called viscosity process. One simply replaces u by f(xn), repeats
the argument of this paper, using the fact that f is a contraction
map.

Remark 17. In [2], Alber et al. studied iteration processes for
approximation of fixed point of single total asymptotically nonex-
pansive mapping in the setting of the results obtained in this paper;
and under similar assumptions. Our theorems which hold for any
finite family of total asymptotically nonexpansive mappings satis-
fying the conditions of our theorems thus augument and improve
the corresponding results of Alber et al. [2]. Furthermore, our
Example 2 is of independent interest.

Acknowledgement: We would like to thank the reviewers for
their suggestions which helped to improve the quality of this paper.
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