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OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

IN BANACH SPACES
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ABSTRACT. In this paper we introduce a new modified itera-
tive scheme for approximation of common fixed points of count-
ably infinite family of asymptotically nonexpansive mappings
and solutions of some variational inequality problems. We prove
strong convergence theorem that extend and generalize some re-
cent results. Our Theorem particularly, is applicable in lp spaces
(1 < p < ∞).
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1. INTRODUCTION

Let E be a real Banach space and E∗ be the dual space of E.
A mapping ϕ : [0,∞) → [0,∞) is called a guage function if it
is strictly increasing, continuous and ϕ(0) = 0. Let ϕ be a gauge
function, a generalized duality mapping with respect to ϕ, Jϕ : E →
2E

∗
is defined by, x ∈ E,

Jϕx = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||ϕ(||x||), ||x∗|| = ϕ(||x||)},
where 〈., .〉 denotes the duality pairing between element of E and
that of E∗. If ϕ(t) = t, then Jϕ is simply called the normalized
duality mapping and is denoted by J . For any x ∈ E, an element
of Jϕx is denoted by jϕx.
The space E is said to have weakly (sequentially) continuous duality
map if there exists a gauge function ϕ such that Jϕ is single valued
and (sequentially) continuous from E with weak topology to E∗

with weak∗ topology.

A Banach space E is said to satisfy Opial’s condition [11] if for any
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sequence {xn} ⊂ E, xn ⇀ x as n → ∞ implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ E, y �= x.

All Hilbert spaces and lp spaces, 1 < p < ∞ satisfy Opial’s condi-
tion.

The space E is said to have uniform Opial’s condition [13], if for
each c > 0, there exists an r > 0 such that

1 + r ≤ liminf
n→∞

‖x+ xn‖

for each x ∈ E with ‖x‖ ≥ c and each sequence {xn} ⊂ E satisfying
xn ⇀ 0 as n → ∞, and liminf

n→∞
‖xn‖ ≥ 1.

E is said to satisfy local uniform Opial’s condition [6] if for any
weak null sequence {xn} in E with liminf

n→∞
‖xn‖ ≥ 1 and any c > 0,

there exists r > 0 such that

1 + r ≤ liminf
n→∞

‖x+ xn‖

for all x ∈ E with ‖x‖ ≥ c.

Remark 1.1 Observe that uniform Opial’s condition implies local
uniform Opial’s condition which in turn implies Opial’s condition.
It is also known that every Banach space with weakly sequentially
continuous duality mapping satisfies uniform Opial’s condition (see
[6]). Every lp space, (1 < p < ∞) has a weakly sequentially contin-
uous duality map.
A mapping T : E → E is L − Lipschitzian if for some L >
0, ||Tx − Ty|| ≤ L||x − y|| ∀ x, y ∈ E. If L ∈ [0, 1), then T is
called contraction, and if L = 1, then T is called nonexpansive.
A mapping T : E → E is called asymptotically nonexpansive if
there exists a sequence {vn} ⊂ [0,∞), lim

n→∞
vn = 0 such that for all

x, y ∈ E

||T nx− T ny|| ≤ (1 + vn)||x− y|| for all n ∈ N. (1)

A point x ∈ E is called a fixed point of T provided Tx = x. We
denote by F (T ) the set of all fixed point of T (i.e., F (T ) = {x ∈
E : Tx = x} ).

The class of asymptotically nonexpansive mappings was introduced
by Goebel and Kirk [4] as an important generalization of the class
of nonexpansive mappings. They (Goebel and Kirk [4]) proved
that if K is a nonempty, bounded, closed and convex subset of a
real uniformly convex Banach space and T is a self asymptotically
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nonexpansive mapping of K, then T has a fixed point in K.

The mapping T is said to be asymptotically regular if

lim
n→∞

||T n+1x− T nx|| = 0

for all x ∈ K. It is said to be uniformly asymptotically regular if
for any bounded subset C of K,

lim
n→∞

sup
x∈C

||T n+1x− T nx|| = 0.

A mapping T is said to be demiclosed at a point p if whenever {xn}
is a sequence in E such that xn ⇀ x∗ ∈ E and Txn → p then
Tx∗ = p.

A mapping G : D(G) ⊂ E → E is said to be accretive if for all
x, y ∈ D(G), there exists j(x− y) ∈ J(x− y) such that

〈Gx−Gy, j(x− y)〉 ≥ 0, (2)

where D(G) denote the domain of G. For some η, μ ∈ (0, 1), G
is called η − strongly accretive if for all x, y ∈ D(G), there exists
j(x− y) ∈ J(x− y) such that

〈Gx−Gy, j(x− y)〉 ≥ η||x− y||2, (3)

and μ-strictly pseudocontractive if

〈Gx−Gy, j(x− y)〉 ≤ ‖x− y‖2 − μ‖(I −G)x− (I −G)y‖2
holds ∀x, y ∈ E. It is known that if G is μ-strictly pseudocontrac-
tive then it is (1 + 1

μ
)−Lipschitzian.

Let K be a nonempty, closed and convex subset of E and G : K →
E be a nonlinear mapping. The variational inequality problem is
to:

find u ∈ K such that 〈Gu, j(v − u)〉 ≥ 0, ∀v ∈ K,

for some j(v − u) ∈ J(v − u). The set of solution of variational
inequality problem is denoted by V I(K,G). In Hilbert spaces H ,
accretive operators are called monotone where inequality (2) and
(3) hold with j replaced by the identity map on H , in that case the
variational inequality problem reduces to:

find u ∈ K such that 〈Gu, v − u〉 ≥ 0, ∀v ∈ K,

which was first studied by Stampacchia [14].

Variational inequality theory has emerged as an important tool in
studying a wide class of related problems in Mathematical, Physi-
cal, Engineering and Nonlinear Optimization sciences (see, for ex-
ample, [5, 7, 10],[19]-[21]).
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In 2000, Moudafi [9] introduced the viscosity approximation method
for nonexpansive mappings. Let f be a contraction on H , starting
with an arbitrary x0 ∈ H, define a sequence {xn} recursively by

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (4)

where {αn} is a sequence in (0,1). He proved that under certain
appropriate conditions on {αn}, the sequence {xn} generated by (4)
strongly converges to the unique solution x∗ in F of the variational
inequality

〈(I − f)x∗, x− x∗〉 ≥ 0, for all x ∈ F.

Xu [17] in 2003, proved, under some condition on the real sequence
{αn}, that the sequence {xn} defined by x0 ∈ H chosen arbitrarily,

xn+1 = αnb+ (I − αnA)Txn, n ≥ 0, (5)

converges strongly to x∗ ∈ F which is the unique solution of the
minimization problem

min
x∈F

1

2
〈Ax, x〉 − 〈x, b〉,

where A is a strongly positive bounded linear operator (i.e. ∃ γ̄ > 0
such that 〈Ax, x〉 ≥ γ̄||x||2, ∀x ∈ H).

Combining the iterative method (4) and (5), Marino and Xu [8]
studied the following general iterative method:

xn+1 = αnf(xn) + (I − αnA)Txn, n ≥ 0, (6)

they proved that if the sequence {αn} of parameters satisfies ap-
propriate conditions, then the sequence {xn} generated by (6) con-
verges strongly to x∗ ∈ F which solves the variational inequality
problem

〈(γf − A)x∗, x− x∗〉 ≤ 0 ∀x ∈ F,

which is the optimality condition for the minimization problem

min
x∈F

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e. h′(x) = γf(x) for x ∈ H).

On the other hand, Yamada [19] in 2001 introduced the following
hybrid iterative method:

xn+1 = Txn − λnμGTxn, n ≥ 0, (7)
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where G is a κ-Lipschitzian and η-strongly monotone operator with
κ > 0, η > 0 and 0 < μ < 2η/κ2. Under some appropriate condi-
tions, he proved that the sequence {xn} generated by (7) converges
strongly to the unique solution of the variational inequality problem

〈Gx∗, x− x∗〉 ≥ 0, ∀x ∈ F.

Recently, combining (6) and (7), Tian [16] considered the following
general iterative method:

xn+1 = αnγf(xn) + (I − αnμG)T (xn), (8)

and proved that the sequence {xn} generated by (8) converges
strongly to the unique solution x∗ ∈ F of the variational inequality
problem

〈(γf − μG)x∗, x− x∗〉 ≤ 0, ∀x ∈ F.

Ali [1] studied a modified scheme for approximation of a common
fixed point of family of nonexpansive mappings in a real q-uniformly
smooth Banach space which is also uniformly convex. He proved
the following theorem.

Theorem 1.1 (Ali [1]) Let E be a real q-uniformly smooth Banach
space which is also uniformly convex. Let K be a closed, convex
and nonempty subset of E. For α > 0, let Ti : K → K i ∈ N

and A : K → E be a family of nonexpansive maps and α-inverse
strongly accretive map, respectively. Let PK be a nonexpansive
projection of E onto K. For some real numbers δ ∈ (0, 1) and

λ ∈ (0, ( qα
dq
)

1
q−1 ) define a sequence {xn} iteratively by x1, u ∈ K,

xn+1 = αnu+ (1− δ)(1− αn)xn + δ
∑
i≥1

σinTiPK(xn − λAxn), (9)

n ≥ 1

where {αn} and {σin} are real sequences in (0, 1) satisfying the fol-
lowing conditions: (i) limαn = 0, (ii)

∑
αn = ∞, (iii)

∑
i≥1 σin =

1 − αn and lim
n→∞

∑
i≥1 |σi,n+1 − σin| = 0. Let F := [∩∞

i=1F (Ti)] ∩
V I(K,A) �= ∅. If either the duality map j of E admits weak se-
quentially continuity or for at least one i ∈ N, TiPK(I − λA) is
demicompact, then {xn} converges strongly to some element in F .
Most recently, Ali et al. [3], extended the result of Tian [16] to q-
uniformly smooth Banach space whose duality mapping is weakly
sequentially continuous. Under some assumption on {αn}, γ, μ and
G, they proved that the sequence {xn} generated by (8) converges
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strongly to the unique solution x∗ ∈ F of the variational inequality
problem

〈(γf − μG)x∗, j(x− x∗)〉 ≤ 0, ∀x ∈ F.

Motivated by these result, it is our purpose in this paper to intro-
duce a new modified iterative scheme for approximation of common
fixed points of family of asymptotically nonexpansive mappings
and solution of some variational inequality problem. We prove
strong convergence theorem that extend and generalize some re-
cent results. Our Theorem particularly, is applicable in lp spaces
(1 < p < ∞).

2. PRELIMINARY

The following lemmas and Theorem are used for our main result.

Lemma 2.1 Let E be a real normed space. Then

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉,
for all x, y ∈ E and for all j(x+ y) ∈ J(x+ y).

Lemma 2.2 (Xu [18]) Let {an} be a sequence of nonegative real
numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0

where, (i) {αn} ⊂ [0, 1],
∑

αn = ∞; (ii) lim sup σn ≤ 0;; (iii)
γn ≥ 0; (n ≥ 0),

∑
γn < ∞. Then, an → 0 as n → ∞.

Lemma 2.3 (Suzuki [15]) Let {xn} and {yn} be bounded sequences
in a Banach space E and let {βn} be a sequence in [0, 1] with 0 <
lim inf βn ≤ lim sup βn < 1. Suppose that xn+1 = βnyn+(1− βn)xn

for all integer n ≥ 1 and lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0.

Then, lim
n→∞

||yn − xn|| = 0.

Lemma 2.4 (Piri and Vaezi [12] see also [2]) Let E be a real Ba-
nach space and G : E → E be a mapping.
(i) If G is η−strongly accretive and μ−strictly pseudo-contractive

with η + μ > 1, then I −G is contractive with constant
√

1−η
μ
.

(ii) If G is η−strongly accretive and μ−strictly pseudo-contractive
with η + μ > 1, then for any fixed number κ ∈ (0, 1), I − κG is

contractive with constant 1− κ
(
1−

√
1−η
μ

)
.
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Theorem 2.5 (Lin et al. [6]) Suppose E is a Banach space satis-
fying the locally uniform Opial condition, C is a nonempty weakly
compact convex subset of E, and T : C → C is an asymptotically
nonexpansive mapping. Then (I-T) is demiclosed at zero.

3. THE MAIN RESULTS

In the sequel we assume for the sequences {αn}, {σin} ⊂ (0, 1), that∑
i≥1

σin := 1− αn for each n ∈ N.

Theorem 3.1 Let E be a real Banach space whose duality map is
weakly sequentially continuous. Let G : E → E be an η-strongly
accretive and μ-strictly pseudocontractive with η + μ > 1 and
let f : E → E be a contraction with coefficient α ∈ (0, 1). Let
{Ti}∞i=1 be a family of uniformly asymptotically regular asymptot-
ically nonexpansive self mappings of E with sequences {vin} such
that vin → 0 as n → ∞ for each i ≥ 1 and F =

⋂∞
i=1 F (Ti) �= ∅.

Assume that γ ∈
(
0,min{ τ

2α
, η}

)
, where τ := (1 −

√
1−η
μ
). Let

{αn}∞n=1 and {βn}∞n=1 be sequences in (0, 1), and suppose that the
following conditions are satisfied:

(C1) lim
n→∞

βn = 0 and lim
n→∞

vn
βn

= 0, where vn := sup
i≥1

{vin}
(C2) Σ∞

n=0βn = ∞
(C3) lim

n→∞
αn = 0.

(C4) lim
n→∞

∑
i≥1 |σin+1 − σin| = 0

For some fixed δ ∈ (0, 1), let {xn}∞n=1 be a sequence defined itera-
tively by x0 ∈ E chosen arbitrarily,

{
xn+1 = [1− δ(1− αn)]xn + δ

∑
i≥1 σinT

n
i yn,

yn = βnγf(xn) + (I − βnG)xn, n ≥ 0.
(10)

Then, {xn}∞n=1 converges strongly to p ∈ F , where p is the unique
solution of the variational inequality problem

〈γf(p)−Gp, j(q − p)〉 ≤ 0, ∀q ∈ F. (11)

Proof: From the choice of γ, (G − γf) is strongly accretive, then
the variational inequality (11) has a unique solution in F . Now we
show that {xn} is bounded. Let p ∈ F, since vn

βn
→ 0 as n → ∞, it

implies that vn
(1+vn)βn

→ 0 as n → ∞, then there exists n0 ∈ N such
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that vn
(1+vn)βn

< τ−γα
2

, for all n ≥ n0.

||yn − p|| = ||βn(γf(xn)−Gp) + (I − βnG)(xn − p)||
≤ βn||γf(xn)−Gp||+ (1− βnτ)||xn − p||
≤

(
1− βn(τ − γα)

)
||xn − p||+ βn||γf(p)−Gp||. (12)

Using (12), we obtain

||xn+1 − p|| = ||[1 − δ(1− αn)](xn − p) + δ
∑
i≥1

σin(T
n
i yn − p)||

≤ [1− δ(1− αn)]||xn − p||+ δ(1− αn)(1 + vn)||yn − p||
≤

[
1− δ(1− αn) + δ(1− αn)(1 + vn)[1− βn(τ − γα)]

]
||xn − p||

+δ(1− αn)(1 + vn)βn||γf(p) −Gp||
=

[
1 + δ(1− αn)vn − βnδ(1− αn)(1 + vn)(τ − γα)]

]
||xn − p||

+δ(1− αn)(1 + vn)βn||γf(p) −Gp||
≤

[
1− βnδ(1− αn)(1 + vn)

(
(τ − γα)− vn

(1 + vn)βn

)]
||xn − p||

+βnδ(1− αn)(1 + vn)
(
(τ − γα)− vn

(1 + vn)βn

)2||γf(p)−Gp||
τ − γα

≤ max
{
||xn − p||, 2||γf(p) −Gp||

τ − γα

}

By induction, we obtain

||xn − p|| ≤ max
{
||xn0 − p||, 2||γf(p)−Gp||

τ − γα

}
∀n ≥ n0.

Hence {xn} is bounded. Also {f(xn)}, {G(xn)}, {yn}, {T n
i xn} and

{T n
i yn} are all bounded.

Define two sequences by γn := (1−δ)αn+δ and zn := xn+1−xn+γnxn

γn
.

From the recursion formula (10), observe that

zn =
δ
∑

i≥1 σinT
n
i yn + αnxn

γn
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which implies

zn+1 − zn =
δ
∑

i≥1 σin+1T
n+1
i yn+1 + αn+1xn+1

γn+1

−δ
∑

i≥1 σinT
n
i yn + αnxn

γn

=
δ
∑

i≥1 σin+1

(
T n+1
i yn+1 − T n+1

i yn

)
γn+1

+
δ
∑

i≥1 σin+1

(
T n+1
i yn − T n

i yn

)
γn+1

+
(δ∑i≥1 σin+1T

n
i yn

γn+1

− δ
∑

i≥1 σinT
n
i yn

γn

)

+
αn+1

γn+1

xn+1 − αn

γn
xn

therefore,

||zn+1 − zn|| ≤
δ
∑

i≥1 σin+1

∥∥∥T n+1
i yn+1 − T n+1

i yn

∥∥∥
γn+1

+
δ
∑

i≥1 σin+1

∥∥∥T n+1
i yn − T n

i yn

∥∥∥
γn+1

+
∥∥∥δ

∑
i≥1 σin+1T

n
i yn

γn+1
− δ

∑
i≥1 σinT

n
i yn

γn

∥∥∥
+
αn+1

γn+1
||xn+1||+ αn

γn
||xn||

≤ δ(1− αn+1)

γn+1
(1 + vn+1)‖yn+1 − yn‖

+
δ
∑

i≥1 σin+1

∥∥∥T n+1
i yn − T n

i yn

∥∥∥
γn+1

+
δ

γn+1γn

∥∥∥∑
i≥1

(
γnσin+1 − γn+1σin

)
T n
i yn

∥∥∥
+
αn+1

γn+1

||xn+1||+ αn

γn
||xn||. (13)
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But

yn+1 − yn = βn+1γ
(
f(xn+1)− f(xn)

)
+
(
βn+1 − βn

)
γf(xn)

+
(
(I − βn+1G)xn+1 − (I − βn+1G)xn

)

+
(
(I − βn+1G)xn − (I − βnG)xn

)
,

so that

||yn+1 − yn|| ≤ βn+1γα||xn+1 − xn||+ |βn+1 − βn|||γf(xn)||
+(1− βn+1τ)||xn+1 − xn||+ |βn+1 − βn|||G(xn)||

= [1− βn+1(τ − γα)]||xn+1 − xn||
+|βn+1 − βn|

[||γf(xn)||+ ||G(xn)||
]

(14)

Using (14) in (13), we obtain that

||zn+1 − zn|| − ||xn+1 − xn||
≤

(δ(1− αn+1)

γn+1
(1 + vn+1)[1− βn+1(τ − γα)]− 1

)
||xn+1 − xn||

+
δ(1− αn+1)

γn+1

(1 + vn+1)|βn+1 − βn|
[||γf(xn)||+ ||G(xn)||

]

+
δ
∑

i≥1 σin+1

∥∥∥T n+1
i yn − T n

i yn

∥∥∥
γn+1

+
δ

γn+1γn

∥∥∥∑
i≥1

(
γnσin+1 − γn+1σin

)
T n
i yn

∥∥∥
+
αn+1

γn+1
||xn+1||+ αn

γn
||xn||

≤
(δ(1− αn+1)

γn+1
(1 + vn+1)[1− βn+1(τ − γα)]− 1

)
||xn+1 − xn||

+
δ(1− αn+1)

γn+1
(1 + vn+1)|βn+1 − βn|

[||γf(xn)||+ ||G(xn)||
]

+
δ
∑

i≥1 σin+1

∥∥∥T n+1
i yn − T n

i yn

∥∥∥
γn+1

+
δM∗

γn+1γn

[
γn

∑
i≥1

|σin+1 − σin|+ |γn − γn+1|(1− αn)
]

+
αn+1

γn+1

||xn+1||+ αn

γn
||xn||,
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for some M∗ > 0 and this implies

lim sup
n→∞

(||zn+1 − zn|| − ||xn+1 − xn||) ≤ 0.

Consequently, by Lemma 2.3, we have

lim
n→∞

||zn − xn|| = 0.

Hence

||xn+1 − xn|| = (1− γn)||zn − xn|| → 0 as n → ∞. (15)

From the recursion formula (10), we obtain

δ
∑
i≥1

σin||T n
i yn − xn|| = ||xn+1 − xn|| → 0 as n → ∞.

This implies that for each i ≥ 1,

lim
n→∞

||T n
i yn − xn|| = 0. (16)

Also, from the recursion formula (10), we obtain

||yn − xn|| = βn||γf(xn)−G(xn)|| → 0 as n → ∞. (17)

which implies that for each i ≥ 1,

||T n
i yn − yn|| ≤ ||T n

i yn − xn||+ ||xn − yn|| → 0 as n → ∞. (18)

From (16) and (17), for each i ≥ 1, we obtain

||Tn
i xn − xn|| ≤ ||Tn

i xn − Tn
i yn||+ ||Tn

i yn − xn||
≤ (1 + vn)||xn − yn||+ ||Tn

i yn − xn|| → 0 as n → ∞. (19)

Therefore

||Tixn − xn|| ≤ ||Tixn − T n+1
i xn||+ ||T n+1

i xn − T n+1
i xn+1||

+||T n+1
i xn+1 − xn+1||+ ||xn+1 − xn||

≤ Li||xn − T n
i xn||+ (2 + vn+1)||xn+1 − xn||

+||T n+1
i xn+1 − xn+1||,

for each i ≥ 1, also by using (15) and (19), we obtain

lim
n→∞

||Tixn − xn|| = 0 for each i ≥ 1. (20)

we also have

||Tiyn − yn|| ≤ ||Tiyn − Tixn||+ ||Tixn − xn||+ ||xn − yn||
≤ (1 + Li)||yn − xn||+ ||Tixn − xn||.

This implies that,

lim
n→∞

||Tiyn − yn|| = 0 for each i ≥ 1. (21)
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Let {ynk
} be a subsequence of {yn} such that

lim sup
n→∞

〈γf(p)−G(p), j(yn − p)〉 = lim
k→∞

〈γf(p)−G(p), j(ynk
− p)〉 (22)

and assume without loss of generality that ynk
⇀ z ∈ E. By

Remark 1.1 and Theorem 2.5, (I−Ti) is demiclosed at zero for each
i ≥ 1, so z ∈ F . Since the duality map of E is weakly sequentially
continuous, we obtain

lim sup
n→∞

〈γf(p)−G(p), j(yn − p)〉 =
lim
k→∞

〈γf(p)−G(p), j(ynk
− p)〉

≤ 〈γf(p)−G(p), j(z − p)〉 ≤ 0. (23)

We now conclude by showing that xn → p as n → ∞. Since vn
βn

→
0 as n → ∞, if we denote by wn the value 2vn + v2n, it implies
that wn

(1+wn)βn
→ 0 as n → ∞, then there exists n0 ∈ N such that

wn

(1+wn)βn
≤ τ−2γα

2
, for all n ≥ n0. From recursion formula (10), we

obtain

||xn+1 − p||2 = ||[1− δ(1− αn)](xn − p) + δ
∑
i≥1

σin(T
n
i yn − p)||2

≤ [1− δ(1− αn)]||xn − p||2 + δ
∑
i≥1

σin||Tn
i yn − p||2

≤ [1− δ(1− αn)]||xn − p||2 + δ(1− αn)(1 + vn)
2||yn − p||2

= [1− δ(1− αn)]||xn − p||2

+δ(1− αn)(1 + wn)
[
||βn(γf(xn)−Gp) + (I − βnG)(xn − p)||2

]

≤ [1− δ(1− αn)]||xn − p||2 + δ(1− αn)(1 + wn)
[
(1− βnτ )||xn − p||2

+2βn〈γf(xn)−Gp, j(yn − p)〉
]

≤
[
1− δ(1− αn) + δ(1− αn)(1 +wn)(1− βnτ )

]
||xn − p||2

+2βnδ(1− αn)(1 +wn)γα||xn − p||||yn − p||
+2βnδ(1− αn)(1 +wn)〈γf(p)−Gp, j(yn − p)〉

≤
[
1− δ(1− αn) + δ(1− αn)(1 +wn)(1− βnτ )

]
||xn − p||2

+2βnδ(1− αn)(1 +wn)γα||xn − p||2
+2βnδ(1− αn)(1 +wn)γα||xn − p||||yn − xn||
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+2βnδ(1− αn)(1 + wn)〈γf(p)−Gp, j(yn − p)〉
=

[
1− δ(1− αn) + δ(1− αn)(1 + wn)(1− βn[τ − 2γα])

]
||xn − p||2

+2βnδ(1− αn)(1 + wn)γα||xn − p||||yn − xn||
+2βnδ(1− αn)(1 + wn)〈γf(p)−Gp, j(yn − p)〉

=
[
1− βnδ(1− αn)(1 + wn)

(
(τ − 2γα) − wn

(1 + wn)βn

)]
||xn − p||2

+2βnδ(1− αn)(1 + wn)〈γf(p)−Gp, j(yn − p)〉
+2βnδ(1− αn)(1 + wn)γα||xn − p||||yn − xn||

=
[
1− βnδ(1− αn)(1 + wn)

(
(τ − 2γα) − wn

(1 + wn)βn

)]
||xn − p||2

+βnδ(1− αn)(1 + wn)
(
(τ − 2γα)− wn

(1 + wn)βn

)
×

2[〈γf(p)−Gp, j(yn − p)〉+ γα||xn − p||||yn − xn||](
(τ − 2γα)− (wn/(1 + wn)βn)

) .

Observe that
∑

βnδ(1 − αn)(1 + wn)
(
(τ − 2γα) − wn

(1+wn)βn

)
= ∞

and

lim sup
(2[〈γf(p)−Gp, j(yn − p)〉+ γα||xn − p||||yn − xn||](

(τ − 2γα)− (wn/(1 + wn)βn)
) )

≤ 0

Applying Lemma 2.2, we obtain ||xn − p|| → 0 as n → ∞. This
complete the proof.

The following corollaries follow from Theorem 3.1 .

Corollary 3.1 Let E,G, f, F, {αn}∞n=1 and {βn}∞n=1 be as in Theo-
rem 3.1. Let {Ti}∞i=1 be a family of nonexpansive self mappings of

E. Assume that γ ∈
(
0,min{ τ

2α
, η}

)
, where τ := (1 −

√
1−η
μ
). For

some fixed δ ∈ (0, 1), let {xn}∞n=1 be a sequence defined iteratively
by x0 ∈ E chosen arbitrarily,{

xn+1 = [1− δ(1− αn)]xn + δ
∑

i≥1 σinTiyn,
yn = βnγf(xn) + (I − βnG)xn, n ≥ 0.

(24)

Then, {xn}∞n=1 converges strongly to p ∈ F , where p is a solution
of the variational inequality problem (11).

Corollary 3.2 Let E = H a real Hilbert space andG, f, F, {αn}∞n=1,
{Ti}∞i=1 and {βn}∞n=1 be as in Theorem 3.1. Let {Ti}∞i=1 be a family

of nonexpansive self mappings of E. Assume that γ ∈
(
0,min{ τ

2α , η}
)

, where τ := (1 −
√

1−η
μ
). Let {xn}∞n=1 be a sequence defined as
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in (10). Then, {xn}∞n=1 converges strongly to p ∈ F , where p is a
solution of the variational inequality problem (11).
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