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ABSTRACT. We prove that the recent results of Miao and Li
[Applicable Analysis and Discrete Mathematics 2(2008), 197-
204, http://pefmath.etf.bg.ac.yu] concerning the iterative ap-
proximation of fixed points of nonexpansive mappings in Hilbert
spaces using a composite hybrid iteration method can be ex-
tended to arbitrary Banach spaces without the strong mono-
tonicity assumption imposed on the hybrid operators.
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1. INTRODUCTION

Let E be an arbitrary Banach space. A mapping T : £ — FE is
said to be L— Lipschitzian if there exists L > 0 such that

[Tz —Ty| < Lz — yll, Va,y € E. (1)

T is said to be nonexpansive if L = 1 in (1). Let H be a Hilbert
space, A mapping T : H — H is said to be n—strongly monotone
if there exists n > 0 such that

(Tx —Ty,z —y) >nllz —y||*>,Va,y € H. (2)

Nonexpansive mappings are intimately connected with several non-
linear mappings that are of interest in ordinary and partial differen-
tial equations (see for example [2, 4, 5, 6, 12]). Bruck [7] remarked
that the intimate connection of nonexpansive mapping with the
important class of accretive operators (i.e. operator 7' : D(T) C
E — Esuch that ||z—y|| < ||lz—y+ATz—Ty)|,Yz,y € D(T) for
all A > 0, E—Banach space) account for in part the importance of
nonexpansive mappings which is one of the first classes of mappings
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for which fixed point results were obtained by using the geometric
structure of the underlying Banach space instead of compactness
property.

The interest and importance of construction of fixed points of non-
expansive mappings stem mainly from the fact that it may be ap-
plied in many areas such as image recovering, signal processing (see
for example [3, 8, 23]), solving convex minimization problems (see
for example [10, 27, 28, 30, 31]). Hence iterative techniques for
approximating fixed points of nonexpansive mappings have been
studied by several authors (see for example [1, 13, 16, 17, 18]) us-
ing the famous Mann [14] iteration scheme. As a generalization of
the Mann process, Xu and Kim [29], Yamada [31] and Wang [26]
introduced the so called hybrid iteration method which has been
used in solving certain variational inqualities:

The Hybrid Iteration Method (Wang [26]): Let H be a
Hilbert space, T : H — H a nonexpansive mapping with F(T') =
{reH:Tr=x}+#0and F: H— H an n—strongly monotone
and Lipschitzian mapping. Let {a,}5>, C (0,1) and {\,}22; be
real sequences in [0,1), and g > 0, then the sequence {x,}> is
generated from an arbitrary x; € H by

Tpi1 = n2y + (1 — ap) T, n > 1 (3)

where T* 1y = Tax — N\, ' (Tx), > 0. Using this result, Wang
[26] obtained weak and strong convergence of (3) to the fixed point
of T. Observe that if either A\, = 0,¥n > 1 or F' = 0, then (3)
reduces to the well known Mann iteration method

Tpt1 = app + (1 —ap)Txp,n > 1 (4)

which has been used by several authors for the approximation of
fixed points of operators or operator equations.

Motivated by the work of Wang [26] and earlier results of Xu and
Kim [29] and Yamada [31], Miao and Li generalized (3) by devel-
oping the following Composite Hybrid Iteration Process:

Let H be a Hilbert space, T': H — H a nonexpansive mapping
with F(T) # 0 and f(resp.g) : H — H an ny(resp.n,)—strongly
monotone and ky(resp.ky)—Lipschitzian mapping. For any z; €
H. {z,} is defined by

An41
Tny1 = ann + (1 —an)Ti"  yy, > 5
Yn = byr,+(1-— bn)Tf”:L’n y =2 (5)
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where Tji\"“x = Tx— Mppsf(Tz), pyp>0, VreH,
Tgﬁ"a: = Tx— Bopgg(Tx), pg>0, VreH,

and {a,} C (0,1),{b,} C (0,1) and A\, C [0,1),8, C [0,1) satisfy
the following conditions:
(i) a<a, <1—a,f<b, <1-p, for some a,f € (0,3);

(i) 9N\, < 400, XIXB, < +oo.

(iii) 0 < py < %f,o<ug< =
Observe that if b, = 1,¥n > 1,(5) reduces to (3) and if b, =
1,Vn > 1,A\, = 0 or f = 0,(5) reduces to the well known Mann
iteration Method. Using (5), Miao and Li [15] proved the following:

Lemma 1 ([15], Page 200): The iterative process {z,} as in (5)
satisfies

(1) lirf ||z, — p|| exists for each p € F(T),
n——+0o0

(2) lim ||z, — Tx,| = 0.
n—-+00o

Theorem 1 ([15], Page 202): The iterative process {x,} as in
(5) converges weakly to a fixed point of T.

Theorem 2 ([15], Page 203): Let T be completely continuous
or demicompact. The iterative process {x,} as in (5) converges
strongly to a fixed point of T

It is our purpose in this paper to extend Lemma 1, Theorem 1
and Theorem 2 from Hilbert spaces to arbitrary Banach spaces.
Our results are much more general and also more applicable than
the results of Miao and Li [15] because the strong monotonicity
condition imposed on f and ¢ is not required in our results.

2. PRELIMINARY

In this section we will state the following Lammas. A Banach space
FE is said to satisfy Opial’s condition (see for example [19]) if for each
sequence {z,}7°, € E which converges weakly to a point x € E we
have

liminf ||z, — x| < liminf ||z, — y||,Vy € E.
n—o0 n—oo

Let E be a Banach space. A mapping 7" with domain D(7") and
range R(7T) in E is said to be demiclosed at a point p € D(T) if
whenever {z,}>, is a sequence in E which converges weakly to a
point x € E and {Tx,}32, converges strongly to p, then Tx = p.
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Furthermore, T is said to be demicompact if whenever {z,}3, is
a bounded sequence in D(T') such that {x, — Tx,}>%, converges
strongly, then {x,}22, has a subsequence which converges strongly.
T is said to satisfy condition (A) if F(T) # () and there exist non-
decreasing functions f : [0,00) — [0,00) and g : [0,00) — [0, 00)
with f(0) = 0,¢9(0) = 0, f(t) > 0 and g(t) > 0 V¢t € (0,00) such
that [z — Tz|| > f(d(z, F(T))) and ||z — T|| > g(d(z, F(T))) for
all & € D(T) where d(z, F(T)) = inf{|lz —p| : p € F(T)}.

Lemma 2 ([11]): Let E be a reflexive Banach space satisfying
Opial’s condition and let K be a nonempty closed convex subset of
E. Let T : K — FE be a nonexpansive mapping. Then (I —T) is
demiclosed on K, where [ is the identity mapping.

Lemma 3 ([20], page 1184, see also [21]): Let {a,}2°, {b,}5°,
and {0,152, be sequences of nonnegative real numbers satisfying
the inequality a,+1 < (14 d,)an +b,,n > 1. I )" 5, < 0o and
Yoo by < 00, then lim a, exists. If in addition {a,};>; has a

n—o0o
subsequence which converges strongly to zero, then lim a, = 0.

n—oo
Lemma 4 ([1], page 223, see also [9], page 770): Let E be an
arbitrary normed space and let {t,,}°° ; be a real sequence satisfying
the conditions:

(i) 0 <t, <t <1, and for some ¢ € (0,1),
(i) B¢, = +o0,
Let {u,}5°; and {v,}22; be two sequences in F such that
i) w1 = (1 —ty)up + tyv,, Yn>1
iv) hm |un|| = d for some d € [0, 00),
) 1 1msup lvn|l < d,
)

(
(

(v
n—oo

(vi) {3 t;0;},2] is bounded. Then d = 0.

3. MAIN RESULTS

Theorem 3 : Let E be an arbitrary real Banach space, T': £ —
E a nonexpansive mapping with F(T') # 0 and f(resp.g) : E — E
are Ly(resp.L,)—Lipschitzian mappings. For any z; € E,{z,} is
generate by

An41
Tns1 = Ann + (1 —an)T" yy, > 6
Yn = byr,+(1-— bn)Tf”:L’n y =2 (6)
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where TJZ\"Hx = To—MNpsf(Tx), pp>0, Verek,
Tgﬁ"x = Tz — Bopgg(Tx), py>0, Vrek,

and {a,} C (0,1),{b,} C (0,1) and A\, C [0,1), 5, C [0, 1) satisfy-
ing the following conditions:
(i) 0 < o < a, <1, for some «a € (0, 1);

Th:%n,
(a) lim ||x, — p|| exists for each p € F(T),

n——+

o0

(b) lim ||z, —Tz,| =0

n—-+

o0

(¢) {x,} converges strongly to a fixed point of T" if and only if
limJirnf d(z,, F(T)) = 0.
n——+0o0

Proof: Let p € F/(T') be arbitrary. Set L := max{Ly, L,}. Then

Hxn—i—l

IN

IN

IN

pll = llan(zn = p) + (1 = an) (T} g — )|
lan(zn —p) + (1 = an)(Tyn — p)

—(1 = an)An1pr f (T

anl|zn — pll + (1 = an) | Tyn — pll

+(1 = an)Marrpg | (Tyn)

anllzn — pll + (1 — an)lyn — pll

+(1 = an)Marrpg {1 f(Tyn) = @I+ [[F )}
apllzn —pll + (1 — an)lyn — pll

+(1 = an) Mgl f(Tyn) = (D)

+(1 = an) Angapy || £ (p)]]

anllzn — pll + (1 — an)lyn — pll

+(1 = an)Ansrttr Ll yn — pl|

+(1 = an) gy || f (D))

anllzn — pll + {(1 — axn)

+(1 = an) A1 L yn — pll

+(1 = an) gy || £ (0)]] (7)
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lyn = pll = [bu(zn —p) + (1 = b)) (T) 20 — )|
= |[|bu(xn —p) + (1 = b,) (T, — p)

—(1 = b)) Bapgg(Tzy) ||

bullzn — pll + (1 = o) | Ty — pl|

+(1 - bn)ﬁnﬂgHg(T'xn)H

bullzn — pll + (1 = ba) ||z — |

+(1 = b)) Bubtglllg(Txn) — g(p)I| + [lg(p)|}

= anxn _pH +(1— bn)Hxn _pH

(L = b0)Buttgllg(Txn) — g(p)|l

(1 = bn) Buptgllg(p)

anxn _pH +(1— bn)Hxn _pH

+(1 = by) Bupg |z — pl|

+(1 = bn) Buptgllg(p)

= {1+ 1 —=bn)BupgL}|zn — pl
(1 = bn) Buptgllg(p) I

IN

IN

IN

Substitute (8) into (7) to obtain

|Zni1 — pll = anllzn — pll +{(1 = an) + (1 — @)A1y L}
X[{l + (1 - bn)ﬁnﬂgL}Hxn - p”
+(1 - bn)ﬁnugHg(P)H] + (1 — an))‘nJrlﬂfo(p)H
= apllz, — pll +{(1 —an) + (1 — an) Ans1py L}
><{1 + (1 - bn)ﬁn“gL}Hxn - p”
(1 —an) + (1 — an) Ay L}
X (1 =) Bnptgllg(@)]| + (1 = an) Mg el f ()|

= [an + (1 —a,) + (1 — ap) Ang1ps L
+(1 = an)(1 = bn) Bupig L
(1= @) (1 = bp) Asr Buptppig L2z — p|
H{(1 = an) + (L = an) Ay L1 = by) Buptgl g (p)]]

+(1 = an)Ansrpig | £ (Pl



WEAK AND STRONG CONVERGENCE THEOREMS FOR ... 135

= [1+ (1 = an)Anprpig L+ (1= an) (1 = bn) Bupig L
(1 = an)(1 = ba) Ans1 Buptppig L | — pl|
H{(L = an) + (1 = an) Aayrpig LHL = by) Buptgll9(p) ]
(L= an) Ansapgl[ F (D)l

= [1+du]llzn = pl| + om (9)

where

o = (1 = an)Appapir L+ (1 — an)(1 — by) Bupig L
+(1 = an) (1 = bp) a1 Bufi ity L? and
on = {(1—an) + (1 — an)Musapi L1 = by) Buptyllg(p) |
(1 = an) Angapg | (D)
= (1 —an)(1 = b,)Butgllg(p)|l
+(1 = an) (1 = bn) Anga g Brptg Lllg (p)]]
(1 = an) Angapg | f(D)]]-

Since Y 2 8, < oo and > 7 0, < 00, it follows from Lemma 3
that lim ||z, —pl|| exists. It follows that {x,} is bounded, complet-
n—oo

ing the proof of (a). Since {||z, — p||}22, is bounded, then there
exists M > 0 such that

|z —p|| < M Vn > 1. (10)
Observe that

2011 — Tl = lan(zn — T2nyr) + (1 = an)(TYn — TTni1)
—(1 = an)Ansapr f(Tyn)|
< apllzn = Tons || + (1 = @) [[Tyn — T4 ||
(1 = an) Angrpig | f(Tyn) |l
< apllwn — Tona || + (1 — an)l|yn — ot |
+(1 = an)Angrpis Ll yn — pl|
+(1 = an) Asrpir| f (D)l
< anl|zn — Tpall + anllTnsr — Txpa |
+(1 = an)llyn = zall + (1 = an)[[2n — 2|
+(1 = an)Angapis Lllyn — pll + (1 = an) Anrapisl £ () |
= |zn — znga |l + anllTnir — Tonsa|
(1 = an)[[(1 = bn)(Txn — 2n) — (1 = bn) Brpigg(T'xy) ||
+(1 = an) Angapis Lllyn — pll + (1 = an) Ansapisl £ () |
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< = wall 4 aullnis — Tl
+(1 = an)(1 = bp)| Tx, — 24|
(1= an)(1 = b)) Buptgllg(Tn) |
FO = @) hwerstrEllge — pll + (1= 0 hasasig 1£0)]
< lzn — 2o |l + anl|Tnis — Tp |
(1 = an)(1 = 0u)[| T2y — a4l
+(1 = an)(1 = ba) BuptgLllzs — pl|
(1= an) (1 = bn) Bupigllg (P + (1 = an)Anyapep Llyn — pl]
+(1 = an)Aarapg | f(p)]]- (11)
Substitute (8) into (11) to obtain
|Znt1 — TTppall < |70 — Tpgal| + anllTngr — Tzngal|
+(1 = an)(1 = b)) | T2y, — 2|
+(1 = a,)(1 - bn)ﬁn“gLHxn dl
+(1 = an)(1 = ba) Butigllg(p) || + (1 — an) Ansaps L
X[{1+ (1= by)Buptg L}z — pl]
(1 =) Buptglg@] + (1 = an) Angapis LF ()
= |lzn — Zpsall + anl|Tns1 — Tapa|
+(1 = ay)(1 = b,)||[Txn — 20|
( )(L = by) Bupig Ll| 0 — pl|
( )(1 = bi) Bubgllg(p)
+(1 = an) A1 pip L{1 + (1 = b)) Bupig L} |20 — pl|
( )
( )

+(1 —a, /\n—l—l:uf“f(p)H (12)

[Znt1 — Toppa| < ( |70 = Zpga || + (1 = bp) | T2y — 24|

1 —ay,)
FAngaprp L{1 + (1 = by) Baptg LY |2 — pl|
+(1 = 0n) Ansa sty Buttg Ll g ()| + Angapis | f () (13)

An
[Zpi1 — ol = (1 = an)HTf Y — |
=(1- an)HTyn — Tn — /\n-i—llu’ff(Tyn)H
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< (L= an)|Tyn — znll + (1 = an) A pag L (Tig) |
< (L= an)llyn — zall + (1 = an)|lzn — T
+(1 = an) Ay rpts Ll yn — pl|
+(1 - @n))‘nJrlﬂfo(p)H
< (I =an) = bp)llzn — Tapl| + (1 — ap)l|2n — T2y

+(1 —a,)(1 -0 )ﬁnﬂgLHxn pll

(1 = an)(1 = bn) Butigllg(p)|]

+(1 = an)Ansrper Llyn — pll

+(1 = an)Anrris || f ()] (14)

Substitute (8) into (14) to obtain
[Zn1 — @all < (1 —an)(1 = by)l|wn — T
+(1 — ay)||xn — Tz, ||
+(1 = an)(1 = by) Buptg Ll 20 — p
(1= an)(1 = ba)Buptgllg(p)l
+(1 = an) A pgs L{L + (1 = bn) Bopig L} |20 — pl|
(1- bn)ﬁnﬂgHg( I+ (1= an) Ansrpag [ f (Pl
= (1—a,)(2—
(1= an)(1 = by)BuprgLl|zn — pll
(1= an) (L = bn)Bupgllg ()l
+(1 = an) A ps L{L 4 (1 = bn) Brpg L} || 2 —
( )
+( )A

)Hxn - Txn“

(1 = an)(1 = b)) Aus1pt s Bupty Ll g ()]

+(1 —an n+1:ufo( )H (15)
Substitute (15) into (13) to obtain
1
[2n41 = Tl < (1_7){(1 = an)(2 = bp) |20 = Tn|
+(1 = an)(1 = by) Bapg Ll|zn — p

+(1 = an) (1 = by) Buprgllg(p) |

( )

( )

(1= an)Ansapig LEL + (1= bn) Bupig L} || 20 —
(1= an)(1 = bp) A pis Buptg Ll g (p) |

( )A

( )

—- -

+(1 = an)Ansrpg [ ()11}
+(1 = 0n)[|T2n — @nll + (1 = bn) Buptg Ll 2n — pll



138 D. I. IGBOKWE AND U. S. JIM

+(1 = ba)Buptgllg (@)
+/\n+1MfL{1 +(1- bn)ﬁnﬂgL}Hxn -7l
(1 = bp) Ans1peg Butg LI g(P) || + Anrrpes|Lf ()]

= (2= bn)l|lzn — Tl + (1 = by) Buprg L 2n — pll
+(1 = by) Buptgllg(0)
A LT+ (1 — bn)ﬁnﬂgL}Hxn -l
+(1 = bu) Mns1 i Butig Lllg(p) |
gl F O + (1= b) 1T — 20
+(1 = bn) Baptg Ll|lzn — pll + (1 = b)) Buprgllg(0) |
FAnpiprg LT+ (1 - bn)ﬁnﬂgL}Hxn -l
+(1 = bp) Ans1peg Battg LI g ()| + Anrapep || f ()l

— (3= )t — Tl + 200 — ) Butty L+ Ans i L1
+(1 - bn)ﬁnﬂgL}]Hxn _pH + 2An+lﬂf||f(p)||
+2(1 + Aty L) (1 = bi) Byl 9 (p)

[0t = Tanpal] < B = 2bn)|[wn — Tanll + @0
= [1+2(1 = bp)ll|wn — Trn || + on
= [1+ wa]llzn — Taull + ¢n (16)

where w, = 2(1 —b,) and

on = 2[(1 = bn)BuptgL + Anyapip L{1
+(1 = by) Buptg L} 2n — Il + 2Xns1p05 || f(0)]]
F2(1 4 Aty L) (1 = ba) Buttgll g ()
< 2[(1 = b)) BuptgL 4+ Ansrpis L{1
+(1 — by) Brprg LM + 211 p6£ || £ () ]
21+ Aty L) (1 = ba) Buttgll g ()

From conditions (iii)- (v), it follows that »  ~  w, < oo and
>0 on < 00. Also it follows from Lemma 3 that lim ||z, — Tz, ||
n—oo

exists. Let lim ||z, — Tx,| = d and set u,, = z,, — Tx,, so that
n—oo

Upt1 = (1 —tp)uy + tyv, (17)
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where t, = 1 —a,, v, = (171an)(Ta:n —Tzp1) + (Ty, — Txy,) —
Antifis [ (Tyn)

HU”H < ( HTxn - T-TnJrlH + HTyn - T-TnH

1—ay,)

Fnpasip | f(Tyn) |
1

= T—a)

At | f(Tyn) — f(p) + f(D)]]
1

= T—a)

F X1t Llyn — 2l + Angrpes | f(0) |
1

<
— (1—ap)
+(1+ Mt D)|[yn = pll + Ancr g L f(0) ] (18)

Hxn - xn—f—lH + Hyn - In”

[z = Zniall + lyn = pll + [l2n — pl]

[0 = @npall + [l2n = pll

Substitute (8) and (15) into (18) to obtain

Jonll € a1 = )@ = b}, = T |
+(1 = a,)(1 - bn)ﬁnﬂgLHxn vl
+(1 - an)(l - bn)ﬁn:“’g”.g(p)”
+(1 - @n))‘nJrLUfL{l + (1 - bn)ﬁn“gL}Hxn - p”
+(1 = an)(1 = bp) Ansafiy Buttg Ll g () |
+(1 = an) Mngr sl £ ()]
+Hxn - pH + (1 + )‘n+1:qu)[{1 + (1 - bn)ﬁnUgL}Hxn - p”
(1 = b0) Buttglg() ] + Mg | £ ()]
< (2 =bn)llzn — Tan| + (1 = bn)Buprg Lz — pll

+(1 = bn) Butigllg(p) |

+An+1MfL{1 + (1 - bn)ﬁnﬂgL}Hxn _pH

(1 = bn) A1 Brptg LIl g ()| + Ansrpag [ f (D)

+Hxn - pH + (1 + )‘n+1:qu){1 + (1 - bn)ﬁnﬂgL}Hxn _pH
+(1+ M1y L) (1 = bn) Brptgllg(0) | + Mnsrser | f ()]
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bu)l|2n — Tapll + [1+ (1 = bn) Buptg Ll 20 — |
(1= bn) Bubtgllg() | + Anapp L1
(1 = b)) Buprg L} |lzn — pl|
+(1 = bn) A1t Buptg LIl g (D) + 220110041 f ()
(
(

I
+ o

+

+(1+ )‘n+1,UfL){1 + ( )ﬁn“gL}Hxn - p”
(L4 A1t L) (1 = 0n) Bupgllg(0) |
= (2= bp)[|zn — Tn | + 2[1 + Anjapy L]
X{l + (1 - bn)ﬁnﬂgL}Hxn - p”
217 [|f ()| 4 2[1 + Aa pap LI(1 = b)) Bupag L9 (p)
[vall < 1+ (1 =bn)][|zn — T || + Jn
= [1+ ¥)||wn — T + Vs (19)

where ¢, = (1 — b,) and

Un = 2[1 4+ Apyrpp L1 + (1 = bn) Bupig LY |20 — p|
2N 1 [ F ()| + 2[1 4+ Apgaper LI(1 — by) Bupigllg(p) ||

From conditions (iii)- (v), hm Yy, = hm ¥, = 0. Since hm |z, —

Tx,|| exists,
[onll < llzn = Txnll + ¢uD +@Q, D >0, Q > 0.

Therefore, limsup ||v,|| < d. Observe that using the method of

n—oo

Deng [9], we have:

ISt 13 (1= ) (T = Ty

+(Ty; — Taj) + Njraps f(Ty;)] |l
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< 1) (Tay =Tzl + Y NTy; — Tl + ) Ajapg ()l

j=1 j=1 j=1
<\ T2y = Tapall + D I1Ty; = Tl + Y Neaps | £ (Tyy)|
j=1 j=1
<N Txr = Tapall + D lys — 25l + D Mgl F(Ty)) |
j—l j=1
< | Twy — T +Z bj)lllw; — Tyl + Bjpgllg(Tzs)]]]
7j=1
+3 Nl f(Tys) |
j=1
< [lor — || + Z bi)llw; — Ta;| + Zﬁgugﬂg Ta;)ll
7j=1

+ Z Ajrapgl[ f(Ty;) ]

j=1
< oy = zpga || + K Z(l - b ) + g Ha Zﬁa
7=1
tupKs Yy N =W

j=1

Vn > 1 and for some W > 0. Hence {}_7_, t;u;}72, is bounded. It

now follows from Lemma 4 that lim [jv,|| = lim ||z, — Tz,| = 0,
n—oo n—oo

completing the proof of (b). From (3.3), we obtain that ||z, —p| <
|z, — pl| + & where &, = 0,M + 0,. Hence d(zp1, F(T)) <
d(z,, F(T)) + &, . Since > 7 &, < oo, it follows from Lemma
3 that lim d(z,, F(T)) exists. If z,, converges strongly to a fixed
n— o0
point p of T" then lim ||z, — p|| = 0. Since 0 < d(z,, F(T)) <
n—oo
|z, — pl|, we have liminf d(z,, F(T)) = 0. Conversely, suppose
n— o0

liminf d(x,, F(T)) = 0, then we have lim d(z,, F(T)) = 0. Thus
n—oo n— o0

for arbitrary € > 0, there exists a positive integer N; such that
d(x,, F(T)) < §,¥Yn > Np . Furthermore, > &, < oo im-
plies that there exists a positive integer Ny such that Z;’in § <
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$:¥n > Ny . Choose N = max{Ny, Ny}, then d(zy, F(T)) < §
and ) 77 v & < ¢ . It follows from Lemma 3 that Vn,m > N and
for all p € F(T), we have

[ = @l < [lzn = pll + l2m = pll

<llew—pll+ D &+llav—pl+ D &

<2ay —pl+2 Y
j=N+1

Taking infimum over all p € F(T), we obtain

|20 — @l < 2d(xy, F(T))+2 Y & <e, VYn,m>N.
J=N+1

Thus {z,}2° is Cauchy. Suppose lim x, = u, then since lim ||z, —
n—00 n—00

Tx,| =0, we have v € F(T'), completing the proof of Theorem 3.

Theorem 4: Let E be a real reflexive Banach space satisfying
Opial’s condition. T : E — FE a nonexpansive mapping with
F(T) # 0, under the hypothesis of Theorem 3, the iteration scheme
(6) converges weakly to a fixed point of 7.

Proof:
From Lemma 2, (I —T) is demiclosed at zero, and since the

lir}rﬂ |z, —p|| = 0 and E satisfies Opial’s condition, it follows from
n——+0o0

standard argument that {z,}>°, converges weakly to a fixed point
of T.

4. CONCLUDING REMARKS

Remark 1: It follows from Lemma 3 and Theorem 3 that under
the hypothesis of Theorem 3, {x,}2° ; converges strongly to a fixed
point p of T' if and only if {x, };2, has a subsequence {z,, }32, which
converges strongly to p . Thus, under the hypothesis of Theorem
3, if T' is in addition completely continuous or demicompact, then
{x,}>2 | converges strongly to a fixed point of T'. Furthermore, if T’
satisfies condition (A), then lirili{.lof d(z,, F(T)) = 0, so under the

conditions of Theorem 3, if T satisfies condition (A), then {z,}>°,
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converges strongly to a fixed point of T

Remark 2: Theorems 3 and 4 and Remark 1 extend the results
of [15] from Hilbert spaces to much more general Banach spaces as
considered here. Furthermore, the strong monotonicity condition
imposed on f and g in [15] is not required in our results.

Remark 3: If b, = 1 in (6), the results of Osilike, Isiogugu, and
Nwokoro [22] become special cases of our results.

Remark 4: Our results extend, generalize and complement the
results of Miao and Li [15], Wang [26] and others in literature.
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