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A GENERALIZATION OF

AFUWAPE-BARBASHIN-EZEILO PROBLEM FOR

CERTAIN THIRD ORDER NONLINEAR VIBRATIONS

XAVIER UDO-UTUN

ABSTRACT. Using frequency-domain results of Afuwape [2], a
theorem of Corduneanu on abstract Volterra operators [4] we
have given conditions under which the third order system

μ′(x)ẋ = y − x
αẏ = g(z − y)
ż = f(y − x)− gy

has a periodic solution - where the nonlinearity f satisfies a
sector condition, α and g are constants. Our result constitutes
an application of [4] (pp. 124) and a generalization of [2].

Keywords and phrases: Abstract Volterra operators, Niemytzki
operators, feedback control equation, sector condition, frequency
domain criteria
2010 Mathematical Subject Classification: 34H05, 45G10, 47H30,
93B52, 93C15

1. INTRODUCTION

The system

μ′(x)ẋ = y − x

αẏ = g(z − y)

ż = (1− g)y − x

which was studied by K. O. Friedrichs [7] in the investigation of
nonlinear vibrations was recently investigated by Afuwape [2] using
frequency domain method to prove the existence of a non-trivial pe-
riodic solution under the following restrictions: α, g are constants
and μ is differentiable function with μ(0) = 0, 0 < g < 1 and
gη[(1 − g)η − 1] + α(η − 1) > 0 for η = μ′(0). The Afuwape’s
[2] frequency domain considerations for the K. O. Friedrichs’ stud-
ies constitute further generalization and extension of Afuwape’s [1]
earlier generalization on the Barbashin-Ezeilo problem [6]. It is
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worth mentioning that in a very recent development, Afuwape et
al [3] considered and introduce the iterative problem of approxi-
mating cylcles of the second kind for the Barbashin-Ezeilo problem
in Hilbert spaces. In this work we modify the right hand side of
the state system by replacing the term y − x with the nonlinearity
f = f(y−x). We note that if f is the identity function, we shall ob-
tain the earlier result of Afuwape [2]. The main aim of this research
is to use the frequency-domain method, a result of Corduneanu ([4]
pp. 119 - 125) and the following transformation in Afuwape [2]:

σ = μ(x), z1 = y, z2 = z (1)

to prove the existence of non-trivial periodic solution for the system
below:

μ′(x)ẋ = y − x
αẏ = g(z − y)
ż = f(y − x)− gy

(2)

where the nonlinearity f satisfies the sector condition

0 <
f(ξ1)− f(ξ2)

ξ1 − ξ2
≤ k, ξ1 �= ξ2, f(0) = 0 (3)

for all ξ1, ξ2 ∈ R.
Observe that on application of (1) to (2) we obtain the system

ż1 = − g
α
z1 +

g
α
z2

ż2 = −gz1 + f(σ̇)
σ̇ = z2 − ϕ(σ), ϕ(σ) = μ−1(σ).

(4)

Next, let Lloc(R+,R) denote the space of locally integrable func-
tions defined on R+ and Lloc([0, τ),R) denote the space of locally
integrable functions defined on [o, τ), τ ≤ ∞.
Definition 1: An operator V : C([0, τ),R) −→ Cloc([0, τ),R) is
called an abstract Volterra operator if for any x, y ∈ C([0, τ),R)
such that x(s) = y(s) for s ∈ [t0, t], t0 < t ≤ τ, then (Vx)(t) =
(Vy)(t).

Apart from the classical Volterra integral operators a good and
more general example of abstract Volterra operators are the Niemytzki
operators defined below:
Definition 2: Let F = F (t, x(t)) satisfy the Caratheodory condi-
tions:
(C1) For a fixed x the function g is continuous in t.
(C2) For a fixed t the function g is measurable in x.
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Then the operator T given by (Tx)(t) = F (t, x(t)) is called Niemytzki
operator.

Abstract Volterra operators have been studied by various authors
some of whom are Tychonoff [11], Tonelli [10] and Corduneanu [4]
in the investigations of certain evolutionary processes dependent on
heredity like feedback control equations in automatic control the-
ory. In [4, 5] Corduneanu have treated many properties of abstract
Volterra equations including properties of Niemytzki operators.

2. PRELIMINARY

In the sequel we shall make use of the following assumptions (see,
for example, [4]):
(A1) T is a continuous Volterra operator from the space C([0, τ),R)
into the Banach space Cloc([0, τ),R)
(A2) There exists two functions B1, B2 : [0, τ) −→ R such that
B1 is continuous, positive and nondecreasing while B2 is a locally
integrable and non-negative function such that

x ∈ Cloc([0, τ),R) and |x(t)| ≤ B1(t) t ∈ [0, τ) (5)

implies

|(Tx)(t)| ≤ B2(t) a.e on [0, τ) (6)

where

B1(t)− B1(0) ≥
∫ t

0

B2(s)ds. (7)

Observe that the system (4) is in the form

ż = Az + bf(σ̇)
σ̇ = c∗z + ρϕ(σ),

(8)

with

A =

( −g
α

g
α−g 0

)
, b =

(
0
1

)
, c =

(
1
0

)
, ρ = −1.

The system (8) yields the integro-differential equation

σ̇(t) = c∗Φ(t)z(0) + ρϕ(σ(t)) + c∗
∫ t

0

Φ(t− s)bf(σ̇(s))ds (9)

where Φ is some relevant fundamental matrix of the correspond-
ing homogeneous problem with transfer function W (p). Since the

transfer function W (p) = c∗(A − pI)−1b = −g
αp2+gp+g2

= m(p)
n(p)

is
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nondegenerate the form (8) or (9) allows us to apply the following
theorems of Corduneanu and Afuwape:

Theorem 1. (Corduneanu [4]) Let x, F ∈ R, t ∈ [0, τ), and Φ(t−s)
is a matrix-valued kernel defined on D = {(t, s) | 0 ≤ s ≤ t < τ}
and moreover F satisfies

‖F (t, x, y)‖ ≤ α(t)|x|+ β|y|+ γ(t) (10)

whrer α, β, γ are nonnegative locally integrable functions on [0, τ).
Suppose that the operator T : C([0, τ),R) −→ Cloc([0, τ),R) satis-
fies conditions (A1) and (A2) and is given by

(Tx)(t) = F

(
t, x(t),

∫ t

0

Φ(t− s)x(s)ds

)
. (11)

Then equation (9) i.e (4) has a solution x(t) ∈ Cloc([0, τ),R) such
that (5) holds provided |x0| < A(0).

Theorem 2. (Afuwape [2] pp. 7)
Suppose in the system

ż1 = − g
α
z1 +

g
α
z2

ż2 = (1− g)z1 + ϕ(σ)
σ̇ = z1 − ϕ(σ), ϕ(σ) = μ−1(σ)

(12)

the folowing hold

(1) 0 < α < (2− g)g and 0 < g < 1;

(2) there exists a number λ such that ϕ′(0) < λ <
g+
√

g2−4α(g2−g)

2α

and αλ2 − gλ+ (g2 − g) < 0;
(3) if η = ϕ′(0) > 0 with ϕ(0) = 0 and gη[−gη1]+α(η−1) > 0.

Then the system (12) i.e (4) has a non-trivial periodic solution.

Remark 1. Observe that the system (12) corresponds to the integro-
differential equation equation

σ̇(t) = Φ(t) + ρϕ(σ(t)) + c∗
∫ t

0

Φ(t− s)bϕ(σ(s))ds (13)

which is, obviously, a generalization of the integro-differential equa-
tion corresponding to the system considered in [1]. Therefore, our
result for (9) modifies, extends (13) and so modifies and generalizes
the results in [1] and [2].

3. MAIN RESULTS

Our main result is an application of Theorem 1 and Theorem 2 to
the system (4) and its proof is a consequence of the Lemma below:
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Lemma 1. Let f satisfy the sector condition (3) and a Lipschitz
condition with Lipschitz constant λ > 1. Suppose σ(t) is defined by
system (4), then there exist a function u(t) and a real numbers k1
such that σ(t) < u(t) ≤ ek1t.

Proof: The system (4) is equivalent to the integro-differential equa-
tion (9). So, clearly,

|σ̇(t)| ≤ λ|σ(t)|+ k

∣∣∣∣c∗
∫ t

0

Φ(t− s)bσ̇(s)ds

∣∣∣∣+ |c∗Φ(t)z(0)|

≤
∫ t

0

λ|σ̇(t)|+ k |c∗Φ(t− s)b| |σ̇(s)| ds+ |c∗Φ(t)z(0)|

=

∫ t

0

[λ+ k |c∗Φ(t− s)b]| |σ̇(s)| ds+ γ(t)

where γ(t) = |c∗Φ(t)z(0)|. On application of Gronwall inequality
to

|σ̇(t)| ≤
∫ t

0

[λ+ k |c∗Φ(t− s)b]| |σ̇(s)| ds+ γ(t)

we obtain the inequality

|σ̇(t)| ≤ qe
∫ t
0
λ+k|c∗Φ(t−s)b|ds + φ(γ(t))

for some function φ. So we can choose k1 and u(t) in such a way
that

u(t) = qe
∫ t
0
λ+k|c∗Φ(t−s)b|ds + φ(γ(t)) ≤ ek1t (14)

which yields |σ̇(t)| ≤ u(t) ≤ ek1t.
Observing that since λ > 1 we must have |σ(t)| < λ|σ| and so

|σ(t)| ≤ |σ̇(t)| which implies the desired result |σ(t)| < u(t) ≤ ek1t.
End of proof.

Theorem 3. Suppose in the system (4) the following hold
(a) 0 < α < (1− g)g, 0 < g < 1
(b) There exists λ > 1 such that

ϕ′(σ) < λ <
g +

√
g2 − 4αg2

2α
and α ≤ 1

4

(c) If η = ϕ′(0) > 0 with ϕ(0) = 0 and gη[η(1−g)−1]+α(η−1) > 0;
then the system (4) has a periodic solution.

Proof: As mentioned above the system (4) is equivalent to the
integro-differential equation (9) and since Theorem 1 conforms with
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(9) we shall use Theorem 1 to prove existence. Also, since Theo-
rem 2 conforms with (4) we shall, finally, use Theorem 2 to prove
periodicity. Observe That the integro-differential equation (9) i.e

σ̇(t) = ϕ(σ(t)) + c∗
∫ t

0

Φ(t− s)bf(σ̇(s))ds+ c∗Φ(t)z(0)

induces an operator T : C([0, τ),R) −→ Cloc([0, τ),R) for τ ≤ ∞
given by

(Tx)(t) = F

(
t, x(t), c∗

∫ t

0

Φ(t− s)bf(ẋ(s))ds

)
(15)

where

F

(
t, x(t), c∗

∫ t

0

Φ(t− s)bf(ẋ(s))ds

)
= ϕ(x(t))

+c∗
∫ t

0

Φ(t− s)bf(ẋ(s))ds+ c∗Φ(t)z(0) (16)

Clearly, F is continuous in t for fixed ϕ(x(t))+c∗
∫ t

0
Φ(t−s)bf(ẋ(s))ds

and measurable in ϕ(x(t)) + c∗
∫ t

0
Φ(t − s)bf(ẋ(s))ds for fixed t

which implies that it satisfies the Caratheodory conditions (C1)
and (C2) so that T is a Niemytzki operator. This means that the
hypothesis (A1) of Theorem 1 is satisfied since Nimytzki operators
are abstract Volterra operators.
In order to construct B1 and B2 that verify (5), (6) and (7) in

hypothesis (A2), we put B1 = ek1t for some k1 spcified in the proof
of Lemma 1. Observe that integrating both sides of (9) yields

∫ t

0

(Tx(s))(t)ds

∣∣∣∣
t=0

= 0 ∀ x ∈ C([0, τ),R). (17)

Further, for each x ∈ C([0, τ)R) (τ ≤ ∞) - making use of the
sector condition (3) and taking into considerations the fact that

the condition ϕ′(x) < λ <
g+
√

g2−4αg2

2α
yields a Lipschitz condition
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|ϕ(x(t))| ≤ λ|x(t)| - we must have:

|(Tx)(t)| ≤ |ϕ(σ(t))| +
∣∣∣∣c∗

∫ t

0
Φ(t− s)bf(ẋ(s))ds

∣∣∣∣+ |c∗Φ(t)z(0)|

≤ λ|x(t)|+ k

∣∣∣∣c∗
∫ t

0
Φ(t− s)bẋ(s)ds

∣∣∣∣+ |c∗Φ(t)z(0)|

≤ λ|x(t)|+
(
k

∫ t

0
|c∗Φ(t− s)b| ds

)(∫ t

0
|ẋ(s)|ds

)

+ |c∗Φ(t)z(0)| (18)

≤ λ

(∫ t

0
|ẋ(t)|ds

)
+

(
k

∫ t

0
|c∗Φ(t− s)b| ds

)(∫ t

0
|ẋ(s)|ds

)

+ |c∗Φ(t)z(0)| + λ|x(0)|
≤ λek1(t) +

(
k

∫ t

0
|c∗Φ(t− s)b| ds

)
ek1t + γ(t).

= λB1(t) +B1(t)

(
k

∫ t

0
|c∗Φ(t− s)b| ds

)
+ γ(t). (19)

From (19), putting B2(t) = λB1(t)+
(
k
∫ t

0
|c∗Φ(t− s)bB1(s)| ds

)
+

‖c∗Φ(t)z(0)‖ it is clear that if |x(t)| ≤ |B1(t)| then |(Tx)(t)| ≤
|B2(t)| verifying (5) and (6). Also, from (14) we obtain B1(t) −
B1(0) ≥

∫ t

0
B2(s)dswhich verifies (7). Since, by (17) σ(0) = 0, σ(0) <

B1(0) and by (18) |σ(t)| ≤ |B1(t)| =⇒ |(Tσ)(t)| = |σ(t)| ≤ |B2(t)|
it is clear that σ ∈ Cloc([0, τ),R), τ ≤ ∞. This proves existence of
a solution.
We shall now apply Theorem 2 to prove periodicity of solution

which invloves showing that conditions (a), (b), and (c) of Theorem
2 are satisfied. Condition (a) is trivially satisfied since the hypoth-
esis 0 < α < (1−g)g implies 0 < α < (2−g)g. We shall accomplish
the remainig part of the proof by comparing the solution of (9) to
a majoring solution to the Afuwape-Friedrich-type problem with
transfer function given by −W (p) = c∗(A− pI)−1b = g

αp2+gp+g2
.

The system (1) studied in [1] corresponds to the integro-differential
equation

σ̇(t) = ϕ(σ(t))− c∗
∫ t

0

em2(t−s)bϕ(σ(s))ds+ c∗ξ(t)z(0) (20)

with m2 =
−(g+

√
g2+4α(g−g2))

2α
, while the system (4) studied in this

work corresponds to (9) with c∗Φ(t − s)b = ep2(t−s) where p2 =
−g(1+

√
1−4α)

2α
. Our method of proof consists in showing that (9) is
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dominated by a solution of the Afuwape-type problem (20) which
is periodic by Theorem 2.
Observe that c∗Φ(t − s)b = ep2(t−s) is a bounded and decreasing

function for all 0 ≤ s ≤ t ≤ τ. Next, from above and using the fact
that by (17) σ(0) = 0 (9) yields

σ̇(t) = ϕ(σ(t)) +

∫ t

0

ep2(t−s)f( ˙σ(s))ds+ c∗ep2tz(0)

≤ ϕ(σ(t)) + k

∫ t

0

|ep2(t−s)|| ˙σ(s)|ds+ c∗ep2tz(0)

≤ ϕ(σ(t)) + |σ(t)| − k

λ

∫ t

0

|ep2(t−s)||ϕ(σ(s))|ds+ c∗ep2tz(0).

Now, by Lemma 1 |σ(t)| < |v(t)| where v(t) is the bounded solution
of the Afuwape-Friedrichs-type problem below:

v̇(t) = ϕ(v(t))− k

λ

∫ t

0

|ep2(t−s)||ϕ(v(s))|ds+ ξ(t)z(0). (21)

where ξ(t) = c∗etz(0) + sup|σ(t)|.
We shall now show the problem (21) satisfies coditions (b) and (c)

of Theorem 2 based on our hypothesis. To verify condition (b)
in Theorem 2 we observe that our hypothesis α ≤ 1

4
ensures the

solvability of the inequality αλ2− gλ+ g2 which corresponds to the

inequality αλ2 − gλ+ (g2 − g) < 0 for ϕ′(σ) < λ <
g+
√

g2−4α(g2−g)

2α
in condition (b) of Theorem 2. Therefore condition(b) is verified.
Condition (c) of Theorem 2 follows directly by replacing (1− g) by
g. Therefore the system (4) has a periodic solution. This completes
the proof of Theorem 3.

4. CONCLUDING REMARKS

It is of significance to observe that the estimates αλ2−gλ+(g2−g) <

0 and ϕ′(σ) < λ <
g+
√

g2−4α(g2−g)

2α
play vital roles in sovability of the

ABE problem using operator theoretic approach. Similar estimates
were invaluable in iterative construction of approximate cycles of
the second kind in [3] for the ABE problem. It is recommended that
these estimates be used to decide when the problem is solvable in
Hilbert or Banach spaces. This would help to extend the results
of Afuwape et al [3] and the ABE problem using operator analysis
of the integro-differential equation (9) as a functional equation on
these spaces.
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