ON SPAN OF FLAG MANIFOLDS $\mathbb{R} F(1,1,1, n-3)$

DEBORAH O. A. AJAYI

Abstract

We obtain bounds for the span of the incomplete flag manifold of length $3, \mathbb{R} F(1,1,1, n-3)$, $n \geq 4$ using suitable fiberings where $\mathbb{R} F(1,1,1, n-3)$ is either a total space or base space. We obtain exact values for $n=5$ and 6 using nonvanishing Stiefel-Whitney classes.

Keywords and phrases: real flag manifold, span, vector field problem, Stiefel-Whitney classes, fiber bundles 2010 Mathematical Subject Classification: Primary: 57R25; Secondary 57R20, 55R10

1. INTRODUCTION AND STATEMENT OF THE RESULT

For vector bundle η over a base space X, span of η, $(\operatorname{span}(\eta))$ is the largest integer r such that η admits r everywhere linearly independent sections. When X is a smooth manifold $\operatorname{span}(X)$ is defined to be the span of its tangent bundle, $\tau(X)$. The span is an important geometric characteristic of manifolds whose study has attracted some attention. Much is not known about the span of flag manifold $\mathbb{R} F(\underbrace{1,1, \ldots 1}_{k}, n-k)[9]$.
For $\mathbb{R} F(1, n-1)$ which is the real projective space $\mathbb{R} P^{n-1}$, the span is known to coincide with the span of the $n-1$-sphere, S^{n-1}, that is,

$$
\operatorname{span} \mathbb{R} P^{n-1}=\operatorname{span} S^{n-1}=\rho(n)
$$

(cf.[8]) where $\rho(n)=2^{c}+8 d-1$ if n is expressed as $(2 a+1) 2^{c+4 d}$, $a, c, d \geq 0, c \leq 3$.
In the case of $\mathbb{R} F(1,1, n-2)$, there are estimates of its span but the value has been determined only in the following cases: all n even except $n \equiv 0 \bmod 16$ and for n odd, only when $n=5$ and $n=2^{t}+3, t \geq 3$ (cf. [5, 7]).

The manifold $\mathbb{R} F(1,1,1, n-3)$ is a smooth connected compact homogeneous space of dimension $3 n-6$. This manifold is nonorientable when n is odd. From the classical theorem of $\operatorname{Hopf}([12])$,

[^0]we have that $\mathbb{R} F(1,1,1, n-3)$ has positive span since its Euler characteristic $\chi(\mathbb{R} F(1,1,1, n-3))=0(c f[8])$.
Let $\nu_{1}, \nu_{2}, \nu_{3}$ be the canonical line bundles, ν_{4} the $n-3$ bundle, over $\mathbb{R} F(1,1,1, n-3)$, and $x=w_{1}\left(\nu_{1}\right), y=w_{1}\left(\nu_{2}\right), z=w_{1}\left(\nu_{3}\right)$ be the Stiefel-Whitney classes of $\nu_{1}, \nu_{2}, \nu_{3}$ respectively. Let $\sigma_{1}=$ $x+y+z, \sigma_{2}=x y+y z+x z, \sigma_{3}=x y z$.
The \mathbb{Z}_{2}-cohomology algebra, $H^{*}\left(\mathbb{R} F(1,1,1, n-3), \mathbb{Z}_{2}\right)$ can be identified with $\mathbb{Z}_{2}[x, y, z]$ subject to the relations $\bar{\sigma}_{n-2}=\bar{\sigma}_{n-1}=$ $\bar{\sigma}_{n}=0$ where $\bar{\sigma}_{i}=\bar{\sigma}_{i}(x, y, z)$ is the i-th complete symmetric function in x, y and z so that $x^{n}=0=y^{n}=z^{n}[4]$.

The tangent bundle of $\mathbb{R} F(1,1,1, n-3), \tau(\mathbb{R} F(1,1,1, n-3))$ can be expressed as

$$
\begin{equation*}
\tau(\mathbb{R} F(1,1,1, n-3)) \cong \oplus_{1 \leq i, j \leq 4} \nu_{i} \otimes \nu_{j} \tag{1}
\end{equation*}
$$

A manifold closely related to $\mathbb{R} F(1,1,1, n-3)$ is the Grassmann manifold of 3 -planes in $\mathbb{R}^{n}, \mathbb{R} F(3, n-3)$. The manifold $\mathbb{R} F(1,1,1, n-3)$ naturally fibers over $\mathbb{R} F(3, n-3)$. The projection

$$
\begin{equation*}
\mathbb{R} F(1,1,1, n-3) \longrightarrow \mathbb{R} F(3, n-3) \tag{2}
\end{equation*}
$$

is a smooth fibration with fibre, the parallelizabe flag $\mathbb{R} F(1,1,1)$. A few results on the span of $\mathbb{R} F(3, n-3)$ is known (cf.[3]).

Another manifold related to $\mathbb{R} F(1,1,1, n-3)$ is the projective Stiefel manifold, $X_{n, 3}$. The projection map

$$
\begin{equation*}
X_{n, 3} \longrightarrow \mathbb{R} F(1,1,1, n-3) \tag{3}
\end{equation*}
$$

is a principal fibration [10], Korbas and Zvengrowski [9] gave some results on $\operatorname{span} X_{n, 3}$.
The only known bound of $\operatorname{span} \mathbb{R} F(1,1,1, n-3)$ is the lower bound given for a general flag manifold by Korbaš[7] and the only known value is that of $n=4$, the only parallelizable flag of length 3 , $\mathbb{R} F(1,1,1,1)$, whose span is 6 .
The aim of this paper is to give bounds for the span of $\mathbb{R} F(1,1,1$, $n-3)$ using fibre bundles with $\mathbb{R} F(1,1,1, n-3)$ as total space and $\mathbb{R} F(3, n-3)$ and $\mathbb{R} F(1,1, n-2)$ as base spaces, respectively; and fibre bundles with $X_{n, 3}$ as total space and $\mathbb{R} F(1,1,1, n-3)$ as base space. In particular, we determine the span for $n=5,6$ using nonvanishing Stiefel- Whitney classes of $\mathbb{R} F(1,1,1,2)$ and $\mathbb{R} F(1,1,1,3)$ respectively. Among others, we give the following bounds:
For n odd:

$$
\begin{gathered}
4 \leq \operatorname{span} \mathbb{R} F\left(1,1,1,2^{m}-2\right) \leq 2^{m+1}-3, \quad m \geq 3 \\
\operatorname{span} \mathbb{R} F(1,1,1, n-3) \geq 3
\end{gathered}
$$

For n even:

$$
\operatorname{span} \mathbb{R} F\left(1,1,1,2^{m}-5\right) \leq 2^{m+1}-6, \quad m \geq 3
$$

We also give the following exact values:

$$
\begin{aligned}
& \operatorname{span} \mathbb{R} F(1,1,1,2)=3 \\
& \operatorname{span} \mathbb{R} F(1,1,1,3)=7
\end{aligned}
$$

2. PROOF OF RESULTS

We need the following results,
Theorem 1:[8] If $F \longrightarrow E \longrightarrow B$ is a smooth fibre bundle, then span $E \geq \operatorname{span} B$.

The smooth fibrations

$$
\mathbb{R} F(1,1,1, n-3) \longrightarrow \mathbb{R} F(3, n-3)
$$

and

$$
\mathbb{R} F(1,1,1, n-3) \longrightarrow \mathbb{R} F(1,1, n-2)
$$

yield the following:

Proposition 1:

$$
\begin{gathered}
\text { span } \mathbb{R} F(1,1,1, n-3) \geq \text { span } \mathbb{R} F(3, n-3) \\
\text { span } \mathbb{R} F(1,1,1, n-3) \geq \operatorname{span} \mathbb{R} F(1,1, n-2)
\end{gathered}
$$

By Korbas [6], we have the following lower bound results:
Proposition 2: span $\mathbb{R} F(1,1,1, n-3) \geq \rho(n)$
Applying Propositions 1 and 2 we have the following lower bounds:

Proposition 3:

$$
\text { span } \mathbb{R} F(1,1,1, n-3) \geq\left\{\begin{array}{lll}
1 & n \equiv 2 & \bmod 4 ; \text { or } n \text { odd } \\
3 & n \equiv 4 & \bmod 8 \\
7 & n \equiv 8 & \bmod 16 \\
8 & n \equiv 16 & \bmod 32 \\
4 & n=2^{m}+1, m \geq 3
\end{array}\right.
$$

Proof: For $n \equiv 2 \bmod 4, n \equiv 4 \bmod 8$ and $n \equiv 8 \bmod 16$, the result follows from Ilori and Ajayi's results on span of $\mathbb{R} F(1,1, n-2)$ [5] and Proposition 1. Alternatively, if n is odd then $\rho(n)=1$;
if $n \equiv 2 \bmod 4$ then $n=2(1+2 k)$ implies $a=k, c=1, d=0$ and $\rho(n)=1$;
if $n \equiv 4 \bmod 8$ then $n=2^{2}(1+2 k)$ this implies $a=k, c=2, d=$ 0 and $\rho(n)=3$;
if $n \equiv 8 \bmod 16$ then $n=2^{3}(1+2 k)$ this implies $a=k, c=$ $3, d=0$ and $\rho(n)=7$;
if $n \equiv 16 \bmod 32$ then $n=2^{4}(1+2 k)$ this implies $a=k, c=$ $0, d=1$ and $\rho(n)=8$.
Using Proposition 2 we have the results.
The proof of the last inequality follows from span $\mathbb{R} F\left(1,1,2^{m}-\right.$ $1) \geq 4$ (cf. [7]) and Proposition 1.

From [9], the span of $X_{n, 3}$ is related to the span of $\mathbb{R} F(1,1,1, n-3)$ as follows:

Proposition 4: span $X_{n, 3} \geq$ span $\mathbb{R} F(1,1,1, n-3)$.
Results on the span of $X_{n, 3}$ (cf.[9]) yield the following upper bounds

Proposition 5:

$$
\begin{aligned}
& \text { span } \mathbb{R} F\left(1,1,1,2^{m}-5\right) \leq 2^{m+1}-6 ; m \geq 3 \\
& \text { span } \mathbb{R} F\left(1,1,1,2^{m}-2\right) \leq 2^{m+1}-3 ; m \geq 2
\end{aligned}
$$

To obtain lower bounds for span of manifolds, the knowledge of Stiefel-Whitney classes have proved important because of the following:

Proposition 6: [12] If $w_{k}(M) \neq 0$, then span $M \leq m-k$ where m is the dimension of M.

Results on Stiefel-Whitney classes of $\mathbb{R} F(1,1,1, n-3)$ in [1] yield,
Proposition 7: If n is even, then $w_{3}=\sigma_{1} \sigma_{2}+\sigma_{3} \neq 0$; if $n \equiv 2,4,6 \bmod 8$ then $w_{4} \neq 0$; if $n \equiv 2,6 \bmod 8$ then $w_{5}=\sigma^{2}\left(\sigma_{1} \sigma_{2}+\sigma_{3}\right) \neq 0$; if $n \equiv 5 \bmod 8$ then $w_{6}=\sigma_{1} \sigma_{2} \sigma_{3} \neq 0$; and if $n \equiv 2 \bmod 8$ then $w_{7}=\sigma_{1}^{4}\left(\sigma_{1} \sigma_{2}+\sigma_{3}\right) \neq 0$.

Proposition 7 together with Proposition 6 yield:

Corollary 1: If $n \equiv 2 \bmod 8$ then span $\mathbb{R} F(1,1,1, n-3) \leq$ $3 n-13$, if $n \equiv 6 \bmod 8$ then span $\mathbb{R} F(1,1,1, n-3) \leq 3 n-11$, if $n \equiv 5 \bmod 8$ then span $\mathbb{R} F(1,1,1, n-3) \leq 3 n-12$ if $n \equiv 4$ $\bmod 8$ then span $\mathbb{R} F(1,1,1, n-3) \leq 3 n-10$ and if $n \equiv 0 \bmod 8$ then span $\mathbb{R} F(1,1,1, n-3) \leq 3 n-9$.

Theorem 2:

$$
\begin{aligned}
& \operatorname{span} \mathbb{R} F(1,1,1,2)=3 \\
& \operatorname{span} \mathbb{R} F(1,1,1,3)=7
\end{aligned}
$$

Proof:

$$
\operatorname{span} \mathbb{R} F(1,1,3)=3 \Rightarrow \operatorname{span} \mathbb{R} F(1,1,1,2) \geq 3
$$

and

$$
\operatorname{span} X_{5,3}=5 \Rightarrow \operatorname{span} \mathbb{R} F(1,1,1, n-3) \leq 5
$$

i.e.

$$
3 \leq \operatorname{span} \mathbb{R} F(1,1,1,2) \leq 5
$$

From [1], for $n=5, w_{6}(\mathbb{R} F(1,1,1,2))=\sigma_{1} \sigma_{2} \sigma_{3} \neq 0$. Since $\operatorname{dim} \mathbb{R} F(1,1,1,2)=9$, and using Proposition 5 we have span $\mathbb{R} F(1,1,1,2) \leq 3$. Hence the result.

$$
\text { span } \mathbb{R} F(3,3)=7 \text { implies span } \mathbb{R F}(1,1,1,3) \geq 7
$$

and

$$
\operatorname{span} X_{6,3}=10 \Rightarrow \operatorname{span} \mathbb{R} F(1,1,1,3) \leq 10
$$

i.e.

$$
7 \leq \operatorname{span} \mathbb{R} F(1,1,1,3) \leq 10
$$

We know by [1], that $w_{5}=\sigma_{1}^{2}\left(\sigma_{1} \sigma_{2}+\sigma_{3}\right)$ for $n \equiv 6(8)$ and $\sigma_{1} \sigma_{2}+$ $\sigma_{3} \neq 0$ and $\sigma_{1}^{2} \neq 0$. Therefore, $w_{5} \neq 0$ and $\operatorname{span} \mathbb{R} F(1,1,1,3) \leq$ $12-5=7$ gives the result.

References

[1] D. O. A. Ajayi: Stiefel-Whitney classes of the real flag manifolds $F_{3}(n)$ J. Nig. Math. Soc. 20 (2001), 59-64
[2] D. O. Ajayi and S. A. Ilori: Stiefel-Whitney classes of the flag manifold $\mathbb{R} F(1,1, n-2)$. Czechoslovak Math. J. 52 (127) (2002), 17 - 21.
[3] V. Bartik and J. Korbaš: Stiefel-Whitney Characteristic classes and parallelizability of Grassmann manifolds. Rend. Circ. Mat.Palermo (II) 33 (Suppl. 6) 19-29 (1984)
[4] A. Borel: La cohomologie mod 2 de certains espaces homogénes. Comment. Math. Helvetici 27 (1953), 165-197.
[5] S. A. Ilori and D.O. Ajayi: Vector fields on the real flag manifolds $\mathbb{R} F(1,1, n-2)$. Math. Slovaka 58 (2008), 127-129.
[6] J. Korbaš: Vector fields on real flag manifolds. Ann. Global Anal. Geom. 3 (1985), 173 -184.
[7] J. Korbaš: On the vector field problem $O(n) / O(1) \times O(1) \times O(n-2)$ Acta Math. Hungar. 105 (1-2) (2004), 129-137
[8] J. Korbaš and P. Zvengrowski: The vector field problem: A survey with emphasis on specific manifolds. Expo. Math. 12 (1994), 1-30.
[9] J. Korbaš and P. Zvengrowski: The vector field problen for Projective Stiefel Manifolds. Boletin de la Sociedad Matematica Mexicana 3a. Serie 15 (2) (2009) 219-234
[10] K. Y. Lam: A formula for the tangent bundle of flag manifolds and related maifolds Trans. Amer. Soc. 213 (1975), 305-314
[11] J. Milnor and J. Stasheff: Characteristic Classes. Annals of Mathematics Studies vol 76, Princeton Univ. Press, Princeton, 1974
[12] E. Thomas: Vector fields on manifolds. Bull. Amer. Math. Soc. 75 (1969), 643-683.
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IBADAN, IBADAN, NIGERIA
E-mail address: olayide.ajayi@ui.edu.ng

[^0]: Received by the editors July 1 2013; Accepted: July 18, 2013

