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ON SPAN OF FLAG MANIFOLDS RF (1, 1, 1, n − 3)

DEBORAH O. A. AJAYI

ABSTRACT. We obtain bounds for the span of the incomplete
flag manifold of length 3, RF (1, 1, 1, n−3), n ≥ 4 using suitable
fiberings where RF (1, 1, 1, n− 3) is either a total space or base
space. We obtain exact values for n = 5 and 6 using non-
vanishing Stiefel-Whitney classes.
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1. INTRODUCTION AND STATEMENT OF THE RESULT

For vector bundle η over a base space X , span of η, (span(η))
is the largest integer r such that η admits r everywhere linearly
independent sections. When X is a smooth manifold span(X) is
defined to be the span of its tangent bundle, τ(X). The span is an
important geometric characteristic of manifolds whose study has
attracted some attention. Much is not known about the span of
flag manifold RF (1, 1, ...1︸ ︷︷ ︸

k

, n− k) [9].

For RF (1, n − 1) which is the real projective space RP n−1, the
span is known to coincide with the span of the n− 1-sphere, Sn−1,
that is,

spanRP n−1 = spanSn−1 = ρ(n)

(cf.[8]) where ρ(n) = 2c + 8d− 1 if n is expressed as (2a+ 1)2c+4d ,
a, c, d ≥ 0, c ≤ 3.
In the case of RF (1, 1, n− 2), there are estimates of its span but

the value has been determined only in the following cases: all n
even except n ≡ 0 mod 16 and for n odd, only when n = 5 and
n = 2t + 3, t ≥ 3 (cf. [5, 7]).
The manifold RF (1, 1, 1, n − 3) is a smooth connected compact

homogeneous space of dimension 3n − 6. This manifold is non-
orientable when n is odd. From the classical theorem of Hopf ([12]),
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we have that RF (1, 1, 1, n − 3) has positive span since its Euler
characteristic χ(RF (1, 1, 1, n− 3)) = 0 (cf [8]).
Let ν1, ν2, ν3 be the canonical line bundles, ν4 the n − 3 bundle,

over RF (1, 1, 1, n − 3), and x = w1(ν1), y = w1(ν2), z = w1(ν3)
be the Stiefel-Whitney classes of ν1, ν2, ν3 respectively. Let σ1 =
x+ y + z, σ2 = xy + yz + xz, σ3 = xyz.
The Z2-cohomology algebra, H∗(RF (1, 1, 1, n − 3),Z2) can be

identified with Z2[x, y, z] subject to the relations σ̄n−2 = σ̄n−1 =
σ̄n = 0 where σ̄i = σ̄i(x, y, z) is the i-th complete symmetric func-
tion in x, y and z so that xn = 0 = yn = zn [4].
The tangent bundle of RF (1, 1, 1, n−3), τ(RF (1, 1, 1, n−3)) can

be expressed as

τ(RF (1, 1, 1, n− 3)) ∼= ⊕1≤i,j≤4νi ⊗ νj. (1)

A manifold closely related to RF (1, 1, 1, n − 3) is the Grass-
mann manifold of 3-planes in R

n, RF (3, n − 3). The manifold
RF (1, 1, 1, n−3) naturally fibers over RF (3, n−3). The projection

RF (1, 1, 1, n− 3) −→ RF (3, n− 3) (2)

is a smooth fibration with fibre, the parallelizabe flag RF (1, 1, 1).
A few results on the span of RF (3, n− 3) is known (cf.[3]).
Another manifold related to RF (1, 1, 1, n − 3) is the projective

Stiefel manifold, Xn,3. The projection map

Xn,3 −→ RF (1, 1, 1, n− 3) (3)

is a principal fibration [10], Korbas and Zvengrowski [9] gave some
results on spanXn,3.
The only known bound of spanRF (1, 1, 1, n−3) is the lower bound

given for a general flag manifold by Korbaš[7] and the only known
value is that of n = 4, the only parallelizable flag of length 3,
RF (1, 1, 1, 1), whose span is 6.
The aim of this paper is to give bounds for the span of RF (1, 1, 1,

n−3) using fibre bundles with RF (1, 1, 1, n−3) as total space and
RF (3, n− 3) and RF (1, 1, n− 2) as base spaces, respectively; and
fibre bundles with Xn,3 as total space and RF (1, 1, 1, n−3) as base
space. In particular, we determine the span for n = 5, 6 using non-
vanishing Stiefel- Whitney classes of RF (1, 1, 1, 2) and RF (1, 1, 1, 3)
respectively. Among others, we give the following bounds:
For n odd:

4 ≤ span RF (1, 1, 1, 2m − 2) ≤ 2m+1 − 3, m ≥ 3

span RF (1, 1, 1, n− 3) ≥ 3.
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For n even:

span RF (1, 1, 1, 2m − 5) ≤ 2m+1 − 6, m ≥ 3.

We also give the following exact values:

span RF (1, 1, 1, 2) = 3

span RF (1, 1, 1, 3) = 7

2. PROOF OF RESULTS

We need the following results,
Theorem 1:[8] If F −→ E −→ B is a smooth fibre bundle, then
span E ≥ span B.

The smooth fibrations

RF (1, 1, 1, n− 3) −→ RF (3, n− 3)

and
RF (1, 1, 1, n− 3) −→ RF (1, 1, n− 2)

yield the following:

Proposition 1:

span RF (1, 1, 1, n− 3) ≥ span RF (3, n− 3)

span RF (1, 1, 1, n− 3) ≥ span RF (1, 1, n− 2).

By Korbas [6], we have the following lower bound results:

Proposition 2: span RF (1, 1, 1, n− 3) ≥ ρ(n)

Applying Propositions 1 and 2 we have the following lower bounds:

Proposition 3:

span RF (1, 1, 1, n− 3) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 n ≡ 2 mod 4; or n odd
3 n ≡ 4 mod 8
7 n ≡ 8 mod 16
8 n ≡ 16 mod 32
4 n = 2m + 1, m ≥ 3

Proof: For n ≡ 2 mod 4, n ≡ 4 mod 8 and n ≡ 8 mod 16, the
result follows from Ilori and Ajayi’s results on span of RF (1, 1, n−2)
[5] and Proposition 1. Alternatively, if n is odd then ρ(n) = 1;
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if n ≡ 2 mod 4 then n = 2(1 + 2k) implies a = k, c = 1, d = 0
and ρ(n) = 1;
if n ≡ 4 mod 8 then n = 22(1+2k) this implies a = k, c = 2, d =

0 and ρ(n) = 3;
if n ≡ 8 mod 16 then n = 23(1 + 2k) this implies a = k, c =

3, d = 0 and ρ(n) = 7;
if n ≡ 16 mod 32 then n = 24(1 + 2k) this implies a = k, c =

0, d = 1 and ρ(n) = 8.
Using Proposition 2 we have the results.
The proof of the last inequality follows from span RF (1, 1, 2m −

1) ≥ 4 (cf. [7]) and Proposition 1.

From [9], the span ofXn,3 is related to the span ofRF (1, 1, 1, n−3)
as follows:

Proposition 4: span Xn,3 ≥ span RF (1, 1, 1, n− 3).

Results on the span of Xn,3 (cf.[9]) yield the following upper bounds

Proposition 5:

span RF (1, 1, 1, 2m − 5) ≤ 2m+1 − 6; m ≥ 3

span RF (1, 1, 1, 2m − 2) ≤ 2m+1 − 3; m ≥ 2.

To obtain lower bounds for span of manifolds, the knowledge of
Stiefel-Whitney classes have proved important because of the fol-
lowing:

Proposition 6: [12] If wk(M) 
= 0, then span M ≤ m − k where
m is the dimension of M .

Results on Stiefel-Whitney classes of RF (1, 1, 1, n− 3) in [1] yield,

Proposition 7: If n is even, then w3 = σ1σ2 + σ3 
= 0 ; if
n ≡ 2, 4, 6 mod 8 then w4 
= 0; if n ≡ 2, 6 mod 8 then
w5 = σ2(σ1σ2 + σ3) 
= 0; if n ≡ 5 mod 8 then w6 = σ1σ2σ3 
= 0;
and if n ≡ 2 mod 8 then w7 = σ4

1(σ1σ2 + σ3) 
= 0 .

Proposition 7 together with Proposition 6 yield:



ON SPAN OF FLAG MANIFOLDS . . . 173

Corollary 1: If n ≡ 2 mod 8 then span RF (1, 1, 1, n − 3) ≤
3n− 13, if n ≡ 6 mod 8 then span RF (1, 1, 1, n− 3) ≤ 3n− 11,
if n ≡ 5 mod 8 then span RF (1, 1, 1, n− 3) ≤ 3n − 12 if n ≡ 4
mod 8 then span RF (1, 1, 1, n−3) ≤ 3n−10 and if n ≡ 0 mod 8
then span RF (1, 1, 1, n− 3) ≤ 3n− 9.

Theorem 2:

span RF (1, 1, 1, 2) = 3

span RF (1, 1, 1, 3) = 7

Proof:

span RF (1, 1, 3) = 3 ⇒ span RF (1, 1, 1, 2) ≥ 3

and

span X5,3 = 5 ⇒ span RF (1, 1, 1, n− 3) ≤ 5

i.e.

3 ≤ spanRF (1, 1, 1, 2) ≤ 5.

From [1], for n = 5, w6(RF (1, 1, 1, 2)) = σ1σ2σ3 
= 0. Since
dimRF (1, 1, 1, 2) = 9, and using Proposition 5 we have span
RF (1, 1, 1, 2) ≤ 3. Hence the result.

span RF (3, 3) = 7 implies span RF(1, 1, 1, 3) ≥ 7

and

span X6,3 = 10 ⇒ span RF (1, 1, 1, 3) ≤ 10

i.e.

7 ≤ spanRF (1, 1, 1, 3) ≤ 10.

We know by [1], that w5 = σ2
1(σ1σ2 + σ3) for n ≡ 6(8) and σ1σ2 +

σ3 
= 0 and σ2
1 
= 0. Therefore, w5 
= 0 and spanRF (1, 1, 1, 3) ≤

12− 5 = 7 gives the result.
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[7] J. Korbaš: On the vector field problem O(n)/O(1)×O(1)×O(n−2) Acta
Math. Hungar. 105 (1-2) (2004), 129-137

[8] J. Korbaš and P. Zvengrowski: The vector field problem: A survey with
emphasis on specific manifolds. Expo. Math. 12 (1994), 1 - 30.
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